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Abstract
We present a general formal model called MODIA
that can tackle a central challenge for autonomous
vehicles (AVs), namely the ability to interact with
an unspecified, large number of world entities.
In MODIA, a collection of possible decision-
problems (DPs), known a priori, are instanti-
ated online and executed as decision-components
(DCs), unknown a priori. To combine the indi-
vidual action recommendations of the DCs into
a single action, we propose the lexicographic ex-
ecutor action function (LEAF) mechanism. We
analyze the complexity of MODIA and establish
LEAF’s relation to regret minimization. Finally,
we implement MODIA and LEAF using collec-
tions of partially observable Markov decision pro-
cess (POMDP) DPs, and use them for complex AV
intersection decision-making. We evaluate the ap-
proach in six scenarios within a realistic vehicle
simulator and present its use on an AV prototype.

1 Introduction
There has been substantial progress with planning under un-
certainty in partially observable, but fully modeled worlds.
However, few effective formalisms have been proposed for
planning in open worlds with an unspecified, large number of
objects. This remains a key challenge for autonomous sys-
tems, particularly for autonomous vehicles (AVs). AV re-
search has advanced rapidly since the DARPA Grand Chal-
lenge [Thrun et al., 2006], which acted as a catalyst for sub-
sequent work on low-level sensing [Sivaraman and Trivedi,
2013] and control [Dolgov et al., 2010] , as well as high-level
route planning [Wray et al., 2016a].

A critical missing component to enable autonomy in
long-term urban deployments is the mid-level intersection
decision-making (e.g., the second-to-second stop, yield, edge,
or go decisions). As in many robotic domains, the primary
challenges include the sheer complexity of real-world prob-
lems, wide variety of possible scenarios that can arise, and
unbounded number of multi-step problems that will be actu-
ally encountered, perhaps simultaneously. These factors have
limited the deployment of existing methods for mid-level
decision-making [Ulbrich and Maurer, 2013; Brechtel et al.,

2014; Bai et al., 2015; Jo et al., 2015]. We present a scalable,
realistic solution, with strong mathematical foundations, via
decomposition into problem-specific decision-components.

Our primary motivation is to provide a general solution
for AV decision-making at any intersection, including n-way
stops, yields, left turns at green traffic lights, right turns at red
traffic lights, etc. In this domain, the AV approaches the inter-
section knowing only the static features from the map, such as
road, crosswalk, and traffic controller information. Any num-
ber of vehicles and pedestrians can arrive and interact around
the intersection, all potentially relevant to decision-making
and unknown a priori. The AV must make mid-level deci-
sions, using very limited hardware resources, including when
to stop, yield, edge forward, or go, based on all possible inter-
actions among all vehicles including the AV itself. Vehicles
can be occluded, requiring the use of information gathering
actions based on belief over partial observability. Pedestrians
can jaywalk, necessitating that motion forward is taken only
under strong confidence they will not cross. Uncertainty re-
garding priority and right-of-way exists, and must be handled
under stochastic changes. Vehicles and pedestrians can block
one another’s motion, and AV-related blocking conflicts must
be discovered and resolved via motion-based negotiation.

We provide a general solution for domains concerning
multiple online decision-components with interacting actions
(MODIA). For the particularly difficult AV intersection deci-
sion domain, MODIA considers all vehicles and pedestrians
as separate individual decision-components. Each component
is a partially observable Markov decision process (POMDP)
that maintains its own belief for that particular component
problem and proposes an action to take at each time step.
MODIA then employs an executor function to act as an ac-
tion aggregator to determine the actual action taken by the
AV. This decomposition enables a tractable POMDP solution,
benefiting from powerful belief-based reasoning while only
growing linearly in the number of encountered problems.

The primary contributions include: a formal definition of
MODIA (Section 3), a rigorous analysis of the complexity
and regret-minimization properties (Section 4), an AV inter-
section decision-making MODIA solution (Section 5), and
an evaluation of the approach in simulation as well as inte-
gration with a real AV (Section 6). We begin with a review of
POMDPs (Section 2), and conclude with a survey of related
work (Section 7) and final reflections (Section 8).



