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Abstract
Shared autonomy allows humans and AI operators
to work towards a common goal. Typically, shared
autonomy systems are modelled by combining a
single model for human behaviour, and a model
for the AI behaviour. In this paper, we attempt to
provide a richer human model, which accounts for
variation in performance due to factors that are not
directly observable. Our shared autonomy system
will maintain a belief over the unobservable fac-
tors, and update its belief as they make observa-
tions. The new belief is used to decide who should
operate the shared autonomy system. We show that
using our model with a richer human representation
results in better performance than using a simplistic
human model.

1 Introduction
Shared autonomy (SA) systems allow cooperation between
human operators and robot controllers working towards a
shared goal [Jansen et al., 2016]. The use of SA platforms
allows the human operator to relinquish control and reduce
their workload. Self-driving cars are an example of this [Ba-
sich et al., 2020]. In this paper, the autonomous driver con-
trols the car until the safety is compromised. The SA sys-
tem aims to minimise the human intervention required while
maintaining safety. However, the system presented in [Ba-
sich et al., 2020] does not consider the competence of the
human driver, and only evaluates the competence of the au-
tonomous driver. Instead, the SA system assumes that a hu-
man driver is always safer than the autonomous driver. An
alternative scenario in SA is where the autonomous system is
assisting an imperfect human user [Cubuktepe et al., 2019].
The human starts with control of the system, but the robot
planner overrides when the human strategy conflicts with
safety measures.

In both of these systems described above, the choice be-
tween the human and the robot controller can be modelled as
a Markov Decision Process (MDP). To model this choice as
an MDP, models of both the human operator and the robot
controller are required. The MDP can then compare the mod-
els of the operators to make an action choice. Such an ap-
proach assumes that the human operators’ behaviour can be

described by a single model. This does not consider the fact
that the human operators’ abilities can vary depending on fac-
tors outside of the SA system. Examples of these factors in-
clude their individual ability, fatigue levels and their work-
load. Many of these factors are not directly observable, so
one cannot assume to have access to the true underlying hu-
man state. In this paper we propose a method to include the
uncertainty over the human state, and hence over their perfor-
mance, into the SA system model.

We are interested in modelling the variation of perfor-
mance in human operators. In particular, we would like to
examine situations where the state of the human operator is
not directly observable. For example, situations when a hu-
man operator’s performance is affected by fatigue or work-
load. However, the agent would not be able to directly mea-
sure these factors. We propose to model such situations using
a Mixed Observability MDPs (MOMDPs) [Ong et al., 2009].
The state space in a MOMDP is split between observable and
hidden states. We use this feature to define the hidden states
as the human operator’s states which are not directly observ-
able.

The main contribution of this paper is posing a SA sys-
tem as a MOMDP, which allows us to build a richer human
model. We empirically show that modelling a SA system
as a MOMDP rather than a MDP yields better performance.
We outline how to model a SA system using a MOMDP, and
present an algorithm to solve the MOMDP. To motivate our
approach, we introduce a simple example MOMDP, which
encodes a series of tasks. Each task can either done by a
robot controller or a human operator. At the start of a run, the
state of the human operator is unknown to the agent. We use
this model to demonstrate how we model a SA system with a
MOMDP.

In our experiments, we apply our SA model to two sce-
narios. The first scenario is a surveillance problem, which
was previously tackled in [Feng et al., 2016]. The original
paper modelled the human operator becoming fatigued after
performing nf actions. We extend the model to consider un-
certainty over when the human enters a fatigued state, which
is not directly observable. The second scenario we consider
is when a known AI and an unknown player are working to-
gether to play the game Angry Birds. The identity of the un-
known player is the hidden state factor in this scenario.



2 Related Work

There are broadly two views to shared autonomy systems.
One is where the human steps in to assist an autonomous
system to achieve a goal [Basich et al., 2020] [Rigter et al.,
2020] [Duchetto et al., 2018] [Abdel-Illah et al., 2010]. The
other is where the autonomous system assists the human op-
erator to achieve a goal [Cubuktepe et al., 2019] [Feng et al.,
2016] [Anderson et al., 2009].

