
Multi-Agent Planning with Baseline Regret Minimization

Feng Wu† Shlomo Zilberstein‡ Xiaoping Chen†

†School of Computer Science and Technology, University of Science and Technology of China, CHN
‡College of Information and Computer Sciences, University of Massachusetts Amherst, USA
wufeng02@ustc.edu.cn, shlomo@cs.umass.edu, xpchen@ustc.edu.cn

Abstract

We propose a novel baseline regret minimization
algorithm for multi-agent planning problems mod-
eled as finite-horizon decentralized POMDPs. It
guarantees to produce a policy that is provably at
least as good as a given baseline policy. We also
propose an iterative belief generation algorithm to
efficiently minimize the baseline regret, which only
requires necessary iterations so as to converge to
the policy with minimum baseline regret. Exper-
imental results on common benchmark problems
confirm the benefits of the algorithm compared
with the state-of-the-art approaches.

1 Introduction
Multi-agent planning under uncertainty is an active research
area of AI. Decentralized POMDP (DEC-POMDP) is a nat-
ural extension of Markov decision process (MDP) and its
partially observable counterpart (i.e., POMDP) to coopera-
tive multi-agent settings. Although the DEC-POMDP frame-
work is very expressive and useful for modeling many real-
world applications, solving it optimally is NEXP-hard [Bern-
stein et al., 2002] and even finding near-optimal solution is
very challenging [Rabinovich et al., 2003]. Therefore, op-
timal algorithms [Hansen et al., 2004; Szer et al., 2005;
Aras and Dutech, 2010; Oliehoek et al., 2013; Dibangoye
et al., 2016] can only solve small problems and approxi-
mate methods [Pajarinen and Peltonen, 2011; Wu et al., 2011;
Amato et al., 2014; Kumar et al., 2016] usually offer no the-
oretical guarantees on the quality of the obtained policies.

Since deploying new solutions in real-world settings such
as business product deployment or healthcare delivery may
be costly or unsafe, people are often unwilling to try them un-
less some performance guarantees can be provided. A tight
error bound compared to the optimal solution is desirable,
but may be difficult to compute because the optimal solution
is often unknown. Alternatively, it is useful to produce poli-
cies that are guaranteed to outperform some baseline policies
(e.g., the policies that are currently in use). Furthermore, for
the sake of system stability, it is sometimes desirable to in-
crementally improve some aspects of the current policies that
have been identified to be of low quality, instead of deploying

completely new policies. While initial studies of such con-
siderations of real-world deployments have been conducted
recently with respect to MDPs [Petrik et al., 2016], they have
not been fully explored, particularly in the more complex set-
ting defined by a DEC-POMDP.

Against this background, we propose a novel algorithm for
multi-agent planning with baseline regret minimization. We
focus on finite-horizon DEC-POMDP problems and assume
that some baseline policies are given as input, either gener-
ated by an existing planner or created by experts in advance.
In our approach, we define the baseline regret as the worst-
case loss in expected value by adopting the given policies in-
stead of the baseline policies. Then, we generate new policies
with no regret relative to the baseline policies by minimizing
the baseline regret. By doing so, we guarantee to produce
policies that are provably better than or at least equivalent to
the baseline policies in solution quality. As aforementioned,
this is crucial for deployed real-world applications.

Due to the large policy and belief space, minimizing the
baseline regret (worst-case loss) for DEC-POMDPs is com-
putationally challenging. To address this, we propose an ef-
fective and efficient technique with iterative belief genera-
tion. Specifically, our algorithm repeatedly solve the primary
and secondary optimization problems until it converges to the
policies with minimum baseline regret. In this context, the
primary optimization problem generates a policy that min-
imizes the baseline regret given a set of beliefs, while the
secondary optimization problem tries to expand the belief set
with a new belief point that maximizes the baseline regret
of the current policies. Empirically, we tested our algorithm
on several common DEC-POMDP benchmark problems and
compared its results with the state-of-the-art solvers.

This paper advances the state-of-the-art by making the fol-
lowing two key contributions:

• We define the baseline regret in Section 3 as a novel so-
lution criteria for solving finite-horizon DEC-POMDPs
and establish a connection between regret minimization
and policy optimization. In particular, we theoretically
prove that a policy with minimum baseline regret guar-
antees to be not worse than the baseline policy.

• We propose an effective and efficient method based on
iterative belief generation in Section 4 for finding poli-
cies with minimum baseline regret. We prove that our

algorithm will converge to the policies with minimum
baseline regret and only requires necessary iterations to
converge. We show that it can be used to improve parts
of the polices as needed, or be systematically integrated
with dynamic programming to improve entire policies.

In sum, we present a novel approach for finite-horizon
DEC-POMDPs with theoretical guarantees. In the exper-
iments, we empirically evaluate our approach on common
benchmark problems to confirm its advantages.