2 Background Material
A partially observable Markov decision process (POMDP)
is represented by the tuple 〈S,A,Ω,T,O,R〉 [Kaelbling et
al., 1998]. S is a finite set of states. A is a finite set of ac-
tions. Ω is a finite set of observations. T :S×A×S→ [0,1] is
a state transition function such that T (s,a,s′)=Pr(s′|s,a).
O :A×S×Ω→ [0,1] is an observation function such that
O(a,s′,ω)=Pr(ω|a,s′). R :S×A→R is a reward func-
tion. The agent does not observe the true state of the sys-
tem, and instead makes observations while maintaining a be-
lief over the true state denoted b∈4|S|. Given action a∈A
and subsequent observation ω∈Ω, belief b is updated to b′
with: b′(s′)=ηO(a,s′,ω)

∑
sT (s,a,s′)b(s) for all s′∈S,

with normalizing constant η. A policy maps beliefs to ac-
tions π :4|S|→A. (Note: 4n is the standard n-simplex.)
The value function V :4|S|→R for a belief is the expected
reward given a fixed policy π, a discount factor γ∈ [0,1],
and a horizon h. Also, it is useful to define the Q-value
of belief b given action a as Q :4|S|×A→R with V (b)=
Q(b,π(b)). Since V π is piecewise linear and convex, we de-
scribe it using sets of α-vectors Γ={α1, . . . ,αr} with each
αi=[αi(s1), . . . ,αi(sn)]T and αi(s) denoting value of state
s∈S. The objective is to find optimal policy π∗ that maxi-
mizes V denoted as V ∗. Given an initial belief b0, V ∗ can
be iteratively computed for a time step t, expanding beliefs at
each update resulting in belief b, by maximizing:

Qt(b,a)=
∑
s∈S

b(s)R(s,a)+
∑
ω∈Ω

max
α∈Γt−1

∑
s∈S

b(s)V tsaωα

and V tsaωα=γ
∑
s′∈SO(a,s′,ω)T (s,a,s′)α(s′); for s∈S,

α0(s)=R/(1−γ) in Γ0 ={α0} with R=mins,aR(s,a).

3 Problem Formulation
We begin with a general problem description that considers a
single autonomous agent that encounters any number of de-
cision problems online during execution. This paper focuses
on collections of POMDPs primarily for their general form,
self-consistency, and space limitations. It can be generalized
to other decision-making models in the natural way. Finally,
Figure 1 depicts a complete MODIA example for AVs, and is
referenced throughout this section for each concept.

3.1 Decision-Making with MODIA
The multiple online decision-components with interacting
actions (MODIA) model describes a realistic single-agent
online decision-making scenario defined by the tuple 〈P,A〉.
P={P1, . . . ,Pk} are decision-problems (DPs) that could be
encountered during execution. For this paper, each Pi∈P is
a POMDP with Pi=〈Si,Ai,Ωi,Ti,Oi,Ri〉 (Section 2) start-
ing from an initial belief b0i ∈4|Si|. We consider discrete time
steps t∈N over the agent’s entire lifetime. A={a1, . . . ,az}
are z primary actions that are the true actions taken by the
agent that affect the state of the external system environment.
Importantly, only P and A are known offline a priori.

AV Example Figure 1 has two pre-solved intersection
decision-components: single vehicle (P1) or pedestrian (P2).

Each are POMDPs with actions (recommendations) ‘stop’ or
‘go’. Primary actions A for the AV are also ‘stop’ or ‘go’.

Online, the DPs are instantiated based on what the agent
experiences in the external system environment. Due to the
nature of actually executing multiple decision-making mod-
els (e.g., POMDPs) in real applications, there is no complete
model for which, when, or how many DPs are instantiated, or
even how long they are relevant.

Formally, the online instantiations in MODIA are defined
by the tuple 〈C,φ,τ〉. Over the agent’s lifetime, there are
n DP instantiations called decision-components (DCs) de-
noted as C={C1, . . . ,Cn}, with both C and n unknown a pri-
ori. Let φ :C→P denote the DP for each instantiation. Let
τ :C→N×N be the two time steps that each DC is instan-
tiated and terminated. For notational convenience, for all
Ci∈C, let τs(Ci) and τe(Ci) be the start and end times; we
have τs(Ci)<τe(Ci). Without loss of generality, we also as-
sume for i<j, τs(Ci)≤τs(Cj). We call a DC Ci∈C instan-
tiated at time step t∈N if t∈ [τs(Ci), τe(Ci)]. Any instanti-
ated Ci∈C includes POMDP φ(Ci), its policy πi :4|Si|→Ai,
and its current belief state btii ∈4|Si| with local POMDP time
step ti= t−τs(Ci).

