
Situation-Aware Task Planning for Robust AUV Exploration in Extreme
Environments

Yaniel Carreno1,2 ∗ , Jonatan Scharff Willners2 ∗ , Yvan Petillot1,2 , Ronald P. A. Petrick1

1Edinburgh Centre for Robotics, Edinburgh, United Kingdom
2Ocean Systems Laboratory, Heriot-Watt University, Edinburgh, United Kingdom

{y.carreno, j.scharff willners, y.r.petillot, r.petrick}@hw.ac.uk

Abstract
Achieving an accurate model of the underwater do-
main that captures all its complex dynamics rep-
resents a challenge. Therefore, planning solutions
often involve replanning. High-level abstraction of
the domain definition required for tractable plan-
ning means that the system often ignores specific
properties, giving rise to states where survivability,
reliability, and mission quality could be compro-
mised. This work proposes an approach that com-
bines planning, knowledge representation and de-
cision making to achieve high-level mission goals
that maintain mission survivability and improve ro-
bustness. We present the Situational Evaluation and
Awareness (SEA) framework to bridge the high-
level planning and low-level mission execution sys-
tems. SEA maintains a dynamic evaluation of the
state to provide a goal completion assessment for
local recovery and global mission execution. The
approach shows good performance during evalua-
tion in different problems involving real scenarios.

1 Introduction and Motivation
Autonomous Underwater Vehicles (AUVs) are increasingly
used to implement complex missions that require robots with
a high-level of operational autonomy [Thompson and Guihen,
2019]. AI planning is well situated to solve many real-world
problems associated with the deployment of intelligent agents
in complex scenarios that usually require long-term operabil-
ity [Kunze et al., 2018]. In particular, AI planners that reason
about temporal and numeric constraints have previously been
integrated into real AUV platforms [Maurelli et al., 2016;
Buksz et al., 2018] to solve missions involving seabed ex-
ploration, inspection and maintenance of offshore structures,
emergency response, and military intervention. These solvers
generate a plan—a structured sequence of actions that guides
the initial world state to a goal state—which is model-based
and suitable for execution in the world. However, there are
drawbacks in using solvers that generate deterministic plans
to deal with uncertain domain dynamics since they increase
the risk of plan execution failures. A long-standing solution

∗Authors have contributed equally in this work.

Figure 1: Dora, BlueROV2 operated as an AUV in real applications.
The exploration scenario counts with multiple points of interest that
require inspection. Dora uses an automated planning system to per-
form tasks that depend on the AUV sensors and actuators.

for dealing with plan failures relies on the system’s capac-
ity to provide a new plan (after replanning) that maintains
the mission implementation.Potential reasons for replanning
might include: variations in the mission goal requirements,
the failure of specific actions, and the acquisition of new sens-
ing data, all of which directly affect the system’s operability.

In the maritime domain, the maintenance of the AUV’s op-
erability is fundamental for achieving mission effectiveness.
Operability is conditioned by the system’s ability to provide
solutions to unexpected situations at planning time, avoid-
ing dead-ends—total failure during mission implementation.
Robot operability is usually linked to three main components:
survivability, reliability, and quality [Thompson and Guihen,
2019]. Due to the complexity of the domain, the maintenance
operations of the AUV must consider (i) planning for a cur-
rent state—the actual state that encapsulates the conditions
and effects (properties) of currently executing actions—and
(ii) failure specifications when they occur. The current state
uses the sensing information to update the problem proper-
ties. Consider the following example.

Motivation. The AUV (Dora) in Figure 1 navigates around
a structure to perform image reconstruction. The initial plan
contains multiple instances of the MAP(WPI,WPF) action,
defining AUV navigation from an initial point WPI to a fi-
nal point WPF while mapping the trajectory. Consider the
case in which one of these actions fails in the middle of the
path. One possible reason for the failure could be poor fea-

tures tracking1 that leads the AUV to build multiple maps of
the same structure, which is unwanted. This problem does
not alter the execution of the navigation. However, it strikes
one of the operability elements (quality) as Dora does not ob-
tain a good outcome from the mapping process. After the
failure, the AUV implements replanning to solve the unfin-
ished goals. In this setting, the planning system does not
know the robot’s actual position. The action failed when the
AUV was not at any of the points (WPI and WPF) included
in the abstraction of the real-world, represented by the points,
modelling this problem. This makes the planner incapable of
generating a plan as knowing the AUV’s location is a neces-
sary precondition to implementing the MAP action. Assuming
the AUV actual location is known, mission completion can
also be affected by the bad judgement around the tasks the
AUV should complete recovering from the failure. Recovery
from features tracking issues requires a plan to complete new
goals (local goals) for AUV relocalisation before mapping.
Then Dora can keep implementing the mission goals (global
goals). Standard replanning finds a new plan from the cur-
rent state to achieve just global goals. In this case, reasoning
about the failure types supports implementing a more effec-
tive replanning that might include planning for mission goals
and other goals linked to the AUV failure recovery.

This paper proposes a solution to improve mission op-
erability that combines a knowledge-based framework and
goal-based mission planning to achieve plans for dynamic
problems. This framework is adaptable to changes in the
initial model, allowing a less domain-dependent description
while keeping the potential of planning with temporal and nu-
meric notions. We present a new approach, called Situational
Evaluation and Awareness (SEA), that combines knowledge
of mission failure types with planning for current states en-
hancing robustness over long-term periods while maintain-
ing information gathering and goal execution quality. SEA
is a failure solver which acts when failures occur, driving
the robot from the failure state by proposing alternative be-
haviours or updating its knowledge. SEA evaluates the char-
acteristics of failures to complete the global goals while in-
troducing local goals that enable recovery from failure states.