2 Background
This section briefly reviews the finite-horizon DEC-POMDP
model and its solutions based on dynamic programming.

2.1 Decentralized POMDPs
A finite-horizon decentralized POMDP (DEC-POMDP) is
defined as tuple 〈I, S, b0, {Ai}, P, {Ωi}, O,R, T 〉, where:
• I is a set of n agents.
• S is a finite set of states.
• b0 ∈ ∆(S) is the initial state distribution.
• Ai is a finite set of actions for each agent i ∈ I and
A = ×i∈IAi is the set of joint actions.
• P : S ×A× S → [0, 1] is the transition function where
P (s′|s, a) is the probability of transiting to next state s′

when taking joint action a in state s.
• Ωi is a finite set of observations for each agent i ∈ I and

Ω = ×i∈IΩi is the set of joint observations.
• O : S×A×Ω→ [0, 1] is the observation function where
O(o|a, s′) is the probability of observing joint observa-
tion o after taking joint action o with outcome state s′.
• R : S ×A→ < is the reward function where R(s, a) is

the reward after taking joint action a in state s.
• T is the horizon.
A local policy qi : Ω̄i → Ai of agent i ∈ I is a mapping

from its local observation histories Ω̄i = (o1
i , o

2
i , · · · , oti) to

its actions Ai and a joint policy is a collection of local policies
q = 〈q1, q2, · · · , qn〉, one for each agent. A joint policy q is
evaluated based on the value function computed recursively:

V (s, q) = R(s, aq) +
∑

s′∈S,o∈Ω

P (s′|s, aq)O(o|aq, s′)V (s′, qo)

where aq is the joint action specified by q and qo is the joint
sub-policy of q after receiving joint observation o.

The goal of solving a DEC-POMDP is to find a joint policy
q∗ that maximizes the expected value given the initial state
distribution b0: q∗ = argmaxq

∑
s∈S b0(s)V (s, q). Note that

the planning for a DEC-POMDP can be done centrally while
the policies must be executed in a decentralized manner.

2.2 Dynamic Programming for DEC-POMDPs
For finite-horizon DEC-POMDPs, a local policy is usually
represented as a policy tree. One of the techniques to gener-
ate policy trees is based on dynamic programming [Hansen et
al., 2004]. It starts from the leaf nodes of the policy tree and

iteratively build the trees based on the one-step backup op-
eration until the complete policies are constructed. Although
the optimal policy trees can be constructed, the standard dy-
namic programming runs out memory very quickly even for
small toy problems.

Memory-bounded dynamic programming (MBDP) is an
approximate algorithm that can solve DEC-POMDPs with
long horizon [Seuken and Zilberstein, 2007]. Instead of keep-
ing all the policy tree at each iteration, it selects a fixed num-
ber of candidate trees (with parameter maxTree) identified
by heuristics portfolio after the backup operation. MBDP-
based successors have been proposed for large problems with
good empirical performance [Amato et al., 2009; Kumar
and Zilberstein, 2010; Wu et al., 2010a; Wu et al., 2010b;
Wu et al., 2010c; Wu et al., 2012]. However, they usually
offer no theoretically guarantees on solution quality.

3 Baseline Regret Minimization
In this paper, we assume that a joint baseline policy for the
DEC-POMDP has been generated either manually by domain
experts or other algorithms. This joint baseline policy is rep-
resented as a collection of policy trees. The input of our algo-
rithm is a local baseline policy q◦i of agent i and the outcome
is a new policy qi that guarantees to be not worse (possibly
better) than the baseline policy. During the process, we as-
sume that the policies of the other agents are fixed and only
the given baseline policy of agent i is improved.

In DEC-POMDPs, a distribution over the underlying world
state is not a sufficient statistic [Oliehoek, 2013] for the
decision-making agents. Instead, we consider multi-agent be-
lief state [Nair et al., 2003] as a distribution over the states
and the policies of the other agents, i.e., b ∈ ∆(S × Q−i),
where bs,q−i is the probability at state s ∈ S and the other
agents following policies q−i ∈ Q−i. Then, given such a be-
lief state b, the expected value of agent i’s policy qi can be
computed based on the value function as:

V (b, qi) =
∑
s,q−i

bs,q−i
[R(s, a) +

∑
s′,o

Pr(s′, o|s, a)V (s′, q′)]

where a is the joint action selected by joint policy q =
(qi, q−i), q′ is the next joint policy of q after observing o,
and Pr(s′, o|s, a) = P (s′|s, a)O(o|a, s′) is the short hand of
the transition and observation probabilities.

Let R(b, qi) be the regret of agent i adopting policy qi in-
stead of the optimal policy q∗i at belief state b defined as:

R(b, qi) = V (b, q∗i)− V (b, qi). (1)

Let B be a subset of the overall belief space. We define the
worst-case regret (loss) of policy qi in the belief region B as:
R(qi) = maxb∈BR(b, qi). Then the optimal policy q∗i in B
can be computed as: q∗i = argminqi∈Qi

R(qi) where Qi is
the overall policy space. Note that the optimal policy q∗i is
also a no-regret policy becauseR(q∗i) = 0.