When the SA system has a human involved to recover the
system when the robot controller has failed, the system typ-
ically consider the human to be a perfect controller. For ex-
ample, [Basich et al., 2020] focuses on modelling the dif-
ferent levels of competence an autonomous driver has in any
given situation. Their system aims to maximise efficiency
while minimising the human assistance needed. [Rigter et al.,
2020] uses reinforcement learning to teach an autonomous
controller how to execute tasks through human demonstra-
tion. The cost of the human time required to teach the robot
is weighed against the time for the human to recover a failed
robot. [Abdel-Illah et al., 2010] treats the human operator
as a supervision unit, who takes over when the system is too
complex for the AI. All of these systems assume the human
performs perfectly.

The other application of a shared autonomy system is
where the autonomous system helps the human to achieve
their goal. [Cubuktepe et al., 2019] considers a scenario
where the human operator is not aware of their surround-
ings. The human operator will make uninformed decisions,
and their performance is modelled as a Markov Chain (MC).
The robot controller is fully informed about the surround-
ings their behaviour is modelled as a MDP. The paper aims
to blend the human operator’s actions and the robot’s actions,
creating a shared control scenario. We are more interested
in how interactions between the human and the system can
inform the agent about future choices. [Feng et al., 2016]
models a SA system where the human operator has multiple
profile states. The profile states are defined by the fatigue
level of the human and their current workload, and they are
associated with different success probabilities for the task in
the SA system. The paper models the transitions between the
performance states deterministically. The SA system is mod-
elled using a MDP, where the agent chooses between a human
and an autonomous driver. Here, the agent aims to minimise
the number of failed tasks in the SA system.

We use MOMDPs to model the SA system. MOMDPs
were originally proposed as a model for planning problems.
[Ong et al., 2009] outline the advantages of using MOMDPs
over Partially Observable MDPs (POMDP) to model robotic
tasks. The size of the hidden state space is smaller in a
MOMDP than a POMDP. This means the time taken to com-
pute policies is shorter. [Ferrari et al., 2017] use a POMDP
keep track of the mental state of a participant in a human-
robot cooperation task. Examples of how a MOMDP can be
used to model an uncertain environment is shown in [Ong et
al., 2010].

3 Preliminaries
3.1 Markov Models
A Discrete Time Markov Chain (MC) is a stochastic model,
which we will use to model the performance of an operator.
Definition 1 (MC). A MC is defined by the tuple 〈S, s0, T 〉,
where:

• S is the finite set of the possible states in the system;
• s0 is the initial state of the MC;
• T : S × S → [0, 1] is the transition probability function

from a state s to s′.
Markov Decision Processes (MDPs) extend MCs to con-

sider action selection.
Definition 2 (MDP). A MDP is a tuple 〈S, s0, A, T,R〉,
where:

• S is the finite set of the possible states in the system;
• s0 is the initial state of the MDP;
• A is the finite set of action choices that can be made by

the agent;
• T : S × A× S → [0, 1] is the transition function, map-

ping the probability of going to state s′ when action a
was taken in state s;

• R : S × A → R is the reward function, mapping the
reward collected when taking action a in state s.

An MDP is solved to return an optimal policy. An opti-
mal policy maps a state to the optimal action to maximise the
rewards collected.

A mixed observability MDP (MOMDP) is a MDP where a
subset of the state factors cannot be directly observed.
Definition 3 (MOMDP). A MOMDP is defined by the tuple
〈So, Sh, so, A,O, b0, T,Φ, R〉, where

• So is the set of the observable state factors;
• Sh is the set of the hidden state factors. The total state

space of the MOMDP is S = So×Sh, and a single state
is defined by the tuple (so, sh);

• s0 is the initial observable state of the MOMDP;
• A is the finite set of actions;
• O is the finite set of observations;
• b0 is the initial belief distribution of the agent. A be-

lief distribution bi(sh) gives the probability of the agent
being in a hidden state sh at time step i;

• T : S ×A× S → [0, 1] is the transition function;
• Φ : S ×A×O → [0, 1] is the observation function;
• R : S ×A→ R is the reward function.
We use the sampling-based search algorithm POMCP [Sil-

ver and Veness, 2010] to solve MOMDPs. The POMCP algo-
rithm returns the optimal history-dependent policy. History is
defined by the sequence of actions and observations made up
until the current state. The optimal policy maps the history to
the optimal action. We use the POMCP algorithm to solve the
MOMDP, as it allows us to deal with the curse of dimension-
ality [Kaelbling et al., 1998], which afflicts computing exact
solutions for MOMDPs.



