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Abstract

Memory-Bounded Dynamic Programming
(MBDP) has proved extremely effective in
solving decentralized POMDPs with large
horizons. We generalize the algorithm and
improve its scalability by reducing the com-
plexity with respect to the number of obser-
vations from exponential to polynomial. We
derive error bounds on solution quality with
respect to this new approximation and ana-
lyze the convergence behavior. To evaluate
the effectiveness of the improvements, we in-
troduce a new, larger benchmark problem.
Experimental results show that despite the
high complexity of decentralized POMDPs,
scalable solution techniques such as MBDP
perform surprisingly well.

1 Introduction

The Markov decision process (MDP) and its partially
observable counterpart (POMDP) have proved very
useful for planning and learning under uncertainty.
Decentralized POMDPs (DEC-POMDPs) offer a nat-
ural extension of these frameworks for cooperative
multi-agent settings. They capture effectively situ-
ations in which agents have different partial knowl-
edge about the state of the environment and the other
agents. Many decentralized decision problems in real
life, – such as multi-robot coordination, manufactur-
ing, information gathering and load balancing – can
be modeled as DEC-POMDPs. Solving finite-horizon
DEC-POMDPs is NEXP-complete [Bernstein et al.,
2000] and even ε-approximations are hard [Rabinovich
et al., 2003]. Thus, optimal algorithms have mostly
theoretical significance. A detailed survey of existing
formal models, complexity results and planning algo-
rithms is available in [Seuken and Zilberstein, 2005].

Over the last five years, researchers have introduced
several algorithms for solving DEC-POMDPs approx-

imately. Unfortunately, these algorithms cannot solve
problems with horizons larger than 10. One excep-
tion is the Memory-Bounded Dynamic Programming
(MBDP) algorithm [Seuken and Zilberstein, 2007].
MBDP’s runtime grows polynomially with the hori-
zon, as opposed to the double exponential growth of
exact algorithms. As a result, it can solve problems
with horizons that are multiple orders of magnitudes
larger than what was previously possible (e.g. horizon
100,000 for the multi-agent tiger problem).

Unfortunately, MBDP’s memory requirements still
grow exponentially with the size of the observation
set. Even for very small problems this can be pro-
hibitive. The main contribution of this paper is an
improved version of MBDP that is based on the in-
sight that in most belief states, only a few observa-
tions are likely or even possible. Optimizing a policy
for unlikely observations at a specific belief point is un-
necessary. Thus the exponential growth with respect
to the observation space could be avoided without sac-
rificing solution quality too much. The details of the
improved MBDP algorithm are presented in Section
4. Section 5 provides a theoretical analysis of the im-
proved algorithm, establishes an error bound for the
new approximation technique and analyzes the conver-
gence behavior. To test the algorithm, we introduce a
new, harder benchmark problem in Section 6. Despite
the high worst-case complexity of DEC-POMDPs, the
improved MBDP algorithm can find quickly good solu-
tions. We conclude with a discussion of open research
questions and promising future research directions.

2 Related Work

Since the introduction of the DEC-POMDP model in
2000, researchers have developed a wide range of op-
timal and approximate algorithms. We focus here on
finite-horizon problems; infinite-horizon problems of-
ten require different solution representation and dif-
ferent techniques. One of the first approximate algo-
rithms is the Joint Equilibrium-based Search for Poli-



cies. This algorithm does not search for a globally
optimal solution, but instead aims for local optimality
[Nair et al., 2003]. A nice feature of the algorithm is
its focus on reachable belief states. The Point-Based
Dynamic Programming (PBDP) algorithm [Szer and
Charpillet, 2006] extends this idea further and com-
putes policies based on a subset of the reachable belief
states. It is also the most closely related technique
to the original MBDP algorithm, but unlike MBDP it
is not memory-bounded. If a DEC-POMDP is treated
as a partially observable stochastic game (POSG) with
common payoffs, some game-theoretic techniques can
be exploited. For example, POSGs can be approxi-
mated by a series of smaller Bayesian games [Emery-
Montemerlo et al., 2004]. All of these algorithms im-
prove upon the performance of the optimal planning
algorithms, but true scalability remains a challenge.
Specifically, with the exception of MBDP, these algo-
rithms cannot solve existing benchmark problems with
horizons beyond 10. MBDP was the first to overcome
this particular barrier, quickly finding near-optimal so-
lutions for problems with horizons that are several or-
ders of magnitude larger.