AV Example (Continued) Online, the AV encounters an
intersection and immediately (at time step 1) observes two
vehicles and one pedestrian. Three DCs are instantiated; C1
and C2 are for each vehicle (φ(C1)=φ(C2)=P1), and C3 is
for the pedestrian (φ(C3)=P2). The start times for all Ci
are τs(Ci)=1; the end times τe(Ci) are still unknown. Each
POMDP Ci, with φ(Ci)=Pj : b0i =b0j , ti=1, and πi=πj .

3.2 The MODIA Executor
With DPs and primary actions 〈P,A〉 (known a priori), and
online execution of DCs 〈C,φ,τ〉 (unknown a priori), the pri-
mary actions taken from A are determined by an action ex-
ecutor function ε :Ā→A with Ā=(

⋃
iAi)

∗. (Note: X∗ is
a Kleene operator on a set X , and Ai is the set of actions
for the POMDP from DP Pi.) The executor takes DC ac-
tion recommendations and converts them to a primary action
taken by the agent in the external system environment. It also
converts a primary action back to what that decision meant
to individual DCs via their action sets. In this paper, we use
the notation ε–1 :A→Ā with ε–1

i (a) referring to an individual
Ci’s action from POMDP φ(Ci) for some a∈A.

It is important to note the requirement that the executor
function εmust be able to map any tuple of actions taken from
any combination of DPs, with any number of possible dupli-
cates, to a primary action. MODIA is a class of problems that
operates without any knowledge about which (or how many)
DPs will be instantiated online.

AV Example (Continued) In Figure 1, all three DCs pro-
duce an action 〈ā1, ā2, ā3〉= ā∈Ā at each time step. The
example states ā1 = ā3 =stop and ā2 =go. The executor ε
decides from ā that stop∈A will be the primary action. It
informs each DC Ci what the primary action means to Ci in-
dividually, simply ε–1

i (stop)=stop, for belief updates.
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DPs: 〈P,A〉

Ai=A={stop,go}

P1

P2

Instantiate new DCs from DPs

New DC? Observe 〈ω1,ω2,ω3〉

Executor: ε(ā)
ε(ā)=stopTake stop

action

Update total regret: Rtε=Rt−1
ε +0+(Q2(bt22 ,go)−Q2(bt22 ,stop))+0

DCs: 〈C,φ,τ〉

Update each DC Ci with 〈ε–1
i (stop),ωi〉

C1 C2 C3
φ(C1)=P1 φ(C2)=P1 φ(C3)=P2

τs(C1)=1 τs(C2)=1 τs(C3)=1

ā1=stop ā2=go ā3=stop

Figure 1: Example visualization of MODIA for AVs. Offline, the DPs (left) are solved: vehicles (P1) and pedestrians (P2). Online, the AV
approaches an intersection in the environment (center). DCs (right) are instantiated from DPs based on 3 new observations: 2 vehicles (C1
and C2) and 1 pedestrian (C3). Each DC recommends an action (ā): 2 stops and 1 go. The executor decides: stop. The agent takes the action,
resulting in regret for C2’s action inRtε. New observations induce DC updates.

3.3 The MODIA Objective
The goal of the class of problems captured by MODIA is to
design the DPs, primary action set, and executor so that it
solves the online real-world problem (e.g., AVs). Prior work
on single-POMDP online algorithms experimentally analyze
their performance with simpler metrics such as average dis-
counted reward (ADR) or run time [Somani et al., 2013;
Kurniawati and Yadav, 2016], and richer metrics such as
error bound reduction (EBR) or lower bound improvement
(LBI) [Ross et al., 2008]. MODIA is an online multi-POMDP
model that differs from these previous online single-POMDP
solvers. We instead provide a concrete objective function to
enable the analysis of this complex online problem within a
theoretical context. Our problem domain does not contain a
model for how DPs are instantiated as DCs, nor how long
DCs remain active. Thus, the objective is to minimize regret
experienced at each step for any given DC instantiations.

Formally, for 〈P,A,C,φ,τ,ε〉, let h≤τe(Cn) be a horizon,
let It={i∈{1, . . . ,n}|τs(Ci)≤ t≤τe(Ci)} denote the set of
indexes for instantiated DCs, and let executor decision ε(ā)=
at at time t∈{1, . . . ,h} with primary action at∈A and the
tuple of all instantiated DC’s actions ā∈Ā, so for all i∈It,
āi=πi(b

ti
i ) with πi, ti, and btii from instantiated DC Ci∈C.