We evaluate our approach using a BlueROV22 robot that
acts as an AUV in several inspection tasks in a scenario3

where different failure conditions can occur during mission
implementation. Our results show that the combination of
SEA and Online Planning outperforms a benchmark approach
that plans for static states and does not consider the charac-
teristics of the failures to support effective replanning.

2 Background and Related Work
The planning and robotics communities have a long history
of exploring the performance of online mission monitoring

1Underwater image reconstruction algorithms struggle to main-
tain a good view of features to perform tracking while mapping.
Therefore, approaches often choose new features, making the sys-
tem build a new map taking as reference the new feature set.

2https://bluerobotics.com/store/rov/bluerov2/
3An underwater scenario was built in the facilities of the Ocean

Systems Laboratory at Heriot-Watt University.

[Pettersson, 2005; Levine, 2012] by analysing the character-
istics of action failures, the variations in the initial mission
goals, and the system’s capacity to maintain operation at any
cost. One solution to these issues are approaches based on
probabilistic models that compute a policy considering the
uncertainty in the domain to provide robustness to tempo-
ral planning solutions. An example in marine applications
is [Duckworth et al., 2021], which handle time-varying prob-
lems with unknown dynamics on single missions. Alterna-
tive strategies consider run-time contingencies in determinis-
tic models. [Cashmore et al., 2019a] propose the computa-
tion of alternative solutions in a Simple Temporal Network
[Dechter et al., 1991] plan to maintain a valid solution. The
STPUD [Cimatti et al., 2018] framework focuses on solving
problems with uncertainty around action’s duration. [Valen-
tini et al., 2020] present a technique that allows reasoning
regarding time, conditions, and effect changes in the action
duration. There is a limitation using these approaches when
dealing with failures imply alternative plans with different
goal sets. For these situations replanning is advantageous.

The approach of [Cashmore et al., 2019b] shares certain
similarities with our work by considering planning techniques
for situated replanning. In particular, they focus on search-
ing (in parallel) for a better plan by replanning with a dy-
namic initial state, modelled as a temporal planning problem
with timed initial literals (TILs) [Cresswell and Coddington,
2003]. TILs are also considered in [Cashmore et al., 2018]
where they model the solution by reasoning about external
events and time. These approaches mainly focus on problems
with time constraints. We consider the agent’s operability in-
stead of mission time limitations. In our work, we also rep-
resent the current state by a temporal planning problem and
replan for failures that are not necessarily linked to the action
in execution. This allows replanning in advance for situations
that affect the plan’s execution or its quality when the agent
reaches future states, leading to robust solutions.

IxTeTeXEC [Lemai and Ingrand, 2004] is another strategy
that considers the advantages of online planning. This frame-
work executes missions with rigorous temporal constraints in
dynamic environments by integrating planning, plan repair
and execution control. The main differences between plan re-
pair and replanning are presented in [Fox et al., 2006]. Our
system integrates replanning and plan repair as valid options
depending on the characteristics of the failure, which can in-
duce new requirements (problem goals).

3 System Overview
This section provides an overview of the main elements of
our system (see Figure 2) that integrates the SEA framework
(see Section 4) and Online Planning (see Section 5). The sys-
tem contains four modules that are interconnected at different
levels with the World: (i) Mission Interface, (ii) Planning In-
terface, (iii) Execution Interface, and (iv) Robot Interface.

Mission Interface includes the domain and problem that de-
scribe the requirements from the operator and the properties
of the world we can encapsulate in the model.

Planning Interface includes all the available knowledge at
the planning time to generate the problem and plan solution,

which is parsed and dispatched to the Execution Interface.
SEA introduces the Intermediate Mission Requirements com-
ponent (IMR) extending the initial Mission Requirements
(MR) when notifications of failures or substantial changes
occur during the plan implementation. SEA receives feed-
back for the Online Planning and Plan Execution to define
the propositions and goals to change (add or remove) to avoid
failures. Besides, SEA is connected to the World Model
through a Failures Ontology (FO) that defines the possible
type of failures associated with the environment. The ontol-
ogy is used for decision making to deal with unexpected situ-
ations. SEA can command the Online Planning to cancel the
actual plan execution, acknowledging failures for processing
the data arriving from the Execution Interface. This connec-
tion is fundamental because failures can occur during action
implementation. However, they might not directly affect the
action in execution but can affect the mission outcomes when
the agent attempts to reach other states later in the plan.

Execution Interface takes the dispatched action by the Plan-
ning Interface and translates it to action commands under-
standable for the AUV. The Execution Interface acts as a
bridge providing the sensing information used to determine
the quality of plan implementation and helps SEA (in com-
bination with FO) identify the failure source. This interface
embeds the low-level algorithms such as those mentioned in
Section 4 that allow the performance analysis of individual
actions and informs the system about the execution process.

Robot Interface includes the robotic platforms we can use in
the mission. This interface provides all necessary perceptual
information to evaluate the mission’s execution and supports
the definition of the application module in the FO.

4 Knowledge-Based Framework
Situation awareness (SA) can be defined as the capacity of
the autonomous agent to reason about the changes occurring
in the environment during mission execution. This under-
standing considers the system observations acquired during
the mission by processing the sensing data and past experi-
ences that help to create intelligent behaviour. The knowledge
framework builds on concept, definitions and statements, and
consistently connects to the elements of experience and data
acquisition that define the SA. This connection is fundamen-
tal for the autonomous agent to decide its response to a par-
ticular mission state. Mission knowledge encloses a large
set of possible elements which are used by AI planning al-
gorithms to generate rational behaviours. We focus on the
elements of knowledge that can support the SA over the mis-
sion: robot capabilities and possible failure types by consid-
ering the characteristics of the environment.