4 MOMDPs as models of Shared Autonomy
systems

4.1 Problem Formulation
Let D = {d1, d2, · · · dN} be the set of operators that can
control the system. The SA agent has an action choice of
ASA = {a1, a2, · · · aN}, where the action ai puts the oper-
ator di in control. The SA system has a set of environment
states SE , which defines the problem the SA system is trying
to solve. It also has a reward over the states, and the goal is
to maximise that reward by choosing who takes the action.

The operator di has Li performance profiles. A perfor-
mance profile determines how an operator will act in the en-
vironment state, sE . For example, an expert performance pro-
file would model an operator with a high success rate when
attempting the tasks. The performance profiles make up a
profile state space Xi = {χi

1, χ
i
2, · · · , χi

Li
} in the operator

model. From the example above, if the operator di has a high
success rate, they will be in the expert profile state χi

j . In
this section, we formally defined each component of the SA
system and then formalise the shared autonomy MOMDP.

4.2 Performance Profile Model
A performance profile model describes how an operator di in
profile state χi

j would behave if they were in control of the
SA system.

Definition 4 (Performance Profile Model). The performance
profile model is defined as the MC MCij = 〈SE , sE0 , T

i
j 〉,

where:

• SE is the environment state space for the SA system;

• sE0 is the initial environment state for the SA system;

• T i
j : SE × SE → [0, 1] represents the probability that

operator di changes the environment state from sE to
sE

′, given that they are in profile state χi
j .

4.3 Operator Model
We would like to model the behaviour of the operator in the
SA system. At each time step of the SA system, the operator
di could either be chosen by the agent to perform an action or
not be involved in controlling the system. MCOi

active models
the dynamics of the operators’ performance profile when they
are selected to control the SA system. MC Oi

dormant models
the dynamics of the operators’ performance profile when they
are not involved in controlling the system.

Definition 5 (Active Operator Model). The active op-
erator model for operator di is defined by the MC
Oi

active〈Si, s0, T
i
active〉, where:

• the state space Si = SE × Xi is defined by the envi-
ronment states of the SA system and the possible profile
states for the operator;

• s0 = (sE0 , χ
i
0) is the initial environmental and profile

state;

• T i
active((s

E , χi
j), (s

E ′
, χi

j′)) is the probability of the
current environment sE and profile χi

j transitioning to

sE
′ and χi

j′ , given the SA system is controlled by opera-
tor di.

T i
active((s

E , χi
j), (s

E ′
, χi

j′)) =

Pr(sE
′|sE , χi

j) · Pr(χi
j′ |sE , χi

j) =

= T i
j (sE , sE

′
) · Pr(χi

j′ |sE , χi
j),

(1)

where T i
j (sE , sE

′
) is defined by the performance profile

model MCij , and Pr(χi
j′ |sE , χi

j) is the probability of
the operator in profile state χi

j and environment state
sE changing to profile state χi

j′ .
The transition probability for the profile states are depen-

dent on the environment state, as tasks can affect the operator
in different ways. For example, an operator who is remotely
driving a vehicle in a dark, narrow and hazardous environ-
ment is more likely to go into a tired profile state than an
operator driving through a bright and clear path.

We consider the scenario when the operator i has not been
selected by the agent to control the SA system.
Definition 6 (Dormant Operator Model). The dormant
operator model is defined by the MC Oi

dormant =
〈Xi, T i

dormant〉, where:

• the state space Xi is the set of profile states for operator
i.

• T i
dormant(χ

i
j , χ

i
j′) gives the transition probability of op-

erator i moving to profile state χi
j′ from χi

j when the
system is controlled by a different operator.