The total regretRhε ∈R is:

Rhε =

h∑
t=1

∑
i∈It

Qi(b
ti
i ,πi(b

ti
i ))−Qi(btii , ε

–1
i (at)). (1)

We refer to the regret at time t for all instantiated DCs in It
as rtε. Informally, a DC’s regret in MODIA is the expected
reward following the DC’s desired policy’s action, minus the
realized expected reward following the executor’s action.

AV Example (Continued) Executor ε selected stop∈A,
which has ε–1

i (stop)=stop for all Ci∈C. Following each
DC’s desired action, only C2 chose go instead. This in-
duces regret equal to Q2(bt22 ,go)−Q2(bt22 ,stop)≥0; C1 and
C3 have 0 regret. Rtε is updated accordingly.

3.4 LEAF for MODIA
So far we have described the general form of MODIA using
a general executor. Now we examine a particular kind of ex-
ecutor with desirable regret-minimizing properties (shown in
Section 4). Specifically, we can define a lexicographic prefer-
ence over the individual actions suggested by each DC. Thus,
each DC suggests an action, stored collectively as a tuple of
action recommendations, and the executor only executes the
best (in terms of preference) action from this set.

A lexicographic executor action function (LEAF) has
two requirements regarding a MODIA’s structure in 〈P,A〉.
First, let the primary actions A be factored with the unique
action sets from among the DPs; formally, A=×iΛi with
Λ=

⋃
j{Aj}. Second, let�i be a lexicographic ordering over

actions in these unique action sets Λi∈Λ. If a MODIA satis-
fies these two requirements, then for all ā=〈ā1, . . . , āx〉∈Ā
and a=〈a1, . . . ,ay〉∈A, LEAF ε(ā)=a is defined by:

ai�ia, ∀a∈{a′∈Λi|∃j s.t. āj=a′} (2)

for all Λi∈Λ, and ε(∅)=a for some fixed a∈A. Informally,
ā are the current desired actions from DCs, Λi is the unique
action set, a are the resulting actions, and each ai (from
matching unique action set Λi) has the highest preference fol-
lowing �i from the available voted-upon actions. Similarly,
the inverse executor extracts the relevant action factor taken
by the system and distributes it to all DCs who have that ac-
tion set; formally, for all Ci∈C, with φ(Ci)=P`, there exists
an action āj ∈Λj=A` such that for the primary action taken
a∈A, ε–1

i (a)= āj . In summary, LEAF simply takes the most
preferred action among those available.

AV Example (Continued) In the AV example, we have ac-
tion sets {stop,go}=A1 =A2 =A=Λ1. Thus, it satisfies the
first requirement: primary actions are composed of DP ac-
tions. For the second, we define a lexicographic preference
�1 (encouraging safety) over Λ1 with stop�go. Now ε in
Figure 1 is actually LEAF. Namely, the action stop is the
most preferred action desired among only the actions selected
by the DCs. Thus, stop is the result of the executor.



3.5 Risk-Sensitive MODIA
Now we also consider a specific kind of MODIA, with a form
of monotonicity in an ordered relationship over actions and
Q-values. Informally, we require DP’s Q-values to be mono-
tonic over actions with a penalty for selecting policy-violating
high-risk actions. Formally, a MODIA is risk-sensitive with
respect to a preference �i, if for all j, b, a, and a′: (1)
if a�i a′�iπj(b) then Qj(b,a)≤Qj(b,a′), (2) if πj(b)�i a
then Qj(b,a)≤Q for sufficient penalty Q.

AV Example (Continued) Action stop makes no progress
towards the goal while go does, so long as go is optimal, re-
sulting in (1). Conversely, performing go when stop is opti-
mal produces a severe expected cost, resulting in (2).

4 Theoretical Analysis
Given DPs and primary actions 〈P,A〉, MODIA requires the
selection of an executor to minimize regret accumulated over
time, in addition to solving the DPs themselves. With n un-
known a priori, as well as which and when DPs are instan-
tiated as DCs, it is impossible to perform tractable planning
techniques entirely offline; again, MODIA is an category of
online decision-making scenarios. Assume, however, that a
prescient oracle provided 〈C,φ,τ〉 a priori. While this is an
impossible scenario, it is useful to understand the worst-case
complexity of exploiting this information in the underlying
problem of selecting a regret-minimizing executor given this
normally unobtainable information. Proposition 1 formally
proves this complexity.
Proposition 1. If 〈C,φ,τ〉 is known a priori, then the com-
plexity to compute the optimal executor ε∗ is O(n2zmh) with
z= |A|, m=maxi |Ai|, and h=maxi τe(Ci).