We have created a library of ontologies called Failures On-
tology (FO) that combines the autonomous agent’s capabil-
ities and the type of failures associated with different worlds
(for the scope of this paper: underwater domain) that pro-
vide knowledge to the system which is used to deal with the
environment changes. This library contains three modules:
foundation, domain, and application. The first defines generic
concepts and properties. The second provides space to map

Figure 2: High-level task planning architecture. The SEA provides
robustness to the automated planning system dealing with unex-
pected situations during plan execution.

and integrate data from different sources (e.g., robot types,
hardware properties, specific software, failure types and risk
levels, mission requirements, world properties, etc.). The
third integrates the source data (e.g., mission actions, agent
resources, action execution properties, etc.). FO enables
the system to identify actions that can be used to overcome
different failure types. The knowledge framework struc-
ture makes the approach scalable to multiple failure types
targeting other realistic and uncertain real-world scenarios
e.g., robotic manipulation and self driving cars. The library
is extended considering previous works [Pettersson, 2005;
Levine, 2012] regarding tolerance analysis, anomaly and fault
detection to define the set of possible failure reasons. This
tool provides updated advice to the mission-goal system (see
Section 5) about possible behaviours to deal with failures
while maintaining mission survivability and utility. SEA cre-
ates a bridge between plan reasoning and execution to support
system robustness when running for long periods of time.

Algorithm 1 shows the reasoning used by SEA. The system
takes the initial set of mission goals as a reference (line 2)
and performs global goals execution checks until all mission
goals are completed (line 3). SEA acts independently from
mission planning providing knowledge updates (γ) and inter-
mediate mission requirements (IMR). SEA keeps checking
the processed sensing data SI to ensure that action execution
is working well (line 4). If a notification is received, SEA
classifies the information (line 6) using FO and N . Then, it
generates recovery goals depending on the type of notification
(line 7). The system acts as a finite state machine (FSM) to
define the set of goals depending on the failure characteristics.
For some particular cases, the generation of recovery goals
might require communication with low-level algorithms to
support the goal’s generation. This is the case we describe
in the motivation of this paper: when visual feature tracking
for localisation is lost, the SEA needs to deal with this situ-
ation by connecting with a low-level algorithm that provides
new points that enable the system to merge with the original
map to improve image reconstruction. When new goals are

obtained, γ and IMR (line 8-9) are updated and returned.
Notice IMR contains, in this case, a new set of goals (re-
covery goals) that are not the original ones; therefore, the set
of mission goals to achieve (i) does not change. SEA also
checks if there are failures associated with the implementa-
tion of the action that is independent of external factors (e.g.,
the action was not completed in the predefined time causing
the failure) (line 11). In this case, γ and IMR are updated
and returned (line 13-14). However, no additional actions are
introduced to the plan (a plan repair is introduced to deal with
the problem). If none of the above situations occur, SEA up-
dates the knowledge (line 16-17). As a result, SEA attempts
to maintain mission survivability and adaptability over long-
term missions: the evaluator forces the generation of recov-
ery plans which are introduced in the execution of the original
plan to solve particular failures when they occur.
Low-level Algorithm: Robust Localisation. To aid in ro-
bust localisation, a viewpoint planning module is used to con-
nect simultaneous localisation and mapping (SLAM) system
with the high-level planner. Here, we describe an example
of the low-level algorithms interacting with SEA that are em-
bedded in the Execution Interface. This planner generates
viewpoints based on prior poses (keyframes) in the SLAM’s
pose-graph, and the current knowledge about the environ-
ment. In this paper, we use the SLAM system described
in [Xu et al., 2021] which integrates sensor data from dead
reckoning based on a doppler velocity log (DVL), an inertial
measurement unit (IMU) and a depth sensor. When visual
feature tracking is lost, SLAM notifies the viewpoint planner
along with a set of keyframes. When a lost tracking noti-
fication is received, the current pose estimation is evaluated
to determine if it is supposed to have features to track in the
previously mapped environment or not. If it is considered to
have too few previously seen features to perform reliable pose
estimation (e.g., traveling through an open featureless space
or turning away from a structure) the mission can progress
without interruption. However, if it is determined that the
robot should have enough features in view to perform a re-
liable pose estimation, the planner will enter a relocalisation
mode. Based on the keyframes, a sample-based approach is
applied to find viewpoints deemed to have a high probabilis-
tic likelihood of reobserving features in the map to relocalise.
For each keyframe n viewpoints are sampled within a speci-
fied distance from the keyframe. The sampled viewpoints are
evaluated through a utility function, and for each keyframe,
the highest scoring viewpoint is selected as a new waypoint
for a temporal plan for relocalisation. The utility function is
a modified version of the one presented by [Palomeras et al.,
2019], and is described in detail in [Scharff Willners et al.,
2021]. The utility function consists of four weighted reward
functions: i) The amount of observed voxels based on a sim-
ulated sensor in the mapped environment, represented as an
OctoMap [Hornung et al., 2013]; ii) The distance from the
keyframe; iii) The distance to the closest observed voxel in
the simulated sensor. If a voxel is too close it can increase
the risk of collision and if too far away it might not be visible
due to inadequate water conditions. iv) If the viewpoint is in
a configuration classified as free in the OctoMap.

The generated set of viewpoints is sent to SEA, who uses

Algorithm 1: Situational Evaluation and Awareness
Input: SI : Sensing Information.
Input: FO: Failures Ontology.
Input:MR: Global Mission Requirements.
Input:MK: Mission Knowledge.
Input: AU : Action Update.
Output: IMR: Intermediate Mission Requirements.
Output: γ: Current Mission Knowledge.