The dormant operator model does not include the task state
space So, as the operator is not engaged with the SA system.
Hence, the environment state of the SA does not influence the
operator’s profile state dynamics.

The active operator model defines the evolution of the en-
vironment states and the operator’s profile states when the
operator is in control of the SA system. The dormant oper-
ator model defines the change in the operator’s profile state
when they are not in control of the system. As the operator
is not directly interacting with the SA environment, the en-
vironment states are not factored into the dormant operator
model.

4.4 MDP as a Model of the SA system
The SA system when there are N operators can be expressed
as a MDP.
Definition 7 (SA-MDP). The SA system can be modelled as
an MDP SA-MDP = 〈S, s0, A, T,R〉, where:

• S = SE×X1×X2×· · ·XN , where SE is the environ-
ment state factors for the SA system, and Xi gives the
profile state factors for the ith operator;

• s0 is the initial state of the system;
• A = {a1, a2, · · · aN}, which allows the agent to choose

the operator;
• T is the transition function defined by Equation 2. When

the agent chooses an action ai, the operator i takes con-
trol of the system. Therefore, the task state transition



from sE to sE ′ and the operator i’s transition from pro-
file state χi

u to χi
u′ is defined by the active operator

modelOi
active. All of the other operators are not in con-

trol for this action, so they are dormant. Therefore, their
transition probabilities are dependent their dormant op-
erator models.

T ((sE , χ1
p, χ

2
q, · · · , χN

r ), ai, (s
E ′
, χ1

p′ , χ2
q′ , · · · , χN

r′ )) =

T i
active((s

E , χi
u), (sE

′
, χi

u′))×
N∏

k=1
k 6=i

T k
dormant(χ

k
p, χ

k
p′);

(2)

• R : S ×A→ R is the reward function.

4.5 MOMDP as a Model of the SA system
In the MDP model for the SA system, the current profile state
for every operator is known. However, this may be unrealis-
tic, as the parameters defining the profile states may not be
observable. Let us assume there is one operator whose pro-
file states are not observable. For simplicity, we will define a
SA system where there are two operators. However, the for-
mulation of the SA system can be extended to any number of
visible operators and any number of hidden operators.

We consider a SA system with two operators, where one
operator is a human and the other is an autonomous system.
They have profile state factors Xh and Xa. The SA system
agent is unable to observe the profile states for the human
operator. Therefore, the SA system can be modelled as a
MOMDP,MOSA.

Definition 8 (SA-MOMDP). Our MOMDP modelling a
SA system is defined by the tuple MOSA = 〈SE ×
Xa, Xh, (sE0 , χ

a), A,O, b0, TMO,Φ, R〉, where

• SE ×Xa are the observable states;

• Xh are the hidden states;

• (sE0 , χ
a
0) is the initial observable state;

• A = {ah, aa} is the set of actions;

• O = SE ×Xa is the set of observations;

• the initial belief distribution b0 is over the hidden profile
states for the human operator, Xh;

• the transition function TMO is defined by:

TMO((sE , χa
i , χ

h
j ), aa, (s

E ′
, χa

i′ , χ
h
j′)) =

T a
active((s

E , χa
i ), (sE

′
, χa

i′))× Th
dormant(χ

h
j , χ

h
j′)

(3)

and

TMO((sE , χa
i , χ

h
j ), ah, (s

E ′
, χa

i′ , χ
h
j′)) =

Th
active((s

E , χh
j ), (sE

′
, χh

j′))× T a
dormant(χ

a
i , χ

a
i′).

(4)
If A = aa, the transition function is Equation 3. The
state transition probability is defined by the autonomy
operator active model, Oa

active. The human is dormant,
so the human’s profile transition probability is defined
by Oh

dormant.

Figure 1: MC for the robot performance profile χrobot
1 .

If A = ah, the transition function is Equation 4. The
state transition probability is defined by the human op-
erator active model, Oh

active. The autonomy is not in
control, so the autonomy’s profile transition probability
is defined by Oa

dormant;

•

Φ(o, (sE , χa, χh)) =

{
1 if o = (sE , χh)

0 else
(5)

is the observation function;

• R : (SE ×Xa ×Xh)×A→ R is the reward function.