Here, we make a connection between regret minimization
and policy optimization. We show that finding the no-regret
policy is equivalent to computing the optimal policy. There-
fore, it is as hard as solving the entire problem optimally. In-
stead of finding the optimal policy, our goal is to generate

a policy that is not worse than the baseline policy. In other
words, we try to compute a policy qi that has less or equal
regret than the baseline policy.
Definition 1. The baseline regret of policy qi is the maximum
loss in expected values by adopting policy qi instead of the
baseline policy q◦i in the belief region B:

R◦(qi) = max
b∈B

[V (b, q◦i)− V (b, qi)] (2)

Theorem 1. A policy with minimum baseline regret has a
value that is not worse than the one of the baseline policy for
any belief state in the belief region.

Proof. Let qi = argminq′i
R◦(q′i) be the policy with mini-

mum baseline regret. we haveR◦(qi) ≤ 0 because:

R◦(qi) = min
q′i

R◦(q′i) ≤ R◦(q◦i) = 0.

For any belief state b ∈ B in the region B, we have:

V (b, q◦i)− V (b, qi) ≤ max
b′∈B

[V (b′, q◦i)− V (b′, qi)]

= R◦(qi) ≤ 0.

Thus, we conclude with: ∀b∈B , V (b, q◦i) ≤ V (b, qi).

Now, our goal is to compute a new policy qi that minimizes
the baseline regretR◦(qi) as follow:

qi = argmin
q′i

max
b∈B

[V (b, q◦i)− V (b, q′i)] (3)

Here, the key challenge is how to determine the belief region
B for the baseline regret minimization. Next, we propose an
iterative approach to address this challenge.

4 Iterative Belief Generation
Recall that we want to compute a policy qi for agent i that
minimizes the regret given the baseline policy q◦i . This can
be formulated as the following optimization problem:

minqi z
s.t. ∀b∈B V (b, q◦i)− V (b, qi) ≤ z ≤ 0

(4)

Note that this optimization problem is always feasible be-
cause q◦i is a solution if no other policy is better than q◦i .

As aforementioned, the key challenge of this optimization
problem is to determine B. Our basic idea is to start with
an initial (possibly small) set B and then grow it iteratively.
Specifically, we solve two optimization problems: In the pri-
mary optimization problem, we compute a new policy given
B; In the secondary optimization problem, we identify a new
belief state and add it to B. We iteratively solve the primary
and secondary optimization problems until convergence.

In the secondary optimization problem, we want to find a
belief state b in some region that maximizes the regret of the
current policy qi as follow:

b = argmax
b′

[V (b′, q◦i)− V (b′, qi)] s.t. b ∈ B (5)

Recall that our goal is to find a policy that is not worse than
the baseline policy. Hence, we constrain the belief state in

Algorithm 1: Iterative Belief Generation
1 function IBG(q◦i)
2 B ← initialize()
3 repeat
4 qi ← optimizePrimary(q◦i , B)
5 b← optimizeSecondary(qi, q

◦
i , B)

6 if b = ∅ or b ∈ B then
7 break # converged

8 B ← B ∪ {b}
9 until timeout()

10 return qi

a belief region B where the baseline policy achieves the best
value compared with the other policies in the baseline policy
set Q◦i . In more detail, we define the belief region as follow:

B = {b|∀q′i∈Q◦i , V (b, q◦i) ≥ V (b, q′i)} (6)

Now, we can identify a new belief state and formulate the
secondary optimization problem as follow:

maxb z
s.t. V (b, q◦i)− V (b, qi) ≥ z ≥ 0

∀q′i∈Q◦i , V (b, q◦i) ≥ V (b, q′i)
(7)

In more detail, the secondary optimization problem only
considers the belief region B where the baseline policy q◦i is
the best. In this region, we find a new belief b in which the
policy qi has the maximum regret.

The overall process is outlined in Algorithm 1. It starts
with a baseline policy and an initial set of belief states. Then
it interleaves solving the primary and secondary optimization
problems until the secondary optimization problem has no so-
lution or the solution is already in the belief set. In both cases,
the algorithm converges and returns the improved policy.

Theorem 2. The iterative belief generation algorithm always
converges to a policy with minimum baseline regret.

Proof. Suppose that the algorithm converges to policy qi with
positive baseline regret, i.e.,R◦(qi) > 0. By the definition of
the baseline regret, there exists a belief state b 6∈ B such that:

R◦(qi) = V (b, q◦i)− V (b, qi) > 0

If b is in the target belief region, i.e., b ∈ B, then it will be
generated by the secondary optimization problem in Equa-
tion 7. This is contradictory to the fact that the algorithm
converged. If the belief set B is complete, then the primary
optimization procedure guarantees to generate a policy with
minimum baseline regret. Thus, we conclude that the iterative
belief generation algorithm will always converge to a policy
with minimum baseline regret.

