
Satisficing and bounded optimality
A position paper

Shlomo Zilberstein∗

Computer Science Department
University of Massachusetts

It appears probable that, however adaptive the be-
havior of organisms in learning and choice situa-
tions, this adaptiveness falls far short of the ideal
“maximizing” postulated in economic theory. Evi-
dently, organisms adapt well enough to “satisfice”;
they do not, in general, “optimize”.

– Herbert Simon, 1958

Abstract

Since the early days of artificial intelligence there has
been a constant search for useful techniques to tackle
the computational complexity of decision making. By
now, it is widely accepted that optimal decision mak-
ing is in most cases beyond our reach. Herbert Simon’s
approach based on satisficing offers a more realistic al-
ternative, but it says little on how to construct sat-
isficing algorithms or systems. In practice, satisficing
comes in many different flavors, one of which, bounded
optimality, restores a weak form of optimality. This pa-
per demonstrates this form of satisficing in the area of
anytime problem-solving and argues that it is a viable
approach to formalize the notion of satisficing.

Satisficing
In the pursuit of building decision-making machines,
artificial intelligence researchers often turn to theories
of “rationality” in decision theory and economics. Ra-
tionality is a desired property of intelligent agents since
it provides a good evaluation criteria and since it es-
tablishes a formal framework to analyze agents (Doyle
1990; Russell and Wefald 1991). But in general, ra-
tionality requires making optimal choices with respect
to one’s desires and goals. As early as 1957, Simon
observed that optimal decision making is impractical
in complex domains since it requires one to examine

∗Author’s address: University of Massachusetts, Computer
Science Department, LGRC, Box 34610, Amherst, MA 01003-
4610. Email: shlomo@cs.umass.edu. Phone: (413) 545-4189.
URL: http://anytime.cs.umass.edu/shlomo/.
Copyright c© 2016, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

and evaluate all the possible alternatives (Simon 1982).
However, the vast computational resources required to
select optimal actions often reduce the utility of the re-
sult. Simon suggested that some criterion must be used
to determine that an adequate, or satisfactory, decision
has been found. He has revived the Scottish word “sat-
isficing” (=satisfying) to denote decision making that
searches until an alternative is found that is satisfactory
by the agent’s aspiration level criterion.

Simon’s notion of satisficing has inspired much work
within the artificial intelligence community in the area
of problem solving and search. It is by now widely ac-
cepted that in most cases the ideal (decision-theoretic)
notion of rationality is beyond our reach. However, the
concept of satisficing offers only a vague design prin-
ciple that needs a good deal of formalization before it
can be used in practice. In particular, one must define
the required properties of a satisficing criterion and the
quality of behavior that is expected when these prop-
erties are achieved.

One of the first approaches to satisficing has been
heuristic search. In fact, Simon has initially identified
heuristic search with satisficing. It is important to dis-
tinguish in this context between two different ways in
which heuristics can be used. In many problem domains
heuristic evaluation functions are used to substantially
reduce the search space. Moreover, admissible heuristic
functions allow such algorithms as A∗ to always return
the optimal answer. Admissible heuristic search is an
important part of AI, but it has little to do with satisfic-
ing. The focus on optimal, rather than satisfying, solu-
tions makes this type of heuristic search a more efficient
way to find exact answers. Simon refers to another type
of heuristic functions in which heuristics are used to se-
lect “adequate” solutions. This type of heuristic func-
tions is rarely admissible or even near-optimal. Systems
based on non-admissible heuristic functions are harder
to evaluate, especially when optimal decisions are not
available. Formal analysis is hard since non-admissible
heuristics do not always have well-defined properties.
The purpose of this paper is to propose an alternative
approach to satisficing in which the notion of adequate



solution has a well-defined meaning.

Bounded optimality

Bounded optimality techniques seek to restore some no-
tion of optimality to decision making in the face of com-
putational complexity and limited resources. That is,
instead of building systems that find “sufficiently good”
answers, the goal is to find “optimal” answers. Opti-
mality, however, is defined with respect to a particular
space of possible implementations.

Russell and Wefald (Russell and Wefald 1991) say
that an agent exhibits bounded optimality “if its pro-
gram is a solution to the constraint optimization prob-
lem presented by its architecture.” Their approach
marked a shift from optimizations over actions to opti-
mization over programs. The program is bounded op-
timal for a given computational device for a given envi-
ronment, if the expected utility of the program running
on the device in the environment is at least as high as
that of all other programs for the device. Russell, Sub-
ramanian, and Parr (Russell et al. 1993) give an effi-
cient construction algorithm that generates a bounded
optimal program for a restricted class of agent archi-
tectures, in which a program consists of a sequence of
decision procedures. The decision procedures are repre-
sented using condition-action rules. The authors admit
that bounded optimality as defined above may be hard
to achieve for most problems. They propose a weaker
notion of asymptotic bounded optimality as a more prac-
tical alternative. The latter case requires that the pro-
gram performs as well as the best possible program on
arbitrary hard problems if its computational device is
faster by a constant factor.