3 Solving Decentralized POMDPs

We formalize the problem using the DEC-POMDP
model [Bernstein et al., 2000]. Our results, however,
apply to equivalent models such as MTDP or COM-
MTDP [Pynadath and Tambe, 2002].

Definition 1 (DEC-POMDP) A finite-horizon
decentralized partially-observable Markov decision
process is a tuple 〈I, S, b0, {Ai}, P, {Ωi}, O,R, T 〉 s.t.
• I is a finite set of agents indexed 1,...,n.
• S is a finite set of states, i.e. the state space.
• b0 ∈ ∆S is the initial belief state (state

distribution).
• Ai is a finite set of actions available to agent i

and ~A = ⊗i∈IAi is the set of joint actions, where
~a = 〈a1, ..., an〉 denotes a joint action.

• P is a Markovian transition probability table.
P (s′|s,~a) is the probability that taking joint
action ~a in state s results in state s′.

• Ωi is a finite set of observations available to
agent i and ~Ω = ⊗i∈IΩi is the set of joint
observations, where ~o = 〈o1, ..., on〉 denotes a
joint observation.

• O is a table of observation probabilities.
O(~o|~a, s) is the probability of joint observation ~o
given that joint action ~a was taken in state s.

• R : S × ~A× S → < is a reward function.
R(s,~a, s′) is the reward obtained from
transitioning to state s′ after taking joint action
~a in state s.

• T denotes the total number of time steps.

Because the underlying system state s of a DEC-
POMDP is not available to the agents during execu-
tion time, they must base their actions on beliefs about
the current situation. In a single-agent setting, the be-
lief state or belief point b, a distribution over states, is
sufficient for optimal action selection. In a distributed
setting, each agent must base its actions on a multi-
agent belief state – a distribution over states and over
the other agents’ policies. This introduces particular
challenges for approximate algorithms which are dis-
cussed in detail in Section 7.

Definition 2 (Policies for a DEC-POMDP) A
local policy for agent i, δi, is a mapping from local
histories of observations oi = oi1 · · · oit over Ωi, to
actions in Ai. A joint policy, δ = 〈δ1, ..., δn〉, is a
tuple of local policies, one for each agent.

Solving a DEC-POMDP means finding a joint
policy that maximizes the expected total reward
E[

∑T
t=1 R(st−1,~a, st|b0)]. A policy for a single agent i

can be represented as a decision tree qi, where nodes
are labeled with actions and arcs are labeled with ob-
servations (a so called policy tree). A solution to a
DEC-POMDP with horizon t can then be seen as a
vector of horizon-t policy trees, a so called joint pol-
icy tree δt = (qt

1, q
t
2, ..., q

t
n), one policy tree for each

agent, where qt
i ∈ Qt

i. The value of a policy tree of
a single agent is highly dependent on the policy trees
of the other agents and on all agents’ beliefs about
the current situation. This includes the beliefs about
the underlying system state and the beliefs about the
policies used by the other agents. Thus, the value of
a single agent policy cannot be determined in isola-
tion - only a joint policy with a given start state has
a meaningful value. The value of a joint policy given
an initial belief state is defined as follows.

Definition 3 (Value of Joint Policy Tree) The
value of a joint policy δT for an initial belief state b0

is defined as: V(δT , b0) =
∑

s∈S b0(s) · V (δT , s).

The policy trees for the agents can be constructed in
two different ways: top-down or bottom-up. If the goal
is an approximate solution, the different characteristics
of the construction processes can be exploited.

Top-down Approach The first algorithm that used
a top-down approach, MAA∗, makes use of heuristic
search techniques [Szer et al., 2005]. It is an exten-
sion of the standard A∗ algorithm where each search
node contains a joint policy tree. For example, if δ2

is a horizon-2 joint policy tree, an expansion of the
corresponding search node generates all possible joint
policy trees of horizon 3 that use the joint policy tree
δ2 for the first two time steps. Using heuristics that are
suitable for DEC-POMDPs, some parts of the search



tree can be pruned. Unfortunately, the algorithm runs
out of time even for small problems with very short
horizons, because the search space grows double expo-
nentially with the horizon (see [Seuken and Zilberstein,
2005] for a detailed discussion of this problem).