Proof. Must determine the worst-case complexity to fully de-
fine executor ε∗ :Ā→A to minimize regret Equation 1. In the
worst-case, we must explore all relevant executors, and com-
pute the regret for each, resulting in the optimal solution.

By executor definition in Section 3.2, Ā=(
⋃
iAi)

∗ and
z= |A|. Given n= |C|, the maximum realizable set size of
Ā is all unique potential actions, multiplied by the maximal
number of unique DCs instantiated simultaneously. In the
worst-case, Ai 6=Aj for all i 6=j, so all possible actions must
be considered for each; this order bound is m=maxi |Ai|.
Also, all combinations of instantiated DCs must be realized,
so all τ(Ci) 6=τ(Cj) for all i 6=j. In any order, n births, n
deaths, and time no DCs instantiated; thus there are 2n+1 in
total. Hence, the number of potential executors is O(znm).

In the worst-case scenario,Ri(btii ,πi(b
ti
i )) differs for every

time step for all Ci∈C. Equation 1 requires O(hmaxt I
t)

operations. Given C, h=maxi τe(Ci). By definition of It,
maxt I

t≤n. Thus, the worst-case complexity to compute an
optimal ε∗ is O(znm) ·O(hn)=O(n2zmh).

With Proposition 1, we know this impossible oracular
scenario’s complexity is relatively high, but not exponen-
tial. This suggests a method for computing an optimal
executor, under more realistic assumptions. Thus, let ρ̂
be a given model for the hardest feature of MODIA: on-
line instantiation. Let ρ̂ :N̂n× T̂n× Ên×N̂n× T̂n→ [0,1]

define the probability that a particular set of instantiated
DCs 〈n̂, τ̂〉∈N̂n× T̂n, and executor selection ε̂∈ Ên, re-
sults in a successor DC instantiation state 〈n̂′, τ̂ ′〉∈N̂n× T̂n.
Here, N̂n={1, . . . ,k}n are instantiation indexes (defining
φ), T̂n={τ̂ ∈{α,{1, . . . ,h}2,ω}n|∀i∈N, τ̂is<τ̂ie} are the
instantiation start and end times (defining τ ) including non-
instantiated α and completed ω demarcations, and Ên={ε :
Ā→A||Ā|≤n} are all valid executors (defining ε). Addi-
tionally, we must assume knowledge of a maximum number
of DCs n and horizon h for decidability. Given this model,
Proposition 2 proves the resulting MDP’s optimal policy min-
imizes expected regret, and that the problem is unfortunately
computationally intractable in practice.

Proposition 2. If n, h, and model ρ̂ are known a priori, then:
(1) the resulting MDP’s optimal policy π∗ minimizes expected
regret, and (2) its state space is exponential in n and k.

Proof. We must show the construction of a POMDP whose
optimal policy minimizes expected regret and show its com-
plexity in the necessity of an exponential state space.

Let 〈Ŝ, Â, T̂ , R̂〉 be a finite horizon MDP with horizon
ĥ=h+1. States are Ŝ={ŝ0}∪ Ên×B̂n× T̂n with ŝ0 de-
noting the initial executor selection state and B̂n={B̂∈
(
⋃
i B̂

h
i )∗||B̂|=n} be all possible reachable beliefs for Pi in

horizon h (denoted B̂hi ) for all possible instantiations. For no-
tation, we use ŝ=〈ε̂, b̂, τ̂〉, each containing instantiated values
ε̂i, b̂i, τ̂si, and τ̂ei, as well as θ̂ :B̂n→N̂n mapping beliefs to
their original POMDPs’ indices. Actions are executor selec-
tion Â= Ên. State transitions T̂ : Ŝ×Â× Ŝ→ [0,1] have two
cases. First, T̂ (ŝ0, â, ŝ′)=[ŝ′=〈â,∅,∅〉] captures executor se-
lection. Second, for ŝ 6= ŝ0 we have:

T̂ (ŝ, â, ŝ′)=[(ŝ= ŝ0∧ ε̂′= â)∨(ŝ 6= ŝ0∧ ε̂′= ε̂)]

· ρ̂(θ̂(b̂), τ̂ , ε̂, θ̂(b̂′), τ̂ ′)

n∏
i=1

[b̂′i=b0j ∧ τ̂i=α∧ τ̂ ′i =1]