4.6 Example: A Simple SA system
To illustrate the concepts introduced above and the benefits of
considering hidden human states, we present a simple exam-
ple of a SA system. The SA system environment is a series
of k tasks. At the start of the first task, the agent is in a envi-
ronment state t1. The agent chooses between the autonomous
system and the human operator to attempt the task. The op-
erator can either end up in the success state, s1, or the fail
state f1. This process is repeated k times. When the agent
reaches a fail state, a negative reward is collected. The 1st to
the k − 1th task have the same difficulty, while the kth task
is set to have a higher failure rate for both operators. The
negative reward collected at the failure state for the k th task
is also set to be much higher. While the behaviour of the
robot controller is fully known, the human could either be a
novice or an experienced operator. The agent does not know
the identity of the human.

The robot controller has one performance profile, so
Xrobot = {χrobot

1 }. The MC for a robot in the profile χrobot
1

is shown in Figure 1. The 1st to the k − 1th tasks have a 0.7
probability of entering the success states, while the kth task
has a 0.65 probability of entering the success state. As there
is only one possible profile for the robot controller to be in,
the robot controller model is equal to the performance profile
model for χrobot

1 .
The human operator has two performance profiles,

Xhuman = {χhuman
nov , χhuman

exp }. χhuman
nov is the profile state

a human operator would be in if they were a novice, while
χhuman
exp is the profile state for an experienced human opera-

tor. For the novice performance profile, the 1st to k − 1th
tasks have a 0.6 probability of going to the success state,
and the kth task has a 0.55 probability of going to the suc-
cess state. For the experienced performance profile, the 1st to
k − 1th tasks have a 0.8 probability of going to the success
state, and the kth task has a 0.75 probability of going to the
success state. The MCs for the profiles in Xhuman will have
the structure of Figure 1, with the aforementioned transition
probabilities.



Figure 2: MC Ohuman
active for the human operator when they have con-

trol of the SA system.

The two profiles for the human operator are used to form
the human operator MC. We do not include any transi-
tions between the two profile states, and the MC Ohuman

active

is shown in Figure 2. The MC Ohuman
dormant has two states

{χhuman
nov , χhuman

exp }, and there are no transitions between the
two states.

The human operator model and the robot controller model
are combined to form the MOMDPMOsimple for our simple
SA system. For simplicity, we outline the MOMDP when
k = 2.MOsimple is defined by:

• the observable environment states, SE =
{t1, s1, f1, t2, s2, f2}. The robot’s profile state
space Xrobot is not included, as there is only one state,
so the profile state is redundant;

• the initial observable state is sE0 = t1;
• the hidden states, Sh = Xhuman =
{χhuman

nov , χhuman
exp };

• the action choices, A = {ahuman, arobot};
• the observations O = SE ;
• the initial belief distribution:

b0(χhuman
nov ) = b0(χhuman

exp ) = 0.5; (6)

• the observation function, Φ(o, sE) = δ(o, sE);
• the transition functions, as shown in Figure 3;
• the reward function, R. R = −5 when the agent visits a

state with SE = f1, and R = −20 when the agent visits
a state with SE = f2.

The MOMDPMOsimple is solved using the POMCP al-
gorithm. The history-dependent policy is shown in Figure 4.
The optimal policy when the agent is in the initial state t1 is
to take the action ahuman. If the human operator takes the SA
system to the success state f1, the optimal action at t2 is ac-
tion ahuman again. Alternatively, if the human operator takes
the SA system to the fail state f1, the optimal action at t2 is
the action arobot. The optimal policy demonstrates that the
MOMDP formulation allows the agent to gather information
about the human operator is the first task, and the collected
information is used to make an informed choice in the second
task.

Figure 3: MOMDP MOsimple for the simple SA system.