Bottom-up Approach: Dynamic Programming
The first non-trivial algorithm for solving DEC-
POMDPs used a bottom-up approach [Hansen et al.,
2004]. Policy trees were constructed incrementally, but
instead of successively coming closer to the frontiers
of the trees, this algorithm starts at the frontiers and
works its way up using dynamic programming (DP).
A separate set of policy trees is kept for each agent. In
the end, the best policy trees are combined to produce
the optimal joint policy.

The DP algorithm starts by constructing all possible
one-step policies. In each consecutive iteration, the
algorithm uses a set of horizon-t policy trees Qt

i and
creates the set Qt+1

i by an exhaustive backup. This
operation generates every possible depth-(t + 1) pol-
icy tree that makes a transition, after an action and
observation, to the root node of some depth-t policy
tree. The total number of complete policy trees for
each agent is of the order O(|A|(|O|T )). This double
exponential blow-up is why a naive algorithm would
quickly run out of memory. To alleviate this problem,
the algorithm uses iterated elimination of dominated
policies after each backup. This technique significantly
reduces the number of policy trees kept in memory
without sacrificing the value of the optimal joint pol-
icy. Unfortunately, even with this pruning technique,
the number of policy trees still grows quickly and the
algorithm runs out of memory.

An analysis of the construction process reveals that
most of the policies kept in memory are useless because
a policy tree can only be eliminated if it is dominated
for every belief state. But for many DEC-POMDPs,
only a small subset of the belief space is actually reach-
able. Furthermore a policy tree can only be elimi-
nated if it is dominated for every possible belief over
the other agents’ policies. But obviously, during the
construction process, the other agents also maintain
a large set of policy trees that will eventually prove
to be useless. Unfortunately, with a bottom-up ap-
proach, these drawbacks of the pruning process cannot
be avoided. Before the algorithm reaches the roots
of the final policy trees, it cannot predict which be-
liefs about the state and about the other agents’ poli-
cies will eventually be useful. This observation was
the main insight used for developing the MBDP algo-
rithm, which combines the bottom-up and top-down
approaches: Top-down heuristics identify relevant be-
lief states for which the DP algorithm can evaluate the
bottom-up policy trees and select the best joint policy.

4 The Improved MBDP Algorithm

Even though the agents do not have access to the belief
state during execution time, it can be used to evaluate
the bottom-up policy trees computed by the DP al-
gorithm. A set of belief states can be computed using
multiple top-down heuristics – efficient algorithms that
find useful top-down policies. Once a top-down heuris-
tic policy is generated, the most likely belief states
can be computed. In [Seuken and Zilberstein, 2007]
we describe a portfolio of heuristics suitable for DEC-
POMDPs. In practice, the MDP-heuristic (revealing
the underlying system state after each time step) and a
random-policy heuristic have proven useful. The use-
fulness of the heuristics and, more importantly, the
computed belief states are highly dependent on the
specific problem. But once the algorithm has com-
puted a complete solution, we have a joint policy that
definitely leads to relevant belief states when used as a
heuristic. This is exactly the idea of Recursive MBDP.
The algorithm can be applied recursively with an ar-
bitrary recursion-depth.

In the original MBDP algorithm the policy trees for
each agent are constructed incrementally using the
bottom-up DP approach. To avoid the double ex-
ponential blow-up, the parameter maxTrees is chosen
such that a full backup with this number of trees does
not exceed the available memory. Every iteration of
the algorithm consists of the following steps. First,
a full backup of the policies from the last iteration is
performed. This creates policy tree sets of the size
|A||maxTrees||O|. Next, top-down heuristics are cho-
sen from the portfolio and used to compute a set of
belief states. Then, the best policy tree pairs for these
belief states are added to the new sets of policy trees.
Finally, after the T th backup, the best joint policy tree
for the start distribution is returned.

4.1 Motivation for new Approximation

Although the original MBDP algorithm has a linear
time and space complexity with respect to the horizon
T , it is still exponential in the size of the observation
space. This is a severe limitation when tackling just
slightly larger problems than the multi-agent broad-
cast channel problem or the multi-agent tiger problem.
Even for a small problem with 2 actions and 5 observa-
tions, setting maxTrees = 5 would be prohibitive for
the algorithm because (2 · 55)2 = 39, 062, 500 policy
tree pairs would have to be evaluated. None of the
existing algorithms can solve a DEC-POMDP with 2
actions and 5 observations.