Definition 2. A belief state b is non-dominated by the other
belief states if there exists a policy in which b has larger base-
line regret than the other belief states as follow:

∃qi,∀b′, V (b, q◦i)− V (b, qi) > V (b′, q◦i)− V (b′, qi) (8)

Lemma 1. For any given policy, the corresponding non-
dominated belief state is necessary and sufficient to determine
the baseline regret of the policy.

Proof. This can be proved by the definition of the baseline
regret for any given policy qi:

R◦(qi) = max
b∈B

[V (b, q◦i)− V (b, qi)]

If b is the corresponding non-dominated belief state of policy
qi but b 6∈ B, then the regret between the baseline policy and
qi is not maximized because by definition:

V (b, q◦)− V (b, qi) > max
b′∈B

[V (b′, q◦i)− V (b′, qi)]

Thus, b is necessary to determine the baseline regret of qi.
If b′ is a dominated belief state of policy qi, but b′ ∈ B,

then it can be safely removed from B because there exists a
non-dominated belief state b ∈ B such that:

V (b′, q◦i)− V (b′, qi) < V (b, q◦i)− V (b, qi) = R◦(qi)
Thus, b is sufficient to determine the baseline regret of qi.

Lemma 2. All the belief states generated by the secondary
optimization process are non-dominated belief states.

Proof. For any belief state b generated by the secondary op-
timization process, we have a policy qi such that:

V (b, q◦i)− V (b, qi) = max
b′∈B

[V (b′, q◦i)− V (b′, qi)]

> V (b′, q◦i)− V (b′, qi),∀b′ ∈ B\b
Thus, b is a non-dominated belief state for policy qi.

Lemma 3. All the necessary non-dominated belief states will
be generated by the secondary optimization.

Proof. Suppose that a belief state b ∈ B is non-dominated
for policy qi, but not generated by the secondary optimiza-
tion, i.e., b 6∈ B. If ∀b′ ∈ B, qi has the minimum baseline
regret, then qi will be generated by the primary optimization.
After that, b will be generated by the secondary optimization.
If ∀b′ ∈ B, qi does not have the minimum baseline regret,
then qi is not the target policy with overall minimum baseline
regret. Thus, it is not necessary to consider b.

Theorem 3. The iterative belief generation algorithm re-
quires only iterations that are necessary for convergence.

Proof. According to Lemma 3, all the necessary non-
dominated belief states will be generated by the secondary
optimization. Suppose that an unnecessary belief state b ∈ B
is also generated by the secondary optimization. According to
Lemma 2, b is a non-dominated belief state. Let qi be the cor-
responding policy for b. According to Lemma 1, the baseline
regret of qi cannot be correctly computed without b. There-
fore, b is also necessary for the algorithm. Thus, the algorithm
requires only iterations necessary for convergence.

Note that the size of non-dominated belief states is often
much less than the overall belief space, i.e., |B| � |B|.
Therefore, it is effective and efficient by considering only
non-dominated beliefs that are necessary for convergence.

In the following sections, we describe how the primary and
secondary optimization problems can be solved in details.

4.1 Primary Optimization for Policy Improvement
In the primary optimization procedure, we try to improve
the current policy qi by solving the optimization problem as
shown in Equation 4. Note that we represent an agent’s local
policy as a policy tree where each tree node is associated with
an action and branches, one for each observation.

In finite-horizon DEC-POMDPs, the number of possible
trees grows doubly exponentially with the horizon. It is usu-
ally computational intractable to search over the entire policy
space with full horizon. Therefore, in our primary optimiza-
tion, we perform one-step improvement for the current policy.
Specifically, we represent policy qi as x, y-variables where:
• ∀ai∈Ai

, xai
∈ {0, 1} is a binary variable where xai

= 1
if action ai is taken by the root node of the policy tree
and 0 otherwise. Since in deterministic policy trees each
node can have only an action, we have the constraint for
a valid policy as:

∑
ai∈Ai

xai
= 1.

• ∀ai∈Ai,oi∈Ωi,q′i∈Q′i , yai,oi,q′i
∈ {0, 1} is also a binary

variable where yai,oi,q′i
= 1 if action ai is taken by the

root node and sub-policy q′i is associated with the branch
oi, and 0 otherwise. Since each observation branch can
have ony a sub-policy, we have the constraint for a valid
policy as: ∀ai∈Ai,oi∈Ωi

∑
q′i∈Q′i

yai,oi,q′i
= xai

.