·
n∏
i=1

Pr(b̂′i|b̂i,πj(b̂i))[τ̂i∈N∧ τ̂ ′i = τ̂i+1]

n∏
i=1

[τ̂ ′i =ω∧ b̂′i= b̂i]

with j= θ̂i(b̂). This captures executor state assignment,
the instantiation model ρ̂, the proper initialization of be-
lief, the belief update for active DCs, and the termina-
tion of a DC. Rewards R̂ : Ŝ×Â→R describe the nega-
tive regret, R̂(ŝ, â)=

∑
iQj(b̂i, ε̂

–1
i (at))−Qj(b̂i,πj(b̂i))[τ̂i∈

N] with R(ŝ0, â)=0. By construction, this is MODIA, as-
suming ρ̂, n, and h were provided. By assigning ε∗=π∗(ŝ0),
we minimize expected regret. In the worst-case, it necessi-
tates modeling all n DC instantiation permutations (with re-
placement) of the k DPs, which is O(kn).

This illustrates the importance of the original MODIA for-
mulation. Even with the instantiation model of Proposition 2,
the problem is still unscalable. And the knowledge needed
to bound the number of active DCs (e.g., n and h) is gen-
erally unavailable a priori. This intrinsic lack of informa-
tion motivated our formulation that minimizes the regret at
each time step. Hence, the agent is guided by the optimal



DC policies from each instantiated DP, selecting the regret-
minimizing action at each time step. Proposition 3 proves
that LEAF minimizes the regret in risk-sensitive MODIA at
each time step, enabling a tractable solution to MODIA.

Proposition 3. If a MODIA is risk-sensitive, then LEAF min-
imizes regret rtε for all t.

Proof. By definition of regret rtε for LEAF ε at time step t:
rtε=

∑
iQj(b

ti
i ,πj(b

ti
i ))−Qj(btii , ε–1

i (at)) with φ(Ci)=Pj .
We must show for all ε̃, rtε≤ r̃tε̃. For readability, hereafter,
let ai=ε–1

i (at), ãi= ε̃–1
i (ãt), a∗j =πj(b

ti
i ), and bi=btii . By

definition of risk-sensitive, there always exists action a∗j such
that Qj(bi,a∗j )≥Q. Thus, it is sufficient to show that for
all i∈It, Qj(bi,ai)≥Qj(bi, ãi), or there exists a Ci∈C with
φ(Ci)=Pj such that Qj(bi, ãi)≤Q. By risk-sensitivity and
LEAF, consider 3 cases for ε and ε̃.

Case 1: ai=x ãi for ai, ãi∈Λx=Aj . Trivially, we have
Qj(bi,ai)=Qj(bi, ãi).

Case 2: ai�x ãi has two cases. Case 2.a: If ai=a∗j , then
by definition πj’s optimality, for any ãi∈Aj , Qj(bi,ai)=
Qj(bi,a

∗
j )≥Qj(bi, ãi). Case 2.b: If ai 6=a∗j , then by LEAF

Equation 2, ai∈{a∈Λx|∃u s.t. āu=a}. Thus, by definition
of ā∈Ā, there exists this u 6= i such that ai=au=a∗v with
φ(Cu)=Pv . By risk-sensitivity, a∗v=au=ai�x ãi that im-
plies Qv(bu, ãi)≤Q.

Case 3: ai≺x ãi. By definition of risk-sensitivity, we have
ãi�x ai�x a∗j and consequently Qj(bi, ãi)≤Qj(bi,ai).

All cases proven. LEAF minimizes regret rtε for any t.

5 Application to Autonomous Vehicles
We apply MODIA and LEAF to this concrete problem of AV
decision-making at intersections. The formulation expands
on the numerous AV examples described in Section 3. Due
to space considerations, we focus our attention strictly on
defining vehicle-related DP (POMDP); however, pedestrian
and other DPs follow in a similar manner. Overall, this AV
robotic application serves to both ground our theoretical work
and simultaneously present an actual solution to intersection
decision-making in the real world.

The MODIA AV 〈P,A〉 defines P by converting inter-
section types (and pedestrian types) into POMDP DP. These
types capture the static abstracted information. For example,
intersection types contain features such as the number of road
segments, lane information (incoming and outgoing), cross-
walk locations, and traffic controller information. A DP is
created for all lanes within all intersection types (and pedes-
trian types). Formally, for each such vehicle and intersec-
tion type, we define the DP POMDP 〈Si,Ai,Ωi,Ti,Oi,Ri〉=
Pi∈P . Si=S`av×Stav×S`ov×Stov×Sbov×Spov describes
the AV’s location (approaching/at/edged/inside/goal) and
time spent at location (short/long), as well as the other
vehicle’s location (approaching/at/edged/inside/empty), time
spent at location (short/long), blocking (yes/no), and priority
at intersection in relation to AV (ahead/behind), respectively.
Actions are simply Ai={stop,edge,go}, and encode move-
ment by assigning desired velocity and goal points along the
AV’s trajectory within the intersection. Lower-level nuances