Consequently, tackling the size of the observation set
is crucial. The key observation is that considering the
whole set of possible observations in every belief state
and for every possible horizon is not useful and actu-
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Figure 1: The construction of a single policy tree com-
bining the top-down and the bottom-up approaches.

ally not necessary. Consider for example robots navi-
gating in a building. After turning away from the en-
trance door, the robots are highly unlikely to observe
that same door in the next time step. In general, de-
pending on the belief state and the action choice, only
a very limited set of observations might be possible.

4.2 The Improvement: Partial Backups
In order to select a limited set of useful observations we
propose a similar technique used for selecting promis-
ing bottom-up policy trees. As before, in step one the
algorithm first identifies a set of belief states using the
top-down heuristics. For every identified belief state
bt at horizon t the best joint policy is added. Addi-
tionally, in step two the set of most likely observations
for every agent is identified, bounded by a pre-defined
number of observations maxObs. More specifically, for
the most likely belief state bt−1 for horizon t − 1 and
joint action ~a prescribed by the heuristic, the proba-
bility Pr(~o) =

∑
s bt−1(s) · O(~o|~a, s) is computed for

each joint observation ~o. Then all joint observations ~o
are ranked according to Pr(~o). This ranking is used
to select the k most likely observations for each agent
separately, where k = maxObs. For the joint policy
trees selected in step one the algorithm then performs a
partial backup with just k observations for every agent,
leading to a feasible number of policy trees (with miss-
ing branches). Note that although only k observations
are used for the partial backup of every agent’s policy
trees, implicitly kn joint observations are taken into
consideration. After the partial backups the result-
ing trees are filled up with the missing observation
branches using local search (hill climbing: for every
missing observation check which of the available subn-
odes of the next level will lead to the highest expected
utility for the given belief state). This concludes a
single iteration. Figure 1 illustrates the idea of the
improved MBDP algorithm, i.e. the combination of
the two approximation techniques. The algorithm can
be applied to DEC-POMDPs with an arbitrary num-
ber of agents, but to simplify notation, the description
shown in Algorithm 1 is for two agents, i and j.

Algorithm 1: The Improved MBDP Algorithm

begin
maxTrees ← max number of trees before backup
maxObs ← max number of observations for backup
T ← horizon of the DEC-POMDP
H ← pre-compute heuristic policies for each h ∈ H
Q1

i , Q
1
j ← initialize all 1-step policy trees

for t=1 to T-1 do
Selti , Seltj ← empty
for k=1 to maxTrees do

choose h ∈ H and generate belief state bT−t

foreach qi ∈ Qt
i, qj ∈ Qt

j do
evaluate pair (qi, qj) with respect to bT−t

add best policy trees to Selti and Seltj
delete these policy trees from Qt

i and Qt
j

choose h ∈ H and generate belief state bT−t−1

Oi, Oj ← maxObs most likely obs. for h(bT−t−1)
Qt+1

i , Qt+1
j ← partialBackup(Selti , Seltj , Oi, Oj)

fill up Qt+1
i and Qt+1

j with missing observations

improve Qt+1
i and Qt+1

j via hill climbing

select best joint policy tree δT for b0 from {QT
i , QT

j }
return δT

end

5 Theoretical Analysis

The quality of the joint policy trees produced by the
improved MBDP algorithm depends on the maximum
number of trees per horizon level maxTrees and the
maximum number of observations allowed per partial
backup maxObs. In this section we prove that the error
introduced due to the partial backup approximation is
bounded and that the bound converges to 0 as maxObs
is increased.