In this paper, I propose a somewhat more general no-
tion of bounded optimality. Bounded optimality is the
selection of the best action subject to an arbitrary set of
architectural constraints. Every agent operates within
a particular architecture that often imposes constraints
on the behavior and performance of the agent. The
architectural constraints include the knowledge repre-
sentation scheme, the base-level and meta-level infer-
ence mechanisms, and the action execution and mon-
itoring techniques. Optimal or satisfactory action se-
lection may be achieved within a given architecture for
action selection, but the architecture defines the space
of choices. These constraints limit the alternatives that
an agent may consider. The alternatives available to the
agent do not necessarily correspond to all the choices
in the “real-world”.

The special case in which the architectural con-
straints include only the description of the computa-
tional device and the environment, we get bounded op-
timality in the sense defined by Russell and Wefald.
But for most problems, this goal is extremely hard to
achieve.

Multiple levels of satisficing
Computer problem-solving can be viewed as simply
running a particular program on a computational device
in order to compute the “correct” answer to a problem.
But developing a complex problem-solving system, such
as an automated information gathering and extraction
system, is a process that involves several stages before
the actual system can be constructed. Satisficing can
be applied (typically must be applied!) to each one of
the problem-solving stages. The following list shows
the four primary stages of problem-solving and the as-
pects of the problem that can be determined using a
satisficing approach.

1. Modelling the environment (level of abstraction,
background knowledge, the state space, the dynamics
of the environment, Markov assumption)

2. Modelling the problem (the available inputs, the
goals, the reward structure, timing and resource con-
straints)

3. Modelling the computation (the algorithms to be
used, the data structures, the part of the problem
that can be solved off-line, distributed versus cen-
tralized computation)

4. Modelling meta-level control (organizing the
search process, meta-level knowledge, evaluating par-
tial results and progress, centralized versus dis-
tributed control, stopping criteria)

Each one of the issues listed above will affect the be-
havior and performance of the resulting agent. Each
one of these problems can be approached and solved
using optimizing or satisficing techniques. Each stage
involves complex tradeoffs that can be addressed off-line
or on-line. For example, using a more precise model of
the environment may complicate the problem definition
and may force the system to compute less precise an-
swers to the problem.

The key question is whether bounded optimality is
a useful approach to all or some of these problems. In
other words, the question is whether there are any ad-
vantages to making optimal decisions within an approx-
imate model, rather than making approximate decisions
within a more precise (or even perfect) model.

Simon argues that neither approach has an absolute
advantage over the other. When comparing satisfic-
ing with optimizing, he claims that in complex real-
world situations, optimization becomes approximate
optimization since the description of the real-world is
radically simplified until reduced to a degree of compli-
cation that the decision maker can handle. Satisficing
seeks simplification in a somewhat different direction,
retaining more of the detail of the real-world situation,
but settling for a satisfactory, rather than approximate-
best, decision. According to Simon, one cannot predict
in general which approach leads to the better decisions
as measured by their real-world consequences.



I argue that for certain aspects of problem-solving,
bounded optimality has some methodological advan-
tages over satisficing (in the more general sense).
Bounded optimality forces the designer of the system
to spell out the architectural constraints. Within those
constraints, the system must make optimal decisions.
So the justification of the actions selected by the system
is reduced to examining the architectural constraints.

Example: anytime decision making

Fortunately, bounded optimality is not just desirable
– it is a viable approach to satisficing. This can be
shown by examining one general approach to bounded
optimality based on composition and monitoring of any-
time algorithms.

Methodologically, problem solving with anytime al-
gorithms is based on dividing the overall problem into
four key subproblems: elementary algorithm construc-
tion, performance measurement and prediction, com-
posability, and meta-level control of computation.

Elementary algorithm construction covers the prob-
lem of introducing useful tradeoffs between computa-
tional resources and output quality in decision mak-
ing. This fundamental problem has been studied by
the AI community developing a variety of “anytime al-
gorithms” (Dean and Boddy 1988) or “flexible compu-
tation” methods (Horvitz 1987) whose quality of results
improves gradually as computation time increases. The
same problem has been studied within the systems com-
munity in the area of “imprecise computation” (Liu et
al. 1991). While iterative refinement techniques have
been widely used in computer science, the construction
of “well-behaved” anytime algorithms is not obvious.
To serve as useful components of a resource bounded
reasoning system, such algorithms should have certain
properties: measurable objective output quality, mono-
tonicity and consistency of quality improvement, and
marginal decrease in the rate of quality improvement
over time. Constructing good, reusable anytime algo-
rithms is an important active research area.

Performance measurement and prediction covers the
problem of capturing the tradeoff offered by each system
component using a “performance profile”. A good per-
formance profile is a compact probabilistic description
of the behavior of the component. A typical represen-
tation is a mapping from run-time to expected output
quality. Recent results show that conditioning perfor-
mance profiles on input quality and other observable
features of the algorithm can improve the precision of
run-time quality prediction.