1 begin
2 i← ExtractGlobalMGoals(MR)
3 while not i← ∅ do
4 N ← CheckFNotifications(SI)
5 if N then
6 δ ← ClassifyNotification(FO,N)
7 ψ ← GenerateRecoveryG(δ,MK)
8 γ.UpdateKnowledge(SI ,MK, ψ)
9 IMR.NotifyPlanning(ψ, γ)

10 else
11 u← CheckActionFailure(AU)
12 if u then
13 γ.UpdateKnowledge(SI ,MK, u)
14 IMR.NotifyPlanning(γ, u)
15 else
16 γ.UpdateKnowledge(SI ,MK)
17 IMR.NotifyPlanning(null)

18 return (IMR, γ)

them to advise the system to build a (new) plan for AUV
relocalisation using the viewpoints as local goals. This is
an attempt to force map-merging (loop closure). Merging
sub-maps to the original map has multiple benefits, including
more reliable pose estimation and a better reconstruction as
all the merged maps are connected through visual features.

5 Planning for System Autonomy
Embedded decision-making systems that reason about mis-
sion knowledge, including failures, and planning algorithms
can optimise the long-term management of robotic plat-
forms and provide fast, dynamic responses to events by au-
tonomously coupling global mission requirements and local
recovery mechanisms. This section describes the methods for
mission plan generation.
High-Level Planning. According to the robot’s capabilities,
AI temporal planning solves a temporal planning problem
(see Definition 1), guiding the autonomous agent to imple-
ment a sequence of actions called a temporal plan (see Def-
inition 2), leading the system from an initial state to a final
state that achieves the mission goals. The plan actions can
be instantaneous (see Definition 3) or durative (see Defini-
tion 4). We adopt the full Planning Domain Definition Lan-
guage (PDDL) version 2.1 [Fox and Long, 2003] with con-
tinuous change considering propositional temporal planning
problems with TILs.

Definition 1. A temporal planning problem is a tuple
Pt := 〈P,A, I,G, T 〉, where P is set of propositions; A is

a set of instantaneous and durative actions, where the du-
ration of the actions is controllable and known; I is the
complete function defining the initial state of propositions,
I : P → {>,⊥} ∪ R, where > and ⊥ denote the defined
and undefined values, respectively; G is a set of goals, where
G : P → {>,⊥} ∪ R is a (possibly partial) function that
describes the goal conditions; and T is a set of time windows
defined using TILs.

Definition 2. A temporal plan Πt for a temporal planning
problem Pt is a set of tuples πt := 〈a, t, d〉, where a ∈ A, t
is the action starting time and d and the action’s duration. A
durative action a hold t ∈ R≥0 and d ∈ R>0, where R≥0 =
{x ∈ R |x ≥ 0} and R>0 = {x ∈ R |x > 0}.
Definition 3. An instantaneous action ai, where ai ∈ A, is
a tuple 〈apre , aeff 〉, apre is a set of pre-conditions that must
hold for action’s application, aeff is the set of action effects.

Definition 4. A durative action ad, where ad ∈ A, is a tuple
〈apre , aeff , adur 〉; apre is a set of conditions that must hold
for the action to be applicable; aeff is the set of action effects;
and adur is a set of duration constraints.

Several approaches exist in the AI literature for solving
temporal planning problems [Coles et al., 2010; Benton et al.,
2012]. Our planning system models the problem by defining
types, fluents, functions, durative actions and different search
metrics and heuristics. For instance, our domain4 defines the
types such as robot, sensor, and waypoint. Typing al-
lows the resources to be classified in different sorts. These
sorts are linked to the system knowledge. Action param-
eters are associated to these sorts, e.g., for navigation,
?r - robot ?wpi ?wpf - waypoint. Fluents allow the
modification of numerical or data resources (e.g., (assign
(battery level ?r) 100)). Functions are linked to the
observed knowledge and provide numerical values to cer-
tain properties of the available resources (e.g., (distance
?wpi ?wpf - waypoint), (speed ?r - robot), etc.).
Actions have a duration cost function d, which can be rep-
resented by fixed values or to the function value of their re-
source parameters.

The planner generates a sequence of actions to meet a
set of propositional preconditions and then applies schedul-
ing techniques to arrange this action sequence, consider-
ing the numeric and temporal constraints. For the durative
action navigation the preconditions for its implementa-
tion requires knowing the robot’s actual position (at ?r -
robot ?wpi - waypoint), its availability (available
?r - robot) and the true connectivity between the ini-
tial and the final point where the AUV needs to navigate
(connected ?wpi ?wpf - waypoint). The effects of
implementing this action are the robot’s position changes to
?wpf and the new waypoint inspected (inspected ?wpf
- waypoint). In addition, we can define a set of prop-
erties related to the robot capabilities such as proposition
(camera equipped ?r - robot ?s - sensor) which

4In https://github.com/YanielCarreno/domain-ijcai-r2aw.git, we
present the domain and problems. Our domain includes actions
for navigation, communication, control of the robot’s light system,
robot recovery, battery recharge, and hardware checks.

Time: (Action Name) [Duration]
0.000: (navigation dora wp0 wp10) [10.000]
10.001: (turnon-light dora wp10) [2.000]
12.002: (navigation dora wp10 wp11) [10.000]
(...)
72.007: (navigation dora wp40 wp41) [10.000]
82.008: (turnoff-light dora wp41) [2.000]
84.009: (recover dora wp41) [1.000]

Figure 3: A fragment of an original temporal plan solution for the
image reconstruction of a structure.

is a precondition in actions that require a camera. The mis-
sion plan is generated following a cost function f defined by
the operator. For temporal planning the default f attempts
to minimise the makespan—the time required to implement a
plan. Therefore, the new state k from a set of possible can-
didates X (see Equation 1) is obtained by evaluating X (see
Equation 2), where γ is the progression state transition func-
tion and si is the state.

