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Abstract

Reduced models allow autonomous agents to cope
with the complexity of planning under uncertainty
by reducing the accuracy of the model. However,
the solution quality of a reduced model varies as
the model fidelity changes. We present planning us-
ing a portfolio of reduced models with cost adjust-
ments, a framework to increase the safety of a re-
duced model by selectively improving its fidelity in
certain states, without significantly compromising
runtime. Our framework provides the flexibility to
create reduced models with different levels of de-
tail using a portfolio, and a means to account for
the ignored details by adjusting the actions costs in
the reduced model. We show the conditions under
which cost adjustments achieve optimal action se-
lection and describe how to use cost adjustments
as a heuristic for choosing outcome selection prin-
ciples in a portfolio. Finally, we present empirical
results of our approach on three domains that in-
cludes an electric vehicle charging problem using
real-world data from a university campus.

1 Introduction

Many real-world problems that require sequential decision
making under uncertainty are often modeled as Stochas-
tic Shortest Path (SSP) problems [Bertsekas and Tsitsiklis,
1991]. Given the computational complexity of solving large
SSPs optimally [Littman, 19971, there has been much interest
in developing efficient approximations, such as reduced mod-
els, that trade solution quality for computational gains [Yoon
et al., 2008]. Reduced models simplify the problem by par-
tially or completely ignoring uncertainty, thereby reducing
the set of reachable states a planner needs to consider [Yoon
et al., 2010; Keller and Eyerich, 2011]. We consider reduced
models in which the number of outcomes per action is re-
duced relative to the original model.

While this reduction in reachable states accelerates plan-
ning, it affects the solution quality, particularly if “risky”
states — states that significantly affect the expected cost of
reaching a goal — are not preserved in the reduced model.
Thus, the action outcomes considered in the reduced model
determines the model fidelity and thereby the solution quality.

In this paper, we associate the notion of safety with solution
quality. We consider a reduced model to be safe if it preserves
the safety guarantees contained in the original problem by
fully accounting for the risky outcomes in the reduced model.
Thus, a safe reduced model results in improved plan quality.
The existing reduced model techniques have focused on for-
mulating models that reduce planning time, but they do not
focus on formulating safe reduced models [Yoon et al., 2007,
Keyder and Geffner, 2008]. This limits the applicability of re-
duced models to many problems that inherently require fast
and safe (high-quality) plans. Examples of such domains in-
clude wildfire response and various forms of agent interaction
with humans such as semi-autonomous driving [Hajian er al.,
2016; Wray et al., 2016]. While the model fidelity can be im-
proved by considering the full model in planning, it defeats
the purpose of using reduced models. The key question we
address in this work is how to formulate a safe reduced model
that balances this trade-off.

Intuitively, the trade-off between model simplicity and
safety can be optimized by learning when to use a simple
model and when to use a more informed model. Consider for
example a robot navigating through a building. A plan gen-
erated by a simple reduced model might work well when the
robot is moving through uncluttered region, but a more infor-
mative reduced model or the full model may be required to
reliably navigate through a narrow corridor [Styler and Sim-
mons, 2017]. The existing reduced model techniques are inca-
pable of handling such variations in detail, since they employ
a uniform approach to determine the number of outcomes and
how they are selected for all (s,a) in the reduced model.
This limits the scope of the risks they can represent, result-
ing in sub-optimal solutions. Furthermore, the unaccounted
outcomes of an action that are ignored in the reduced model
lead to overly optimistic plans. Since the existing techniques
do not guarantee bounded-optimal performance, it is hard to
predict when they will work well.

This paper formulates safe reduced models by learning to
select outcomes for planning. We present two techniques that
complement each other in formulating a safe reduced model,
without compromising the runtime gains of using a reduced
model. First, we introduce planning using a portfolio of re-
duced models (PRM), that enables formulating reduced mod-
els with different levels of details by using a portfolio of out-
come selection principles (Section 3). Secondly, we present



planning using cost adjustments, a technique that improves
the solution quality of reduced models by altering the costs
of actions to account for the consequences of ignored out-
comes in the reduced model (Section 4). Since it is non-trivial
to compute the exact cost adjustments, we propose an ap-
proximation that learns the cost adjustments from samples.
Furthermore, the cost adjustments offer a heuristic for choos-
ing the outcome selection principles in a PRM (Section 5).
Finally, we empirically demonstrate the benefits of our ap-
proach in three different domains including an electric vehicle
charging problem using real world data, and two benchmark
planning problems (Section 6).

2 Planning Using Reduced Models

We target problems modeled as a Stochastic Shortest Path
(SSP) MDP, defined by M = (S, A, T, C, s9, Sg), where S
is a finite set of states; A is a finite set of actions; T'(s, a, s’) €
[0, 1] denotes the probability of reaching a state s’ by execut-
ing an action a in state s; C(s,a) € {RTU{0}} is the cost of
executing action a in state s; so € S is the initial state; and
S C S is the set of absorbing goal states. The cost of an ac-
tion is positive in all states except goal states, where it is zero.
The objective in an SSP is to minimize the expected cost of
reaching a goal state from the start state. The optimal policy,
7*, can be extracted using the value function defined over the
states, V*(s):

V*(s) =min Q*(s,a), Vse S (1)

a

where QQ*(s, a) denotes the optimal Q-value of the action a
in state s and is calculated as, V(s,a) € S x A:

Q*(s,a) = C(&a)—i—z T(s,a,s)V*(s"). )

While SSPs can be solved in polynomial time in the num-
ber of states, many problems have a state-space whose size is
exponential in the number of variables describing the prob-
lem [Littman, 1997]. This complexity has lead to the use of
approximation techniques such as reduced models for plan-
ning under uncertainty. Reduced models simplify planning by
considering a subset of outcomes. Let 0(s, a) denote the set
of all outcomes of (s,a), 0(s,a) = {s'|T(s,a,s")>0}.