Figure 4: The optimal policy for the simple SA system is shown in
the red lines. The transitions between the success/fail states to the
next task are deterministic, so are not represented here in full.
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Figure 5: Map of the world the UAV travels around

5 Experiments
5.1 Surveillance Model
[Feng et al., 2016] considers a SA problem where a human
or an autonomous system remotely controls an Unmanned
Aerial Vehicle (UAV) to complete a surveillance task. The
paper models how fatigue and workload affect the success
rate of a task completed by a human. The paper models the
SA system as an MDP, and the number of actions completed
by the human is counted and stored as part of the state space.
The model uses the number of actions completed by the hu-
man to determine the fatigue level. When the number of ac-
tions counted is less than nf , the human is classified as nor-
mal. When the number of actions counted greater or equal
than nf , the human is classified as fatigued.

We considered a surveillance task where the SA system
flies to all the waypoints in a map. At each waypoint, the
UAV will attempt to take a “good” photo of the waypoint. If a
good photo is not taken, the UAV will fly around and attempt
to take a good photo until it does. The normal human, the
fatigued human and the autonomous system all have different
probabilities of taking a good photo of a waypoint. The task
aims to visit all the waypoints while minimising the amount
of petrol used. We adapted the map used in [Feng et al., 2016]
to create the map in Figure 5 for our experiment. The UAV
flying around a node to take a good photo used 20 units of
petrol, while flying between nodes uses 60 units of petrol.

The paper modelled the human operator as a MDP, where
the human would transition to the fatigued state after nf ac-
tions by the human. We set the probability of a normal human
taking a good photo of a waypoint to 0.9, and the probability
of a fatigued human taking a good photo to 0.3. The proba-
bility of the autonomous system taking a good photo at any
waypoint was set to 0.6. The SA-MDP for a deterministic
human was solved to return a optimal policy mapping states
to actions.

We applied our MOMDP model to this surveillance task
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Figure 6: Petrol Usage of the UAV when they complete the surveil-
lance task using the MDP policy v.s. the MOMDP policy

problem. The human normal/fatigue states formed the hidden
state space in our MOMDP,MOUAV . The method [Feng et
al., 2016] used to determine the human fatigue state does not
consider individual variations in the number of steps com-
pleted before the human operator becomes fatigued. We
model the human operator such that a normal human taking

control of the system has a p = 1−0.5
1

nf probability of enter-
ing the fatigue state. Therefore, after nf steps completed by a
human operator, the cumulative probability of them being in
the fatigued state is 0.5.
MOUAV has an observable state space So = Sw × P1 ×

P2 × P3 × P4. Sw is the set of waypoints the UAV can be
at, as shown in Figure 5. Pi = {0, 1}∀i ∈ {1, 2, 3, 4} gives
the state of the photo taken at Wi. If the UAV has not taken
a good photo at Wi yet, Pi = 0 and vice versa. The initial
observable state is So = (W1, 0, 0, 0, 0). We assume the hu-
man operator is in the normal state at the start, so the initial
belief is b0(χhuman

norm ) = 1.0, b0(χhuman
fatigue) = 0.0. At each

node, the action choice allows the agent to choose the opera-
tor in control of the next step, so A = {ahuman, aauto}. We
solvedMOUAV using the POMCP algorithm. This gave us
a history-dependent policy.

We produced the MDP policies from the paper’s model
and the MOMDP policies from our MOMDP model when
the value of nf is varied between 1 and 13. We ran the poli-
cies on the MOMDP model 5000 times, and we recorded the
petrol used in each run. The results of this are shown in Fig-
ure 6. When nf ≥ 2, the MOMDP policy resulted in less
petrol being used by the UAV than the MDP policy. As nf
increased, the difference in petrol usage between the MDP
and the MOMDP policy increased.

5.2 Angry Birds
We considered the game Angry Birds as a SA system, where
two players can take turns playing the game. Angry Birds is
a puzzle game, where the player uses a catapult to hit “pigs”
hidden in a structure. The player is given a set number of
“birds” to catapult, and the aim is to maximise the number of
pigs hit. The birds are shot sequentially, and each shot can
be taken by a single player. In the future, we will test our
framework with a human controlling an autonomous system.
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Figure 7: Average number of pigs hit by each agent

To build towards this, we have decided to use Angry Birds as
a testbed as it allows us to easily bring human operators to
work alongside an AI.

In this version, the two players are a known player and an
unknown player. The known player is an automated player
which considers all the possible shots to hit the pigs and
chooses an unblocked trajectory. If there are no clear shots
possible, the known player will randomly choose a pig to
shoot at.