X =
⋃

a∈exec−1(si)

〈γ−1(si, a) | a ∈ A〉, (1)

s(X) = argmin{f(k) | k ∈ X}, (2)

Figure 3 shows an example of a plan solution for
the image reconstruction of a structure using the AUV
(BlueROV2). The mission goals are to inspect a set of
points5 around a structure to obtain its image reconstruc-
tion. The problem goals are (inspected wp10) ...
(inspected wp41). One of the advantages of temporal
task planners is that we obtain plans that reach goals associ-
ated with different types of actions while controlling the mis-
sion duration. For instance, the actions to turn the AUV lights
and recovery support the implementation of goals (light on
wp10), (light off wp41) and (recovered wp41), which
are not related to the reconstruction; however they represent
another set of mission requirements defined by the operator.
Online Planning. Temporal planning solutions have proved
their effectiveness while implementing AUV missions. How-
ever, such planners focus on deterministic planning mod-
els with predictable outcomes and completely known initial
states. These characteristics limit the applicability of tem-
poral planners to solve missions in the underwater domain
that require algorithms reasoning about uncertainty consider-
ing the environment is highly dynamic. In this work, we ac-
knowledge the state’s dynamic by combining temporal plan-
ning and the knowledge provided in real-time by the SEA
framework, which allows the implementation of an online
planning strategy. This procedure provides robustness to the
approach by dealing with the state changes associated (in
some cases) with failures of different nature (e.g., actuators,
sensors, exogenous events, etc.). Algorithm 2 shows the On-
line Planning approach, which extracts the mission goals (line
2) and introduces the initial state with the requirementsMR
(line 3). The online planning algorithm is active until all mis-
sion goals are completed (line 4). It takes the current knowl-
edge to generate a planning problem (line 5), which is used
to generate a plan (line 6). The algorithm cancels any plan

5We have the notion of the initial robot and structure coordinates.

Algorithm 2: Online Planning
Input:MR: Global Mission Requirements.
Input: IMR: Intermediate Mission Requirements.
Input: γ: Current Knowledge.
Output: MK: Mission Knowledge.

1 begin
2 i← ExtractGlobalMGoals(MR)
3 IMR←MR
4 while not i← ∅ do
5 P ← GenerateProblem(IMR)
6 Πt ← GeneratePlan(P)
7 Fi−1.CancelCurrentPlan()
8 Fi.DispatchPlan(Πt)
9 p.CheckSEA(IMR, γ)

10 if p Failed then
11 i.UpdateGoals(IMR, γ)
12 MK.UpdateKnowledge(IMR, γ)
13 returnMK
14 else if F ← isAchieved then
15 i← ∅

in execution (line 7) before dispatching the new plan (line
8). The method keeps checking the updates from SEA (line
9) during the whole mission. If SEA notifies of substantial
changes and advises replanning (line 10), MK and i is up-
dated (line 11-13), returning the actualMK. If SEA does not
notifies failures during the plan execution, the system main-
tains the execution of the plan until the goal state is achieved
(line 14). Then the set of mission goals is empty and Online
Planing stops (line 15). Notice that the strategy generates a
substitute plan in parallel to execution to avoid the issues as-
sociated with planning delays in non-quiescent environments.
The recovery strategy considers the number of times the agent
is visiting the same state. Then after a set of attempts (or re-
covery plans that includes the same state) if the goal is not
achieved it is cancelled from MR and IMR. Using this
policy the system avoids cyclic redundancy—the system re-
plans for the same actual state to achieve the same global or
recovery goal—during plan execution. An example of cyclic
redundancy can occur when strong sea currents impede the
AUV to reach a point WPF. In that case, after multiple at-
tempts the system removes the goal(s) associated with WPF
from the list of unfinished goals.
Unexpected Failures. This work presents a model-based ap-
proach where SEA attempts to meet the model inaccuracies
when dealing with failures in a dynamic environment. There-
fore, the system behaviour when failures occur depends on
the failures listed in the FO and the system capacity to find
a recovery solution for every possible failure (including those
not listed in the FO). In cases the failure is listed the sys-
tem advises the Online Planner considering the information
in the knowledge-based framework. When multiple (known)
failures coinciding, the approach considers the level of risk
of each failure and decides on the replanning strategy based
on the failure ranking, e.g., if there is a high-risk failure, SEA
advises a replanning solution for high-risk situations. Finally,

Run-Time Plan (1) Description

(navigation dora wp0 wp10) Navigate to wp10
(turnon-light dora wp10) Turn-On light at wp10
(map dora slam wp10 wp11) Mapping wp10 to wp11

SEA Notification Dora Localisation Issue

Run-Time Plan (2) Description

(map dora slam wpra0 wpr0) Localise dora
(map dora slam wpr0 wpr1) Localise dora
(map dora slam wpr1 wpr2) Localise dora

SEA Notification Dora Localised

Run-Time Plan (3) Description

(map dora slam wpra1 wp11) Mapping wpra to wp11
(map dora slam wp11 wp12) Mapping wp11 to wp12
(map dora slam wp12 wp13) Mapping wp12 to wp13
(map dora slam wp13 wp14) Mapping wp13 to wp14

SEA Notification Dora Battery Issue

Run-Time Plan (4) Description

(navigation dora wpra2 wps0) Navigate to surface
(communication dora wps0) Communicate with base
(recharge dora wps0) Recharge battery
(map dora slam wps0 wp14) Mapping wps0 to wp14
(...)
(turnoff-light dora wp41) Turn-Off light at wp41
(recover dora wp41) Recover dora at wp41

Table 1: A run-time plan implementation. The original temporal
plan and the recovery (and repair) plans introduced.

when not listed failures occur SEA advises a backup plan in-
volving communication with human operators to evaluate the
situation.