5.1 Error Bound
The parameter maxObs determines how many obser-
vations the improved MBDP algorithm considers in
its partial backup for each agent. Taking less than
the maximum number of observations into considera-
tion introduces an approximation error. For any belief
state b at horizon t and joint action ~a, let εt(b,~a) de-
note the sum of the probabilities of the m most likely
joint observations ~O∗ in the (t + 1)th step, where we
require that each agent separately has at most maxObs
local observations. More formally:

εt(b,~a) = max
~O∗={~o1,~o2,...}

∑
~oi∈~O∗

∑
s∈S

b(s) ·O(~oi|~a, s)

where ∀ agents j (fj(~oi) denotes the jth element of ~oi)
|{fj(~o1), fj(~o2), ..., fj(~om)}| ≤ maxObs

Note that the set of possible belief states at horizon t
is determined by the set of possible joint observation
sequences. Given observation sequence θ, we can com-
pute P (s|θ) for all s which gives us a belief state. Thus



we can define:

εt(θ,~a) = εt(b(θ),~a)

and finally:

ε = min
1≤t≤T

min
θ∈Θt

min
~a∈ ~A

εt(θ,~a)

Thus, for every possible horizon, every possible joint
observation sequence and ever possible joint action the
sum of the probabilities of the joint observations used
in a partial backup will always be at least ε. This pa-
rameter describes the maximum error introduced by
the new approximation in the improved MBDP algo-
rithm.

The proof of the following theorem uses an idea intro-
duced by [Szer et al., 2005]: A joint policy δT can be
decomposed into a depth-t policy tree δt and a com-
pletion of this policy tree ∆T−t such that 〈δt,∆T−t〉
constitutes the complete policy vector δT . The par-
tial policy tree δt = 〈δt

1, ..., δ
t
n〉 is the usual vector of

local single-agent policies. The completion ∆T−t =
〈∆T−t

1 , ...,∆T−t
n 〉 is a vector of completions, one for

each agent. After executing policy tree δt each agent
will be at some leaf node in its policy tree as a result of
a sequence of t observations θi = (o1

i , ..., o
t
i). The com-

pletion ∆T−t must specify which policy tree to choose
for each possible joint observation sequence θ. Thus,
∆T−t is a set of horizon-T − t joint policy trees and
∆T−t(θ) specifies one particular joint policy tree for θ.
We can now define the value of a joint policy tree δT

and an initial belief state b0 as
V (δT , b0) = V (〈δt, ∆T−t〉, b0) = V (δt, b0)+V (∆T−t|b0, δt).

Theorem 1. For a given maxObs < |O| and any belief
state b ∈ ∆S, the error of improved MBDP due to
partial backups with selected observations on a horizon-
T problem, |V (δT , b)− V (δT

maxObs , b)|, is bounded by:

µT = T 2 · (1− ε) · (Rmax −Rmin)

Proof: Let ∆ denote the optimal completion of a pol-
icy tree and ∆̂ denote the completion computed by
the improved MBDP algorithm. Let δT = 〈δt, ∆̂T−t〉
be the joint policy tree constructed by the improved
MBDP algorithm. The proof is by induction on depth
T − t of the completion ∆̂T−t. Here the base case is
T − t = 2, because for T − t = 1 the construction of
the completion with horizon 1 does not yet require a
backup.

Base case (T − t = 2): For 〈δT−2, ∆̂2〉 assume
that δT−2 is the optimal joint policy tree. Be-
cause V (δT , b0) = V (〈δT−2, ∆̂2〉, b0) = V (δT−2, b0) +
V (∆̂2(θ)|b0, δT−2) we only have to look at the value
of ∆̂2. Let OIn denote the set of joint observations as
identified by the algorithm which defines the sets of

observations for each agent that are used for the par-
tial backups. Analogously let OOut denote the set of
observations that is not taken into consideration for
the partial backup. The completion ∆̂2 is constructed
using the result of the partial backup. Accordingly,
when during execution the agents reach one of their
policy tress in the completion and the next joint ob-
servation is ∈ OIn, no value loss occurs. However,
if an observation from OOut is observed the policy
tree might lead to a suboptimal action for the last
step resulting in a maximum error of (Rmax − Rmin).
Thus, for ∆̂2 the maximum value loss is bounded by
µ1 = (1− ε) · (Rmax −Rmin).

Inductive step (t → t + 1): Now assume that µt =
t2 · (1 − ε)(Rmax − Rmin). Let δT = 〈δT−(t+1), ∆̂t+1〉.
Then V (δT , b0) = V (〈δT−(t+1), ∆̂t+1〉, b0) =
V (δT−(t+1), b0) + V (∆̂t+1|b0, δT−(t+1)). The value of
the completion is defined as V (∆̂t+1|b0, δT−(t+1)) =∑

θ∈Θ P (θ|b0, δT−(t+1)) ·
∑

s∈S P (s|θ) · V (∆̂t+1(θ), s).