Given the x, y-variables for the new policy and z as its re-
gret, we realize the optimization problem in Equation 4 with
the following mixed integer linear programming (MILP):

min
x,y

z

s.t. ∀b∈B , V (b, q◦i)−
∑

s,q−i

bs,q−i [
∑
ai

xaiR(s, a)+∑
s′,o

∑
ai,q
′
i

yai,oi,q
′
i
Pr(s′, o|s, a)V (s′, q′)] ≤ z ≤ 0∑

ai
xai = 1; ∀ai,oi ,

∑
q′i
yai,oi,q

′
i
= xai

∀ai , xai ∈ {0, 1}; ∀ai,oi,q
′
i
, yai,oi,q

′
i
∈ {0, 1}.

For each belief state b, we have the following short-hands:

Rb,ai =
∑
s,q−i

bs,q−iR(s, a) (9)

where the joint action a = (ai, a−i) with a−i selected by q−i.

Vb,ai,oi,q′i
=

∑
s,q−i

bs,q−i

∑
s′,o−i

Pr(s′, o|s, a)V (s′, q′) (10)

where the joint sub-policy q′ = (q′i, q
′
−i) with q′−i selected by

q−i given observation o−i.
Now, we can simplify the aforementioned MILP as follow:
min
x,y

z

s.t. ∀b∈B , V (b, q◦i)− [
∑
ai

xaiRb,ai+∑
ai,oi,q

′
i

yai,oi,q
′
i
Vb,ai,oi,q

′
i
] ≤ z ≤ 0 (a)∑

ai
xai = 1; ∀ai,oi ,

∑
q′i
yai,oi,q

′
i
= xai (b)

∀ai , xai ∈ {0, 1}; ∀ai,oi,q
′
i
, yai,oi,q

′
i
∈ {0, 1} (c)

where constraint (a) guarantees that the regret for the new
policy is minimized and no more than the baseline, and con-
straints (b) and (c) ensure that the variables for the new policy
are valid. Therefore, this MILP has (|Ai|+ |Ai||Ωi||Q′i|+ 1)
variables and (|B|+ |Ai||Ωi|+ 2) constraints.

Algorithm 2: Dynamic Programming with IBG
1 function IBG-DP(q◦)
2 for t = 1 to T do # policy initialization
3 Qt

i ← initialize(q◦i),∀i ∈ I
4 V (qt)← evaluate(qt),∀qt ∈ Qt

5 for t = T to 1 do # policy improvement
6 repeat
7 foreach i ∈ I and qti ∈ Qt

i do
8 qti ← IBG(qti)

9 until timeout()
10 V (qt)← evaluate(qt),∀qt ∈ Qt

11 return q◦ # the improved joint policy

4.2 Secondary Optimization for Belief Generation
In the secondary optimization problem, we aim at finding a
new belief state by solving the optimization problem shown
in Equation 7. Recall that a belief state is a probability distri-
bution over the states and the other agents’ policies. There-
fore, it must satisfy the probability constraints as follow:
∀s,q−i

, xs,q−i
≥ 0 and

∑
s,q−i

xs,q−i
= 1.

As discussed above, we expect the worse-case belief state
for the current policy q−i. In other words, we want to com-
pute the belief state that has the maximum regret for q−i. By
considering such belief state, we are able to gain the maxi-
mum improvement on the current policy. Besides, we only
consider the belief region where the baseline policy has the
best value. This is important because our goal is to find a
policy that is not worse than the baseline policy. Therefore,
the belief region beyond the scope of the currently considered
baseline policy should be excluded.

Now, we realize the secondary optimization problem in
Equation 7 with the following linear program (LP):

max
x

z

s.t.
∑

s,q−i

xs,q−i [V (s, q◦)− V (s, q)] ≥ z ≥ 0 (a)

∀q′i∈Q◦i ,
∑

s,q−i

xs,q−i [V (s, q◦)− V (s, q′)] ≥ 0 (b)∑
s,q−i

xs,q−i = 1;∀s,q−i , xs,q−i ≥ 0 (c)

where the joint policies q = (qi, q−i), q◦ = (q◦i , q−i), and
q′ = (q′i, q−i). This LP has (|S||Q−i| + 1) variables and
(|Q◦i |+ |S||Q−i|+ 3) constraints.

4.3 Integrating with Dynamic Programming
Generally, we can randomly choose a node in the policy tree
representing the baseline policy and improve it using our
method. Note that due to the huge policy space, we propose a
more practical technique to perform only one-step improve-
ment for the given node. Therefore, a more systematic way to
improve the whole baseline policy is to integrate our method
with dynamic programming. The main procedures of our dy-
namic programming algorithm are outlined in Algorithm 2.

Theorem 4. The proposed algorithm has linear time com-
plexity with respect to the horizon.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

V
a
lu

e

Horizon

Optimal
IBG-DP

(a) Broadcast Channel

 0
 50

 100
 150
 200
 250
 300
 350

 0 10 20 30 40 50 60 70 80 90 100

V
a
lu

e

Horizon

Optimal
IBG-DP

(b) Recycling Robots

Figure 1: Results of IBG-DP vs. Optimal solution.