6 System Integration Example
Table 1 shows an example of a solution where the execution
of the original plan (see Figure 3) is interrupted, as a result,
SEA receives a notification that the AUV has lost its locali-
sation when executing an action (action in red). In this case,
SEA identifies the type of failure and reasons for the alterna-
tive plan that makes the robot recover. The system takes the
best possible course of recovery provided by the low-level
algorithm for viewpoint generation, and sends a set of new
goals and knowledge updates to the Planning System that
allows the generation of a new (substitute) plan (recovery-
plan). The updates in the IMR ensure the information used
for planning, such as the waypoints connected, meet with the
robot and environment kinematics and dynamics, making the
new plan achievable. The new plan forces the robot to navi-
gate these points to relocalise. Suppose during the execution
of the recovery plan the AUV achieves relocalisation. In this
case, the SEA determines that the recovery plan is completed,
even when all actions are not achieved. The system will then
replicate the uncompleted mission goals and send these new
requirements to the system to obtain a plan that solves the
remaining goals. Suppose the AUV completes the recovery
plan (intermediate), and relocalisation is not achieved. In
this case, the system will ask for new relocalisation points
to maintain the robot exploring the area looking for the map
merging before executing the incomplete goals in the MR.
However, the system is designed to avoid situations where an

infinite loop can occur as a result of experiencing the same
failure multiple times (see Section 5).

Our approach can deal with other types of failures such as
battery level notifications (see Table 1). In this case, the sys-
tem advises the online planning module to implement a plan
repair that forces the robot to recharge. The current knowl-
edge updates the proposition associated with the battery level.
The new value is under the best (safe) energy range for the
robot. Therefore, the actual plan under execution is not valid,
and it is replaced with a new plan obtained by updating the
initial state with the real battery level. This can happen when
the initial model has a low fidelity. SEA helps to avoid situa-
tions where model inaccuracy leads to poorly built plans.

7 Evaluation
We implement multiple missions associated to our robot ca-
pabilities, including the autonomous inspection of a struc-
ture (see Figure 1). Our BlueROV2 is a full ROS-enabled
[Quigley et al., 2009] platform with a stereo-vision system
designed for close-range 3D inspections. The vision system
was developed to satisfy working in murky water [Łuczyński
et al., 2019]. This section evaluates the system robustness and
the quality of the plan implementation. Our system uses OP-
TIC [Benton et al., 2012] for plan generation and the archi-
tecture builds on ROSPlan [Cashmore et al., 2015]. However,
we introduce a set of new elements to support integrating the
dynamic replanning and SEA components. The task planning
approach finds a plan that leads the robot to explore multiple
points of interest.
Experiment 1 (Robustness). This experiment focuses on the
inspection of the structure and proposes to assess the capa-
bility of our approach to maintain a single consistent map
during autonomous operations. We compare the autonomous
relocalisation framework presented in this paper with two in-
dependent runs of an autonomous waypoint controller. Both
approaches have the same set of waypoints to explore. The
waypoints construct a vertical lawnmower pattern consisting
of 24 waypoints around the structure. In all inspections, we
forced the SLAM to lose feature tracking by replacing the
images from the cameras with featureless black images.
Experiment 2 (Plan Execution). This experiment evaluates
mission implementation quality in a real scenario when the
AUV builds the map of a structure moving around a set of de-
fined points (36 waypoints). Evaluation considers three sce-
narios: (S1) static state, (S2) current state with (partial) SEA,
and (S3) current state with SEA. For S1 the initial state is
the one reached when action on execution finishes. S2 con-
siders current state updates without FO (partial SEA). The
system considers the planning problem where the initial state
is the current state, and there is no need to wait until the ac-
tion finishes to replan if this is required. Here, there are no
notifications associated with the ontology. However, the sys-
tem can receive updates from the current knowledge and ac-
tion execution. For S3 the system considers a current state
and receives failure notifications from SEA. The experiment
consists of 10 problems, each containing failure notifications
of different types: (i) high-risk (e.g., water leaking and bat-
tery level) and (ii) standard (e.g., localisation). The time for

(a) (b)

(c) (d)

Figure 4: In (a), there is no active relocalisation procedure leading
to multiple sub-maps. In (b), the approach (SEA-Online Planning)
uses the visual feature tracking information to relocalise, resulting
in a single map. In (c), the vehicle lost track around a corner, creat-
ing a new sub-map using the new features. (d) shows map merging
considering the approach generates a recovery temporal plan to deal
with multiple map generation. After solving the issue, the AUV
keeps the implementation of the originally defined mission goals.

failure notification is the same for all scenarios and are ran-
domised for each problem. We evaluate the mission surviv-
ability (MS), mission data quality (MQ), and the execution
time (ET) for these problems. The AUV needs to navigate to
the surface and communicate with the mainland to implement
the recharge.
Experiment 3 (Planning Process). This experiment com-
pares the real planning times required to generate a new plan
solution combining Online Planning and SEA (S3) with the
replanning process using a static state (S1).

8 Results and Discussion
Our domain and problems are encoded in PDDL. All exper-
iments in this section are run on Ubuntu 16.04, with an Intel
Core i7-8700, limiting the planner to 5 sec of CPU@3.2GHz,
16GB of RAM. The planning time6 reference value considers
the dynamics of the maritime domain.

The results7 of implementing Experiment 1 (see Figure 4)
illustrate the map at the end of the inspection for each trial.
While the autonomous inspection without our relocalisation
generates 4 different sub-maps (indicated in different colours
in Figure 4a), our approach ends with a single consistent

6Time required to generate a plan, times for problem generation
and plan parsing are excluded.