in path planning [Wray et al., 2016b] are optimized by other
methods. Ωi=Ωtav×Ωbav×Ωtov×Ωbov primarily encode the
noisy sensor updates in blocking detection (yes/no) but also
if the time spent was updated (yes/no) for both the AV and
other vehicle. Ti :Si×Ai×Si→ [0,1] multiply the probabil-
ities of a wide range of situations quantifiable and definable
in the state-action space described. This includes multiplying
probabilities for: (1) vehicle kindly lets AV have priority, (2)
vehicle cuts AV off, (3) AV’s success or failure of motion to
an abstracted state based on its physical size, (4) a new ve-
hicle arrives at an intersection lane, (6) time increments, (7)
vehicle actually stops at stop sign or does a rolling stop, (8)
vehicle is blocking the AV’s path following the static intersec-
tion type’s road structure, etc. Additionally, a dead end state
(an absorbing non-goal self-loop) is reached when the AV
and other vehicle both have state factor “inside” while also
“blocking” each other. Oi :Ai×Si×Ωi→ [0,1] captures the
sensor noise (e.g., determined via calibration and testing of
the AV’s sensors). This includes successful detections of: (1)
other vehicle’s crossing of physical locations mapped to ab-
stracted states, (2) determining the blocking probability based
on the location of the other vehicle, etc. Ri :Si×Ai→R is
defined as unit cost for all states, except the goal state.

The primary actions are A={stop,edge,go} and simply
describe the AV’s movement along the desired trajectory.
We define a lexicographic preference �1 over this action
set stop�1 edge�1 go. This preference formalizes the no-
tion that if even one DC said to stop, then the AV should
stop. Similarly, if at least one DC said to edge but none said
stop, then the AV should cautiously edge forward. Otherwise,
the AV should go. This enables us to apply LEAF because
Ai=A for all Ai (even the pedestrian DPs) and we have lex-
icographic preference �1. Lastly, the defined MODIA pro-
duces Q-values that satisfy risk-sensitivity.

6 Experimentation
We begin with experiments on six different intersections in an
industry-standard vehicle simulation developed by Realtime
Technologies, Inc. that accurately simulates vehicle dynam-
ics with support for ambient traffic and pedestrians. We eval-
uated MODIA on real map data at six different intersections,
each highlighting a commonly encountered real-world sce-
nario. Table 1 describes each scenario by name and provides
details regarding the road segments, vehicles, and pedestri-
ans that exist. The number of potential incidents describes
how many risks exist, which MODIA perfectly obviates. We
compare a MODIA AV with ignorant and naive AV base-
line algorithms. The ignorant AV follows the law but ignores
the existence of all vehicles and pedestrians, acting as if the
intersections are empty. The naive AV follows the law and
cautiously waits until all others have cleared the intersection
beyond 15 meters before attempting to go. These two base-
lines implement extremes of rule-based AVs [Jo et al., 2015]
and serve as a form of bound for AV behavior to understand
MODIA AV’s performance. We evaluate each by their time
to complete an intersection, which includes the observations
while approaching, decisions at the intersection, and travel
within the intersection. In Table 1, we observe the MODIA
AV successfully completes intersections faster than the cau-



Intersection Scenarios MODIA Baselines
Name RS V P PI |C| M I N
Crosswalk Pedestrian 4 0 1 1 4 21.1 16.7 30.1
Vehicle & Pedestrian 3 1 1 1 3 16.8 13.6 37.1
Walk & Run Pedestrians 3 1 2 2 6 19.1 13.3 23.3
Multi-Vehicle Interaction 4 2 0 2 5 19.0 13.2 20.9
Bike Crossing 3 0 1 1 3 16.4 13.8 19.8
Jay Walker 4 0 1 1 4 17.7 14.4 24.3

Table 1: Results for six intersection problems described by the num-
ber of road segments (RS), vehicles (V), pedestrians (P), and poten-
tial incidents (PI). MODIA AVM (number of DCs |C|) is compared
with two baselines, ignorant I and naiveN , using their intersection
completion times (seconds).

tious naive AV. While the MODIA AV takes longer than the
ignorant AV, the ignorant AV encounters each potential inci-
dent and the MODIA AV safely avoids them.