Note that the output of iterative belief generation in Algo-
rithm 2 is a new policy that replaces the baseline policy. In
other words, the total number of policy trees does not grow
with the iteration steps. Thus, the proposed algorithm share
the same linear time complexity w.r.t. the horizon with the
common MBDP-based approximate algorithms.

5 Experiments
We empirically evaluated our algorithm on four common
benchmark problems1 widely used in the DEC-POMDP lit-
erature: Broadcast Channel, Recycling Robots, Cooperative
Box Pushing, and Meeting in a 3×3 Grid. We ran our algo-
rithm on each problem instance multiple times until the re-
sults were statistically meaningful and reported the average
policy values. Our algorithm (i.e., IBG-DP) was implemented
in Java 1.8 and ran on a machine with 3.5GHz Intel Core i7
CPU and 8GB of RAM. The MILP and LP were solved by
IBM CPLEX 12.61. We conducted two sets of experiments
to illustrate the performance of our algorithm.

In the first set of our experiments, we compared our re-
sults with the optimal values obtained by existing optimal al-
gorithms2 for DEC-POMDPs. The baseline policies that we
used here are random policy trees with maxTree = 3. Our
goal is to show that IBG-DP is able to get near-optimal values
by minimizing the baseline regret starting with random poli-
cies. Figure 1 summarizes our results. As shown in Figure 1a,
IBG-DP obtained the optimal values for the Broadcast Chan-
nel problem with different horizons. In Figure 1b, we see
that IBG-DP achieved near-optimal values for the Recycling
Robots domain. Specifically, the bound w.r.t. the optimal
value is tight for the instances with short horizon and becomes
loose as the horizon increases. This is because we fixed the
number of subtrees in the baseline policies to be three (i.e.,
maxTree = 3). IBG-DP does not increase the number of
subtrees for scalability consideration when it improves the
baseline policies at each iteration. This may be sufficient
for some problems (e.g., Broadcast Channel) but may signif-
icantly reduce the value for some other domains (e.g., Recy-
cling Robots). Nevertheless, IBG-DP still achieved competi-
tive values (e.g., 80% optimal at T = 100).

1
http://masplan.org/problem_domains

2
http://masplan.org/optimal_values

http://masplan.org/problem_domains
http://masplan.org/optimal_values

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 10 20 30 40 50 60 70 80 90 100

V
a
lu

e

Horizon

IBG-DP
PBIP-IPG

(a) Cooperative Box Pushing

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

V
a
lu

e

Horizon

IBG-DP
PBIP-IPG

(b) Meeting in 3×3 Grid

Figure 2: Results of IBG-DP vs. PBIP-IPG.

In the second set of experiments, we compared our al-
gorithm with a leading approximate algorithm for finite-
horizon DEC-POMDPs. Specifically, we compared with
PBIP-IPG [Amato et al., 2009] that consistently outperforms
other algorithms such as MBDP, IMBDP, MBDP-OC and
PBIP. TBDP and DecRSPI are faster than PBIP-IPG but have
similar values for the tested domains. Our goal is to show
that IBG-DP scales well for large problems as existing ap-
proximate algorithms and can get similar or often better val-
ues. Figure 2 summarizes our results. In Figure 2a, we show
that IBG-DP improved the baseline policies with large margin
for the Cooperative Box Pushing problem. This problem is
considerably harder than the aforementioned two problems.
IBG-DP can further improve the baseline policies by mini-
mizing the baseline regret. For the Meeting in a 3×3 Grid
problem as depicted in Figure 2b, IBG-DP achieved similar
values to the policies computed by PBIP-IPG. This may be
because the policies obtained by PBIP-IPG have already been
the best ones for maxTree = 3.

Table 1: Runtime Results for Broadcast Channel

Horizon 5 10 30 50 100

IBG-DP 1.47s 1.72s 3.39s 5.09s 10.14s
FB-HSVI 0.33s 0.78s 14.0s 41.7s 473.3s

Generally, IBG-DP takes more time than MBDP based al-
gorithms because it has to optimize the policies w.r.t. a set of
beliefs instead of a single one. Table 1 illustrates our runtime
results for the Broadcast Channel problem comparing to FB-
HSVI [Dibangoye et al., 2016] – a leading optimal algorithm.
For instances with short horizons (e.g., 5, 10), IBG-DP took
more time than FB-HSVI because it must call the external
CPLEX solver with JNI multiple times. As expected, IBG-
DP outperformed FB-HSVI in runtime for instances with
long horizons (e.g., 30, 50, 100) because IBG-DP has linear
time complexity w.r.t. the horizon as with MBDP-based al-
gorithms. In practice, it can be used as an anytime algorithm,
which may be stopped before convergence with the risk of vi-
olating the guarantees. This is still useful as the policies have
been optimized over a set of belief states.