7System demonstration: https://youtu.be/lPetVtFVe0M

MS MQ ET

Problem Notifications S1 S2 S3 S1 S2 S3 S1 S2 S3

1 (1, 1, –) 0.5 1 1 1 1 1 – 768.3 768.3
2 (1, 2, –) – 1 1 – 1 1 – 792.3 792.3
3 (2, 2, –) 0.25 1 1 1 1 1 – 814.1 814.1
4 (5, –, –) – 1 1 – 1 1 – 834.2 834.2
5 (2, 3, –) 0.2 1 1 1 1 1 – 866.3 866.3
6 (–, 3, 2) – 1 1 – 0.6 1 – 878.3 1032.7
7 (–, –, 5) 1 1 1 – – 1 867.2 867.2 1234.7
8 (3, 3, 3) – 1 1 – 0.66 1 – 989.3 1512.2
9 (5, 2, 3) – 1 1 – 0.7 1 – 1303.1 1684.3
10 (4, 5, 5) – 1 1 – 0.64 1 – 1349.2 1960.0

Table 2: Experiment 2:The mission survivability (MS), mission data quality (MQ) nor-
malised, and the execution time (ET) in sec for S1, S2, and S3 considering the Notifi-
cations are presented in the following order (battery, water leaking, localisation).

Problem Notifications S1 S3

1 (1, 1, –) 0.4 0.04
2 (1, 2, –) 0.43 0.04
3 (2, 2, –) 0.6 0.04
4 (5, –, –) 1.2 0.05
5 (2, 3, –) 2.1 0.08
6 (–, 3, 2) 2.5 0.08
7 (–, –, 5) 2.3 0.09
8 (3, 3, 3) 2 0.1
9 (5, 2, 3) 3.2 0.1

10 (4, 5, 5) 3.1 0.2

Table 3: Experiment 3: Times (sec)
taken to synthesise the plan solution for
S1 and S3 .

map of the structure (see Figure 4b). These results demon-
strate the system can autonomously cope with feature track-
ing loss by triggering relocalisation plans that allow merging
sub-maps. Experiment 1 demonstrates the capacity of the sys-
tem to maintain the quality of the reconstruction by dealing
with subsets of recovery goals while implementing the ini-
tial goal requirements. One of the system’s advantages can
be seen in Figure 4c-4d, while moving around the corner of
the structure, the vehicle naturally loses track of the features.
When this happens, our system generates a new map (ma-
genta coloured map in Figure 4c), and the SLAM notifies the
planner that it has been lost along with keyframes from the
previous (original) map seen in blue. A set of viewpoints that
should help the AUV to relocalise in the prior map is gener-
ated for the high-level planner to include in its temporal plan.
The AUV executes the plan to relocalise, leading to a merge
of the two maps and being able to proceed around the cor-
ner without losing track, as the map now contains features to
track on both sides of the corner.

Results of Experiment 2 (see Table 2) demonstrate our ap-
proach (represented in S3) outperforms the other two options.
The poorest results are achieved for Scenario 1, where re-
planning needs to wait until the action in execution finishes.
The robot manages to survive if the replanning is forced in
a location very close to the surface. Analysing survivability,
the introduction of the current state in our approach enhances
robot performance, which manages to recover and implement
the rest of the goals. However, the quality of the plan im-
plementation is compromised for S2 when the SEA notifica-
tions detect poor image reconstruction, leading to multiple
maps at the end of the mission (see Experiment 1). The AUV
manages to implement all the goals, but there are problems
with plan quality since SEA does not provide feedback to the
Online Planning to deal with this situation. In terms of ex-
ecution time, S3 requires more time to complete the whole
mission considering SEA’s advice which makes the system
implement a set of goals associated with relocalisation and,
therefore, mission goals completion is delayed. However, we
recognise the importance of acquiring good data even when
that increases the execution time.

The results of Experiment 3 are presented in Table 3. Here,
we attempt to analyse the advantages of using Online Plan-
ning when the system needs to deal with failures, and the

scheme considers the current state. For the static state, we ex-
ecute replanning manually, and we analyse the average plan-
ning time required to obtain a new plan that the system can
use. For this experiment, we understand the planning time
that considers problem generation, planning and plan parsing.
Results show our approach manages to outperform standard
solutions considering the new problem, and plan generation
in the presence of failures is introduced dynamically in our
system. The AUV does not need to wait for new plan con-
struction, making the system more robust against changes.

9 Conclusions and Future Work
This work proposes an approach that combines planning,
knowledge representation and decision making to achieve
high-level mission goals that maintain mission survivability
and improve robustness. We propose the SEA framework
to bridge the high-level planning and low-level mission ex-
ecution systems. SEA maintains a dynamic evaluation of the
state to provide a goal completion assessment for local recov-
ery and global mission completion by introducing an Online
Planning System that generates plan solutions for the current
state. Combining the Online Planning and SEA enhances the
AUV performance, improving mission survivability and qual-
ity while keeping the advantages of using temporal planning
to generate the mission plan. Furthermore, SEA provides a
connection with intelligent low-level algorithms that support
the SEA decision-making process when it evaluates possi-
ble failures and proposes alternative solutions to the planning
system to deal with the environment’s dynamics. Experimen-
tal results in real missions show that the system’s capacity to
deal successfully with a variety of dynamics changes.

In the future, we plan to extend the framework with an an-
alytical procedure to receive new goals from the operator dur-
ing the mission. Furthermore, we aim to extend the solution
to more failure types and multiple robots, establishing differ-
ent coordination levels that might help deal with the model
inexactitudes more optimally. We also plan to evaluate the
system in the open sea while executing long-term missions.

Acknowledgements
This work was funded and supported by the ORCA Hub
(orcahub.org), under EPSRC grant EP/R026173/1.

References
[Benton et al., 2012] J Benton, Amanda Jane Coles, and An-

drew Coles. Temporal planning with preferences and time-
dependent continuous costs. In ICAPS, 2012.

[Buksz et al., 2018] Dorian Buksz, Michael Cashmore, Ben-
jamin Krarup, Daniele Magazzeni, and Bram Ridder.
Strategic-tactical planning for autonomous underwater ve-
hicles over long horizons. In IEEE/RSJ IROS, pages 3565–
3572. IEEE, 2018.

[Cashmore et al., 2015] Michael Cashmore, Maria Fox,
Derek Long, Daniele Magazzeni, Bram Ridder, Arnau
Carrera, Narcis Palomeras, Natalia Hurtos, and Marc Car-
reras. ROSPlan: Planning in the Robot Operating System.
In ICAPS, 2015.