Figure 2 depicts a common 4-way intersection with our
fully-operational AV prototype, which operates on real public
roads and contains an implementation of MODIA and LEAF.
This real-world scenario illustrates MODIA’s success in ad-
dressing scalability concerns while simultaneously handling
the nuanced aspects of online decision-making. Each de-
scribed vehicle DP POMDP has 400 states (265 with addi-
tional pruning), with a rich well-structured belief space. In
MODIA AVs, the POMDP’s size is constant and applies to
any intersection. In comparison, a single all-encompassing
POMDP with these state factors quickly becomes utterly in-
feasible, and will vary greatly among intersections. For ex-
ample, the 4-way stop from Figure 2 that only considers the
AV and 3 other vehicles (no pedestrians) would the state
space S=S`av×Stav×3

i=1(S`ovi×Stovi×Sbovi×S
p
ovi). This

has |S|=640,000 states, exemplifying notions from Propo-
sition 2. Conversely, MODIA AVs scale linearly with the
number of vehicles, and would only be 795 states evenly dis-
tributed over three POMDPs. On modest hardware, a DP can
take <1 minute to solve using nova [Wray and Zilberstein,
2015]. Monolithic POMDPs, like the one described, are un-
equivocally intractable; however, MODIA enables the now
realized POMDP solution for AV decision-making.

7 Related Work
Previous work on an general models related to MODIA in-
clude architectures for mobile robots [Brooks, 1986; Rosen-
blatt, 1997] or other systems [Decker, 1996], and contain
decision-components that produce actions, aggregated to a
system action. They do not, however, naturally model un-
certainty or have a general theoretical grounding. Forms of
hierarchicies include action-based execution of child prob-
lems with multi-options [Barto and Mahadevan, 2003] and
abstract machines [Parr and Russell, 1998]. Action-space
partitioning that execute smaller MDPs [Hauskrecht et al.,
1998] and POMDPs [Pineau et al., 2001] also exists. These
do not model the online execution of an unknown number of
decision-components for use in robotics. More application-
focused work on action voting for simple POMDPs to solve
intractable POMDPs have been used successfully [Yadav et
al., 2015]. Robotic applications of hierarchical POMDPs for
an intelligent wheelchair decompose the problem into com-
ponents [Tao et al., 2009], or with two POMDP levels for
vision-based robots [Sridharan et al., 2010]. These practical

Figure 2: Our fully-operational AV prototype at a 4-way stop inter-
section that implements AV MODIA and LEAF.

methods work well but lack generalized mathematical foun-
dations. Also, none of these present AV-specific solutions.

Previous work specific to AV decision-making includes
simple rule-based or finite-state controller systems [Jo et al.,
2015], which are simple to implement but are brittle, dif-
ficult to maintain, and were unable to handle the abundant
uncertainty in AV decision-making. Initial attempts using
deep neural networks map raw images to control [Chen et al.,
2015] are slow to train and tend to fail rapidly when presented
with novel situations. Mixed-observability MDPs for pedes-
trian avoidance also successfully use a decision-component
approach (AV-pedestrian pairs) but provide limited theoreti-
cal work and do not extend to intersections [Bandyopadhyay
et al., 2013]. Using a single POMDP for all decision-making
has been explored, including continuous POMDPs using raw
spacial coordinates for mid-level decision-making [Brechtel
et al., 2014], online intention-aware POMDPs for pedestrian
navigation [Bai et al., 2015], and POMDPs for lane changes
that use online approximate lookahead algorithms [Ulbrich
and Maurer, 2013]. These approaches do not address the ex-
ponential complexity concerns (scalability), provide general-
izable theoretical foundations, or enable simultaneous seam-
less integration of multiple different decision-making scenar-
ios on a real AV, all of which are provided by MODIA.

8 Conclusion
MODIA is a principled theoretical model designed for di-
rect practical use in online decision-making for autonomous
robots. It has a number advantages over the direct use
of a massive monolithic POMDP for planning and learn-
ing. Namely, it remains tractable by growing linearly in
the number of decision-making problems encountered. Its
component-based form simplifies the design and analysis,
and enables provable theoretical results for this class of
problems. MODIA is shown to successfully solve a chal-
lenging AV interaction problem. Future work will explore
more executors and models beyond LEAF and risk-sensitive
MODIA, develop additional AV-related DPs, and tackle other
intractable robotic domains such as humanoid service robots
using MODIA as a scalable online decision-making solution.
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