Thus we need only look at the last term:

V (b∆t+1(θ), s) (1)

= V (δ̂1(θ), s) + V (b∆t|s, δ̂1(θ)) (2)

= V (δ̂1(θ), s) +
h X

θ′∈Θ

P (θ′|s, δ̂1(θ))

·
X
s′∈S

P (s′|θ′)V (b∆t(θ′), s′)
i

(3)

≥ V (δ̂1(θ), s) +
h X

θ′∈Θ

P (θ′|s, δ̂1(θ))

·
X
s′∈S

P (s′|θ′)V (∆t(θ′), s′)− µt

i
(4)

= V (δ̂1(θ), s) + V (∆t|s, δ̂1(θ))− µt (5)

≥ ε · V (∆t+1|s, δT−(t+1)) + (1− ε)(t + 1)Rmin − µt (6)

= ε · V (∆t+1|s, δT−(t+1)) + (1− ε)(t + 1)Rmin

+ (t + 1)µ1 − (t + 1)µ1 − µt (7)

= ε · V (∆t+1|s, δT−(t+1))

+ (1− ε)(t + 1)Rmax − (t + 1)µ1 − µt (8)

≥ V (∆t+1|s, δT−(t+1))− (t + 1)2µ1 (9)

= V (∆t+1|s, δT−(t+1))− µt+1 (10)

Step (2) follows from the definition of a decompo-
sition. Note that δ̂1(θ) denotes a one-step policy as
computed by improved MBDP. In (4) we plugged in
the inductive assumption. Note that in step (5) ∆t is
the optimal completion for the not necessarily optimal
δ̂1(θ). In (6) we use the fact that the sum of the prob-
abilities taken into account for the partial backup is ε.
Thus with probability ε δ̂1 leads to an optimal path
and with probability (1 − ε) it leads to a suboptimal
and potentially worst-case path. In (7) we add zero
and (9) is based on the inequality: (t+1)2 > t2 + t+1.



Thus, δT = 〈δT−t+1, ∆̂t+1〉 has at most error µt+1.
Accordingly, for all T , the error is bounded by µT .
This concludes the proof of the theorem.

5.2 Convergence
Corollary 1. Increasing maxObs → |O| the error
bound µT = |V (δT , b) − V (δT

maxObs , b)| is strictly de-
creasing and reaches 0 in the limit.

Proof: This result follows directly from Theorem 1.
As ε is strictly increasing in maxObs the error bound is
strictly decreasing in maxObs. When maxObs reaches
|O| full backups instead of partial backups are per-
formed in each step and thus the error bound is 0.

5.3 Complexity Properties
Theorem 2. For a fixed number of agents, the im-
proved MBDP algorithm has a polynomial time and
space complexity in all other input parameters.

Proof: We have already shown that once the param-
eter maxTrees is fixed, the time and space complex-
ity of MBDP with regard to the problem horizon is
polynomial [Seuken and Zilberstein, 2007]. The most
costly step of MBDP is the full backup, which is ex-
ponential in the size of the observation space. The
partial backup approximation in the improved MBDP
algorithm is obviously polynomial in the observation
space once maxObs is fixed. Filling up the missing
observation branches using local search at the end of
every iteration can also be done in polynomial time:
There are at most |O| observations that can be con-
nected to maxTrees subtrees. Finding the most likely
observations takes |S| · |O|n operations which is also
polynomial when n is fixed. From Algorithm 1 it is
obvious to see that the number of available actions as
well as the size of the state space affect the complexity
only polynomially. Thus, for a fixed number of agents
we obtain a polynomial complexity in all other input
parameters.

Note that this complexity analysis only considers the
case when maxObs is fixed. It does not describe how
the computational complexity scales with the desired
accuracy (i.e. where maxObs is variable). Unfortu-
nately this analysis is not possible in general because
how high maxObs has to be set to reach a desired
accuracy does not depend on the size of the input,
i.e. the size of the observation space or other single-
ton parameters, but on all entries of the observation
probability table. In particular, if every observation is
possible in every state and very important in making
the correct decisions then the solution value achieved
from the approximate algorithm can be bad whenever
maxObs < |O|. This shows that the error bound has

primarily a theoretical significance and analyzing the
trade-off between computational complexity and solu-
tion value can only be done experimentally.