[Cashmore et al., 2018] Michael Cashmore, Andrew Coles,
Bence Cserna, Erez Karpas, Daniele Magazzeni, and
Wheeler Ruml. Temporal planning while the clock ticks.
In ICAPS, 2018.

[Cashmore et al., 2019a] Michael Cashmore, Alessandro
Cimatti, Daniele Magazzeni, Andrea Micheli, and Parisa
Zehtabi. Robustness envelopes for temporal plans. In
AAAI, pages 7538–7545, 2019.

[Cashmore et al., 2019b] Michael Cashmore, Andrew Coles,
Bence Cserna, Erez Karpas, Daniele Magazzeni, and
Wheeler Ruml. Replanning for situated robots. In ICAPS,
pages 665–673, 2019.

[Cimatti et al., 2018] Alessandro Cimatti, Minh Do, Andrea
Micheli, Marco Roveri, and David E Smith. Strong tem-
poral planning with uncontrollable durations. Artificial In-
telligence, 256:1–34, 2018.

[Coles et al., 2010] Amanda Jane Coles, Andrew Coles,
Maria Fox, and Derek Long. Forward-chaining partial-
order planning. In ICAPS, pages 42–49, 2010.

[Cresswell and Coddington, 2003] Stephen Cresswell and
Alexandra Coddington. Planning with timed literals and
deadlines. In Workshop of the UK PlanSIG, pages 23–35,
2003.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks. Artificial intelli-
gence, 49(1-3):61–95, 1991.

[Duckworth et al., 2021] Paul Duckworth, Bruno Lacerda,
and Nick Hawes. Time-bounded mission planning in time-
varying domains with semi-mdps and gaussian processes.
Journal of Machine Learning Research, 2021.

[Fox and Long, 2003] Maria Fox and Derek Long.
PDDL2.1: An extension to PDDL for expressing
temporal planning domains. JAIR, 20:61–124, 2003.

[Fox et al., 2006] Maria Fox, Alfonso Gerevini, Derek Long,
and Ivan Serina. Plan stability: Replanning versus plan
repair. In ICAPS, pages 212–221, 2006.

[Hornung et al., 2013] Armin Hornung, Kai M. Wurm,
Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.
OctoMap: An efficient probabilistic 3D mapping frame-
work based on octrees. Autonomous Robots, 34(3):189–
206, 2013.

[Kunze et al., 2018] Lars Kunze, Nick Hawes, Tom Duckett,
Marc Hanheide, and Tomáš Krajnı́k. Artificial intelligence
for long-term robot autonomy: A survey. IEEE Robotics
and Automation Letters, 3(4):4023–4030, 2018.

[Lemai and Ingrand, 2004] Solange Lemai and Félix In-
grand. Interleaving temporal planning and execution in
robotics domains. In AAAI, pages 617–622, 2004.

[Levine, 2012] Steven James Levine. Monitoring the execu-
tion of temporal plans for robotic systems. PhD thesis,
Massachusetts Institute of Technology, 2012.

[Łuczyński et al., 2019] Tomasz Łuczyński, Piotr
Łuczyński, Lukas Pehle, Manfred Wirsum, and An-
dreas Birk. Model based design of a stereo vision
system for intelligent deep-sea operations. Measurement:
Journal of the International Measurement Confederation,
144:298–310, 2019.

[Maurelli et al., 2016] Francesco Maurelli, Marc Carreras,
Joaquim Salvi, David Lane, Kostas Kyriakopoulos,
George Karras, Maria Fox, Derek Long, Petar Kormushev,
and Darwin Caldwell. the pandora project: A success story
in auv autonomy. In IEEE OCEANS – Shanghai, 2016.

[Palomeras et al., 2019] Narcis Palomeras, Natalia Hurtos,
Eduard Vidal, and Marc Carreras. Autonomous explo-
ration of complex underwater environments using a prob-
abilistic next-best-view planner. IEEE Robotics and Au-
tomation Letters, 4(2):1619–1625, 2019.

[Pettersson, 2005] Ola Pettersson. Execution monitoring in
robotics: A survey. Robotics and Autonomous Systems,
53(2):73–88, 2005.

[Quigley et al., 2009] Morgan Quigley, Ken Conley, Brian
Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. ROS: an open-source Robot
Operating System. In ICRA Workshop on Open Source
Software, 2009.

[Scharff Willners et al., 2021] Jonatan Scharff Willners,
Yaniel Carreno, Shida Xu, Tomasz Łuczyński, Sean
Katagiri, Joshua Roe, Èric Pairet, Yvan Petillot, and
Sen Wang. Robust underwater slam using autonomous
relocalisation. IFAC Conference on Control Applications
in Marine Systems, 2021.

[Thompson and Guihen, 2019] Fletcher Thompson and
Damien Guihen. Review of mission planning for au-
tonomous marine vehicle fleets. Journal of Field Robotics,
36(2):333–354, 2019.

[Valentini et al., 2020] Alessandro Valentini, Andrea
Micheli, and Alessandro Cimatti. Temporal planning
with intermediate conditions and effects. In AAAI, pages
9975–9982, 2020.

[Xu et al., 2021] Shida Xu, Tomasz Luczynski, Jonatan
Scharff Willners, Hong. Ziyang, Kaicheng Zhang, Yvan R.
Petillot, and Sen Wang. Underwater Visual Acoustic
SLAM with Online Extrinsic Calibration. In IEEE/RSJ
IROS. IEEE, 2021.

	Introduction and Motivation
	Background and Related Work
	System Overview
	Knowledge-Based Framework
	Planning for System Autonomy
	System Integration Example
	Evaluation
	Results and Discussion
	Conclusions and Future Work