Composability covers the problem of building mod-
ular resource bounded reasoning system with anytime
algorithms as their components. The fundamental is-
sue is that composition destroys interruptibility – the
basic property of anytime algorithms. A two step solu-
tion has been developed to this problem that makes a

distinction between “interruptible” and “contract” al-
gorithms (Zilberstein 1993). Contract algorithms of-
fer a tradeoff between output quality and computation
time, provided that the amount of computation time
is determined prior to their activation. The idea is to
first compose the best possible contract algorithm and
then make it interruptible with only a small, constant
penalty (Zilberstein and Russell 1996).

Finally, meta-level control covers the problem of run-
time allocation of computational resources (or “delib-
eration scheduling” (Dean and Boddy 1988)) so as to
maximize the overall performance of the system. In
general, meta-level control involves modeling both the
internal problem solving process and the external envi-
ronment and manage computational resources accord-
ingly. In domains characterized by high predictability
of utility change over time, the monitoring problem can
be solved efficiently using contract algorithms and a va-
riety of strategies for contract adjustment. In domain
characterized by rapid change and a high level of un-
certainty, monitoring must be based on the use of in-
terruptible algorithms and the marginal “value of com-
putation” (Russell and Wefald 1991). More recently, a
new approach to monitoring has been developed that
is sensitive to both the cost of monitoring and to how
well the quality of the currently available solution can
be estimated by the run-time monitor. The technique
is based on modeling anytime algorithms as Markov
processes and constructing an off-line monitoring pol-
icy based on a stochastic model of quality improve-
ment (Hansen and Zilberstein 1996).

In what sense the methodology presented above is an
example of bounded optimality? To answer this ques-
tion, we need to identify the architectural constraints
under which the system makes optimal decisions. The
specific assumptions depend on the specific implemen-
tation, but they generally cover the following aspects:

• The computational resources that can be traded for
increase in solution quality (time, memory, informa-
tion, communication, etc.).

• The specific problems or sub-problems to be solved
using an incremental/anytime approach.

• The type of performance profiles used to character-
ize the computational tradeoffs (probabilistic, condi-
tional, dynamic, etc.).

• The approach to monitoring (myopic versus non-
myopic, interruptible versus contract, etc.).

Subject to these assumptions, composition and mon-
itoring can be formalized as optimization problems and
in many cases they can be solved efficiently (Zilberstein
1996b). The overall approach is therefore an instance
of bounded optimality.



Summary
Satisficing is an important principle that must be used
in order to successfully solve complex decision prob-
lems. It is typically applies to different stages of prob-
lem solving, both by the designer of the system (off-line)
and by the system itself (on-line). Although no single
approach to satisficing is likely to be universally ac-
cepted, one particular approach – bounded optimality
– appears to have some advantages. Bounded optimal-
ity forces the designer of the system to spell out the
architectural constraints. Within those constraints, the
system must make optimal decisions. The applicabil-
ity of this approach is evident by recent progress in the
area of anytime problem solving.

Acknowledgments
Support for this work was provided in part by the
National Science Foundation under grants IRI-9624992
and INT-9612092.

References
T. Dean and M. Boddy. An analysis of time-dependent
planning. Proceedings of the Seventh National Conference
on Artificial Intelligence, pp. 49–54, Minneapolis, Min-
nesota, 1988.

J. Doyle. Rationality and its roles in reasoning. Proceed-
ings of the Eighth National Conference on Artificial Intel-
ligence, pp. 1093–1100, Boston, Massachusetts, 1990.

E. A. Hansen and S. Zilberstein. Monitoring the progress
of anytime problem solving. Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 1229–
1234, Portland, Oregon, 1996.

E. A. Hansen, S. Zilberstein, and V. A. Danilchenko. Any-
time heuristic search: First results. Technical Report
97-50, Computer Science Department, University of Mas-
sachusetts, 1997.

E. J. Horvitz. Reasoning about Beliefs and Actions under
Computational Resource Constraints. Proceedings of the
1987 Workshop on Uncertainty in Artificial Intelligence,
Seattle, Washington, 1987.

J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y.
Chung and W. Zhao. Algorithms for scheduling imprecise
computations. em IEEE Computer, 24:58-68, 1991.

S. J. Russell, D. Subramanian and R. Parr. Provably
bounded optimal agents. Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence,
pp. 338–344, Chambery, France, 1993.

S. J. Russell and E. H. Wefald. Do the Right Thing: Studies
in limited rationality. Cambridge, Massachusetts: MIT
Press, 1991.

H. A. Simon. Models of bounded rationality, Volume 2.
Cambridge, Massachusetts: MIT Press, 1982.

S. Zilberstein. Operational Rationality through Compila-
tion of Anytime Algorithms. Ph.D. dissertation, Computer
Science Division, University of California at Berkeley, 1993.

S. Zilberstein. Resource-bounded sensing and planning in
autonomous systems. Autonomous Robots, 3:31–48, 1996.

S. Zilberstein. The use of anytime algorithms in intelligent
systems. AI Magazine, 17(3):73–83, 1996.

S. Zilberstein and S. J. Russell. Optimal composition of
real-time systems. Artificial Intelligence, 82:181–213, 1996.