The unknown player could either be a random AI player or
a greedy AI player. The unknown player has an equal prob-
ability of being either player. The identity of the unknown
player does not change during a game. The random player is
an AI player which randomly chooses a pig, and aims at it. No
consideration on objects blocking the trajectory is made. The
greedy player is an AI player made by Datalabs [Borovic̆ka et
al., 2014], which won the Angry Birds AI competition [Renz
et al., ] in 2013 and 2014.

We model the SA Angry Birds game with our MOMDP
model. The number of birds and pigs left defines the observ-
able environment state factors, and at the start of the game
there are five birds and six pigs. For example, after two shots,
and one pig has been hit, the game is in the observable state
so = (birds : 3, pigs : 5). The hidden state space is the set
of identities for the unknown player, {χunknown

random , χunknown
greedy },

and the initial belief distribution is set to b0(χunknown
random ) =

b0(χunknown
greedy ) = 0.5. At each shot, the agent chooses an ac-

tion from the set A = {aknown, aunknown}. We collected the
results of the known, unknown random and greedy players
playing 150 rounds each. We used the results to create the
MC for each profile. The transition probabilities in the MCs
were used in the MOMDP. The MOMDP was solved using
the POMCP algorithm to give us a history-dependent policy.

The game was played with the unknown player being ran-
dom and greedy 150 times each following the MOMDP pol-
icy. The average number of birds hit is shown in Figure 7. An
unknown player with an equal probability of being a random
or greedy player hit 3.86 ± 0.05 pigs and the default player
hit 3.73 ± 0.07 birds in a game. When the unknown player

and the default player take turns according to the MOMDP
policy, the mean number of birds hit is 4.51± 0.06.

The results can be split into two cases, random and greedy
unknown players. The greedy player has a mean of 4.16 ±
0.05 birds hit per game. In the SA game, if the unknown
player is the greedy player, the mean number of birds hit is
5.17 ± 0.06. The random player hit 3.55 ± 0.08 birds in a
game. When the unknown player is the random player, the
SA game has 3.86± 0.08 birds hit in a game.

We can compare the results from the MOMDP policy to
when the SA system was modelled using a MDP. The tran-
sition probabilities for the random and greedy players are
combined to create a single profile for the unknown player.
The SA system is modelled as a SA-MDP, where the agent
chooses between a known player and a unknown player for
each shot. We solved the MDP using value iteration to get a
policy mapping the current pig and bird states to the optimal
action. The comparison of the results from using the MDP
policy to the MOMDP policy can be seen in Figure 8. When
the unknown player and known player are working together
in the SA system, following the MDP policy hits 4.32± 0.06
birds, while following the MOMDP policy hits 4.51 ± 0.06
birds. Therefore, modelling the SA system in Angry Birds as
a MOMDP result in a higher number of birds hit than mod-
elling the system with a MDP.

6 Conclusion
We have presented a method for modelling variations in oper-
ator performance in a SA system using MOMDPs. Firstly, we
modelled operators with multiple profile states, where each
profile state encodes how the operator will act in the environ-
ment state. We considered a scenario where the agent can-
not directly observe an operator’s profile state. The unob-
servable operator’s profile states defined the hidden states in
the MOMDP. The agent held a belief over the hidden profile
states and updated the belief using action-observation pairs.
The MOMDP was solved using a POMCP algorithm to give
us a history-dependent optimal policy.

We applied our MOMDP model to two SA systems, a
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Figure 8: Average number of birds hit in a SA environment when
following the MOMDP policy or the MDP policy. The results
from the MDP policy are shown in black, and the results from the
MOMDP policy are shown in red.

surveillance task and a computer game. We compared our
MOMDP policy to a MDP policy used in previous papers. In
both of the SA systems, we found that our MOMDP policy
outperforms the MDP policy with significance.

To further this work, we will replace the unknown players
in the Angry Birds game with human participants. We would
also like to consider parametrizing the operator model over
the profiles. We hope that this can capture the behaviour that
does not neatly fit into a single profile state.
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