6 Related Work
Regret minimization is an online learning technique origi-
nally used for the multi-armed bandit (MAB) problem. It has
been broadly used to solve complex games with incomplete
information [Zinkevich et al., 2007; Wu and Jennings, 2014].
In the context of decision-theoretic planning, several ap-
proaches [Xu and Mannor, 2009; Regan and Boutilier, 2010;
Ahmed et al., 2013; Petrik et al., 2016] have been pro-
posed to find robust solutions for uncertain MDPs with the
maxmin/minmax regret criteria in order to provide some
guarantees on the worst-case performance. Among them, Re-
gan and Boutilier [2010] use an iterative constraint genera-
tion approach to solve large LP. Similar to ours, Petrik et
al. [2016] proposed a safe policy improvement method by
minimizing robust baseline regret for MDPs. By contrast,
our algorithm is designed to solve DEC-POMDPs, requir-
ing substantially different solution and analysis techniques.
Recently, Banerjee and Kraemer [2013] proposed a decen-
tralized planning approach based on counterfactual regret
minimization for DEC-POMDPs. They represent the DEC-
POMDP as a strategic game and run regret decomposition in
the tree in order to minimize the overall regret. In contrast,
we try to find policies with minimum baseline regret w.r.t. the
given baseline policies.

7 Conclusion
We proposed a novel approach for solving finite-horizon
DEC-POMDPs, where the baseline regret of a policy is in-
troduced as a new solution criterion. We show that a pol-
icy with minimum baseline regret guarantees to be not worse
than the baseline policy. Due to the large policy space of
DEC-POMDPs, minimizing the baseline regret is computa-
tional challenging. To address this, we proposed the IBG
algorithm with the procedures for iteratively improving the
baseline policy and finding the non-dominated beliefs. We
proved that IBG will eventually converge to a policy with
minimum baseline regret with only necessary iterations. We
also presented an implementation of IBG based on MILP and
LP, which can be systematically integrated with dynamic pro-
gramming to improve the entire policies (namely IBG-DP).
Our experiments on four common DEC-POMDPs benchmark
problems show that IBG-DP obtained near-optimal policies
(e.g., Broadcast Channel) or made significant improvement
(e.g., Cooperative Box Pushing) compared to the state-of-
the-art. In future work, we will further explore the baseline
regret minimization technique for DEC-POMDPs in model-
free settings, building on our earlier work [Wu et al., 2010b;
Wu et al., 2013] where the baseline solution may be encoded
in the form of a hand-crafted controller.

Acknowledgments
This work was supported in part by National Natural Science
Foundation of China under grant No. 61603368, the Youth
Innovation Promotion Association of CAS (No. 2015373),
and Natural Science Foundation of Anhui Province under
grant No. 1608085QF134.

References
[Ahmed et al., 2013] Asrar Ahmed, Pradeep Varakantham,

Yossiri Adulyasak, and Patrick Jaillet. Regret based ro-
bust solutions for uncertain Markov decision processes. In
Proc. of NIPS, pages 881–889, 2013.

[Amato et al., 2009] Chistopher Amato, Jilles S. Dibangoye,
and Shlomo Zilberstein. Incremental policy generation for
finite-horizon DEC-POMDPs. In Proc. of ICAPS, pages
2–9, 2009.

[Amato et al., 2014] Christopher Amato, George D.
Konidaris, and Leslie P. Kaelbling. Planning with macro-
actions in decentralized POMDPs. In Proc. of AAMAS,
pages 1273–1280, 2014.

[Aras and Dutech, 2010] Raghav Aras and Alain Dutech. An
investigation into mathematical programming for finite
horizon decentralized POMDPs. Journal of Artificial In-
telligence Research, 37(1):329–396, 2010.

[Banerjee and Kraemer, 2013] Bikramjit Banerjee and Lan-
don Kraemer. Counterfactual regret minimization for de-
centralized planning. In Workshop on Multiagent Sequen-
tial Decision Making, pages 32–39, 2013.

[Bernstein et al., 2002] Daniel S. Bernstein, Robert Givan,
Neil Immerman, and Shlomo Zilberstein. The complex-
ity of decentralized control of Markov decision processes.
Math. of Operations Research, 27(4):819–840, 2002.

[Dibangoye et al., 2016] Jilles S. Dibangoye, Christopher
Amato, Olivier Buffet, and François Charpillet. Optimally
solving Dec-POMDPs as continuous-state MDPs. Journal
of Artificial Intelligence Research, 55:443–497, 2016.

[Hansen et al., 2004] Eric A. Hansen, Daniel S. Bernstein,
and Shlomo Zilberstein. Dynamic programming for par-
tially observable stochastic games. In Proc. of AAAI, pages
709–715, 2004.