6 Experiments

6.1 Existing Benchmark Problems
Most researchers working on DEC-POMDPs report
performance results for the multi-agent broadcast
channel (MABC) problem and the multi-agent tiger
problem. The former problem has 2 agents, 4 states,
2 actions and 2 observations. The later problem has
2 agents, 2 states, 3 actions and 2 observations. Be-
cause partial backups are not necessary for an obser-
vation space of size 2, for these benchmark problems
the improved MBDP algorithm leads to the same re-
sults as the original MBDP algorithm. The left part
of Table 6 shows the results achieved by the MBDP
algorithm on the MABC problem. More detailed re-
sults including running time analyses are reported in
[Seuken and Zilberstein, 2007]. Shown are the solu-
tion values achieved for each horizon where a “-” in-
dicates that the algorithm ran out of time or memory
for this horizon. As the results show, MBDP reached
the same or higher value than all existing algorithms
while being able to solve horizons that were multiple
orders of magnitude larger than any other algorithm
could solve (up to 100,000 within 24h on the MABC
problem). Even though no comparison with optimal
solution algorithms is possible for the larger horizons,
the solution values suggest that the algorithm achieves
the optimal value for every horizon. This illustrates
the need for a new, larger benchmark problem.

6.2 Cooperative Box-Pushing
The cooperative box-pushing problem is a well-known
robotics problem introduced by [Kube and Zhang,
1997]. In this domain, two or more agents have to co-
operate to move a big object (the box) that they could
not move on their own. Even though the robots cannot
communicate with each other, they have to achieve a
certain degree of coordination to move the box at all.

We model this problem as a DEC-POMDP and intro-
duce it as a new benchmark problem for algorithms
that can handle larger observation spaces. Figure 2
shows a sample problem in a grid world domain.

Goal area

Box that can be 
moved by a 
single agent

Agent’s observations

Box that 
needs two 
agents to be 
moved

Figure 2: Box Pushing in the Grid World.



Table 1: Performance Comparison on the MABC Problem and the Box-Pushing Problem.
MABC Problem Cooperative Box-Pushing Problem

Horizon Optimal PBDP Random MBDP Random Improved MBDP

1 1.00 1.00 0.50 1.00 −0.20 -0.20
2 2.00 2.00 1.00 2.00 −0.06 17.60
3 2.99 2.99 1.49 2.99 −0.75 65.68
4 3.89 3.89 1.99 3.89 −1.69 97.91
5 - 4.70 2.47 4.79 −2.67 100.64
6 - 5.69 2.96 5.69 −3.73 117.63
7 - 6.59 3.45 6.59 −4.84 133.12
8 - 7.40 3.93 7.49 −5.97 182.92
9 - - 4.41 8.39 −7.12 186.95

10 - - 4.90 9.29 −8.30 189.32
20 - - 9.73 18.29 −20.46 415.25
50 - - 24.23 45.29 −57.94 1051.82

100 - - 48.39 90.29 −120.55 2112.05

This problem is particularly nice because it is very
flexible in the sense that it can easily be modified to
different sizes and problem complexities by varying the
problem parameters. The system states of this prob-
lem are all tuples of possible positions of the two agents
and the three boxes. Each agent has 4 actions: turn
left, turn right, move forward and stay. If an agent is
facing a box that it can move on its own and selects
the action move forward, the box is pushed one grid
cell into the direction of the agent’s movement and the
agent also moves one step forward. If the agent moves
against a wall or against a larger box that it cannot
push by itself it just stays in place. However, if both
agents push against the large box at the same time, the
large box moves by one grid cell as do the agents. To
model an uncertain environment we assume that each
agent’s actions are only successful with probability 0.9
and with probability 0.1 it simply stays in place. After
every time step each agent gets one out of 5 possible
observations deterministically describing the situation
of the environment in front of the agent: empty field,
wall, other agent, small box, large box.