[Kumar and Zilberstein, 2010] Akshat Kumar and Shlomo
Zilberstein. Point-based backup for decentralized
POMDPs: Complexity and new algorithms. In Proc. of
AAMAS, pages 1315–1322, 2010.

[Kumar et al., 2016] Akshat Kumar, Hala Mostafa, and
Shlomo Zilberstein. Dual formulations for optimizing
Dec-POMDP controllers. In Proc. of ICAPS, pages 202–
210, 2016.

[Nair et al., 2003] Ranjit Nair, Milind Tambe, Makoto
Yokoo, David Pynadath, and Stacy Marsella. Taming de-
centralized POMDPs: Towards efficient policy computa-
tion for multiagent settings. In Proc. of IJCAI, pages 705–
711, 2003.

[Oliehoek et al., 2013] Frans A. Oliehoek, Matthijs T. J.
Spaan, Christopher Amato, and Shimon Whiteson. Incre-
mental clustering and expansion for faster optimal plan-
ning in Dec-POMDPs. Journal of Artificial Intelligence
Research, 46:449–509, 2013.

[Oliehoek, 2013] Frans A. Oliehoek. Sufficient plan-time
statistics for decentralized POMDPs. In Proc. of IJCAI,
pages 302–308, 2013.

[Pajarinen and Peltonen, 2011] Joni K. Pajarinen and Jaakko
Peltonen. Periodic finite state controllers for efficient
POMDP and DEC-POMDP planning. In Proc. of NIPS,
pages 2636–2644, 2011.

[Petrik et al., 2016] Marek Petrik, Yinlam Chow, and Mo-
hammad Ghavamzadeh. Safe policy improvement by min-
imizing robust baseline regret. In Proc. of NIPS, pages
2298–2306, 2016.

[Rabinovich et al., 2003] Zinovi Rabinovich, Claudia V.
Goldman, and Jeffrey S. Rosenschein. The complexity
of multiagent systems: The price of silence. In Proc. of
AAMAS, pages 1102–1103, 2003.

[Regan and Boutilier, 2010] Kevin Regan and Craig
Boutilier. Robust policy computation in reward-uncertain
MDPs using nondominated policies. In Proc. of AAAI,
pages 1127–1133, 2010.

[Seuken and Zilberstein, 2007] Sven Seuken and Shlomo
Zilberstein. Memory-bounded dynamic programming for
DEC-POMDPs. In Proc. of IJCAI, pages 2009–2015,
2007.

[Szer et al., 2005] Daniel Szer, François Charpillet, and
Shlomo Zilberstein. MAA*: A heuristic search algorithm
for solving decentralized POMDPs. In Proc. of UAI, pages
576–583, 2005.

[Wu and Jennings, 2014] Feng Wu and Nicholas R. Jen-
nings. Regret-based multi-agent coordination with uncer-
tain task rewards. In Proc. of AAAI, pages 1492–1499,
2014.

[Wu et al., 2010a] Feng Wu, Shlomo Zilberstein, and Xiaop-
ing Chen. Point-based policy generation for decentralized
POMDPs. In Proc. of AAMAS, pages 1307–1314, 2010.

[Wu et al., 2010b] Feng Wu, Shlomo Zilberstein, and Xiaop-
ing Chen. Rollout sampling policy iteration for decentral-
ized POMDPs. In Proc of UAI, pages 666–673, 2010.

[Wu et al., 2010c] Feng Wu, Shlomo Zilberstein, and Xiaop-
ing Chen. Trial-based dynamic programming for multi-
agent planning. In Proc. of AAAI, pages 908–914, 2010.

[Wu et al., 2011] Feng Wu, Shlomo Zilberstein, and Xi-
aoping Chen. Online planning for multi-agent systems
with bounded communication. Artificial Intelligence,
175(2):487–511, 2011.

[Wu et al., 2012] Feng Wu, Nicholas R. Jennings, and Xi-
aoping Chen. Sample-based policy iteration for con-
strained DEC-POMDPs. In Proc. of ECAI, pages 858–863,
2012.

[Wu et al., 2013] Feng Wu, Shlomo Zilberstein, and
Nicholas R. Jennings. Monte-carlo expectation maxi-
mization for decentralized POMDPs. In Proc. of IJCAI,
pages 397–403, 2013.

[Xu and Mannor, 2009] Huan Xu and Shie Mannor. Para-
metric regret in uncertain Markov decision processes. In
Proc. of CDC, pages 3606–3613, 2009.

[Zinkevich et al., 2007] Martin Zinkevich, Michael Johan-
son, Michael H. Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In
Proc. of NIPS, pages 1729–1736, 2007.

	Introduction
	Background
	Decentralized POMDPs
	Dynamic Programming for DEC-POMDPs

	Baseline Regret Minimization
	Iterative Belief Generation
	Primary Optimization for Policy Improvement
	Secondary Optimization for Belief Generation
	Integrating with Dynamic Programming

	Experiments
	Related Work
	Conclusion