The reward function is designed such that the agents
benefit from cooperation. Every time step the agents
spend in the environment, they get a negative reward
of -0.1 per agent. Per agent that bumps into a wall
or a box it cannot move, they receive a penalty of -5.
For each small box that reaches the goal area they get
a reward of 10. If the agents cooperatively push the
large box into the goal area they get a reward of 100.

As discussed before, due to the higher number of ob-
servations, none of the previous algorithms – including
the MBDP algorithm – can be applied to this prob-
lem even for horizons less than 5. Only the improved
MBDP algorithm can tackle this problem making use
of the partial backups. The right part of Table 6
shows initial performance results with maxObs = 3
and maxTrees = 3 for the small problem depicted in
Figure 3. Note that this small problem already has
100 states, 4 actions and 5 observations. The problem
starts as shown in Figure 3. Upon reaching one of the
goal states the system state transitions back into the

start state. In our experiments the running time scales
linearly with the horizon. The algorithm needs approx.
30 seconds per level of the horizon with maxObs = 2
and 500 seconds with maxObs = 3. At the moment our
experimental results are only preliminary and should
not be used for comparison yet. We will soon report
more detailed experimental results that will also high-
light the trade-off between computational complexity
(running time) and solution quality.

Figure 3: Small Grid World Problem.

7 Conclusion

The original MBDP algorithm was the first approx-
imate algorithm that could be applied to DEC-
POMDPs with non-trivial horizons. But the algorithm
still suffered from exponential complexity in the size
of the observation set. Our main contribution in this
paper is the introduction of an improved version of
MBDP that reduces the complexity with respect to the
observation set from exponential to polynomial. This
can be accomplished because for most belief states,
many observations are highly unlikely or even impos-
sible. Thus, performing a partial backup with only the
most likely observations is sufficient to obtain high-
quality solutions. We have also presented a theoreti-
cal analysis of the improved MBDP algorithm, prov-
ing worst-case bounds on the approximation error in-
troduced by the partial backup approximation. We
have shown a quadratic relationship between the error
bound and the horizon which is interesting because in-
tuitively one might think that the error accumulates
exponentially. Furthermore, we have shown that when
maxObs is increased, the error bound decreases and
converges to 0 in the limit. Because the existing bench-
mark problems are too simple to test the improved al-
gorithm, we created a new benchmark problem called
Cooperative Box Pushing that can be solved currently
only by the improved MBDP algorithm. Our experi-
mental results show that despite the double exponen-



tial complexity of DEC-POMDPs, good solutions for
reasonably hard problems can be computed efficiently.

One important remaining challenge is deriving a com-
plete error bound for the improved MBDP algorithm.
So far, we have only bounded the error introduced due
to the partial backups with a selected set of observa-
tions. But we have not said anything about the error
introduced due to the selection of policy trees based
on belief space sampling. It turns out that bounding
the error in this direction is very challenging. Suc-
cessful error-bounding techniques for POMDPs have
been introduced in [Pineau et al., 2003] and [Smith
and Simmons, 2005]. They show that if the belief
space of the POMDP can be sampled densely enough,
the error introduced by their approximation algorithm
can be minimized to any ε > 0. Unfortunately, for
DEC-POMDPs this technique does not work because
an optimal policy is not a mapping from belief states
to actions. Instead, each agent has to base its decision
on a multi-agent belief state, that is, a distribution
over systems states and over the policies of the other
agents. An algorithm that aims to approximate the
optimal solution within an error bound must also, at
least partly, base its decisions on the multi-agent be-
lief state which it can infer from its sequence of obser-
vations during execution time. However, because we
are constructing our policies bottom-up, a distribution
over the other agent’s policies is not available before
the policies are fixed. This presents a difficulty that
precludes a complete non-trivial error bound to be es-
tablished. Furthermore, [Rabinovich et al., 2003] have
shown that even ε-approximations for DEC-POMDPs
are NEXP-hard to find. Thus, even if one finds an ap-
proximate algorithm for DEC-POMDPs with a com-
plete error bound, the algorithm would at least have an
exponential and most likely a double exponential com-
plexity in the bound itself. Instead of pre-computing
an error bound, one could collect information during
the execution of an approximate algorithm to find an
on-line bound. In future work we will try to establish
such an on-line bound and to evaluate more rigorously
the performance of the improved MBDP algorithm.
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