A reduced model of an SSP M is represented by the tuple
M’ = (S,A,T",C, sy, Sc) and characterized by an altered
transition function 7" such that V(s,a) € S x A,6'(s,a) C
0(s,a), where &'(s,a) = {s'|T"(s,a,s’) > 0} denotes the
set of outcomes in the reduced model for action a in state
s. We normalize the probabilities of the outcomes included
in the reduced model, but more complex ways to redistribute
the probabilities of ignored outcomes may be considered. The
outcome selection process in a reduced model framework de-
termines the number of outcomes and how the specific out-
comes are selected. Depending on these two aspects, a spec-
trum of reductions exist with varying levels of probabilistic
complexity that ranges from the single outcome determiniza-
tion to the full model [Keller and Eyerich, 2011].

An outcome selection principle (OSP) performs the out-
come selection process per state-action pair in the reduced

model, thus determining the transition function for the state-
action pair. The OSP can be some simple function such as
always choosing the most likely outcome or a more complex
function. Traditionally, a reduced model is characterized by
a single OSP. That is, a single principle is used to determine
the number of outcomes and how the outcomes are selected
across the entire model. A simple example of this is the most-
likely outcome determinization.

3 Portfolio of Reduced Models

We define a generalized framework, planning using a portfo-
lio of reduced models, that facilitates the creation of safe re-
duced models by switching between different outcome selec-
tion principles, each of which represents a different reduced
model. The framework is inspired by the benefits of using
portfolios of algorithms to solve complex problems [Petrik
and Zilberstein, 2006].

Definition 1. Given a portfolio of finite outcome selection
principles, 7. = {p1, p2, ..., px}, k>1, a model selector, D,
generates T’ for a reduced model by mapping every (s, a) to
an outcome selection principle, ®: S x A — p;, p; € Z, such
that T'(s,a,8") = Tp(s,a)(5,a,8"), where Tg s q)(5,a,5")
denotes the transition probability corresponding to the out-
come selection principle selected by the model selector.

Trivially, the model selector used by the existing reduced
models is a special case of the above definition, as ¢ always
selects the same p; for every state-action pair. Hence, the
model selectors of existing reduced models are incapable of
adapting to the risks. Typically, in planning using a portfolio
of reduced models (PRM), the model selector utilizes more
than one OSP to determine 7”. Each state-action pair may
have a different number of outcomes and a different mecha-
nism to select the specific outcomes. We leverage this flexibil-
ity in outcome selection to formulate safe reduced models by
using more informative outcomes in the risky states and us-
ing simple outcome selection principles otherwise. Although
the model selector could use multiple p; to generate T’ in a
PRM, the resulting model is still an SSP.

Definition 2. A 0/1 reduced model (0/1 RM) is a PRM with
a model selector that selects either one or all outcomes of an
action in a state to be included in the reduced model.

A 0/1RM is characterized by a model selector, @, that
either ignores the stochasticity completely (0) by considering
only one outcome of (s, a), or fully accounts for the stochas-
ticity (1) by considering all outcomes of the state-action pair
in the reduced model. For example, it may use the full model
in states prone to risks or states crucial for goal reachabil-
ity, and determinization otherwise. Thus, a 0/1 RM that guar-
antees goal reachability with probability 1 can be devised,
if a proper policy exists in the SSP. Our experiments using
0/1RM show that even this basic instantiation of a PRM
works well in practice.

Depending on the model selector and the portfolio, a large
spectrum of reduced models exists for an SSP and choosing
the right one is non-trivial.



3.1 Model Selector (®)

Typically, the model selectors in existing reduced models
have been devised to improve the runtime of the reduced
models. We aim to devise a model selector whose objective is
to account for the risky outcomes in the reduced model with-
out significantly compromising the runtime benefits of using
areduced model. In a 0/1 RM, frequently using the full model
may over-complicate the planning process, while always us-
ing a single outcome determinization may oversimplify the
problem. An efficient model selector selects OSPs for each
state-action pair such that the trade-off between solution qual-
ity and planning time is optimized.

Devising an efficient model selector automatically can be
viewed as a meta-level decision problem that is computation-
ally more complex than solving the reduced model, due to the
numerous possible combinations of outcome selection princi-
ples. Even in the simple case of 0/1 RM, devising an efficient
® is non-trivial as it involves deciding when to use the full
model and when to use determinization. In the worst case, all
the OSPs in Z may have to be evaluated. Let 7,,,,, denote the
maximum time taken for this evaluation across all states. The
OSPs may be redundant in terms of specific outcomes. For
example, selecting the most likely outcome and greedily se-
lecting an outcome based on Q-values could result in the same
outcome for a (s, a) pair. If every outcome selection princi-
ple specifies a unique outcome, then the time taken to devise
an efficient ® could be exponential in the number of states.
While this is a trivial fact, it is useful to understand the worst
case complexity of devising an efficient model selector as it
provides an important link to the need for efficient evaluation
metrics. Proposition 1 formally proves this complexity.

Proposition 1. The worst case time complexity for a model
selector, ®, to generate T' for a PRM is O(|A] - 215 - 7,,.42.).

Proof Sketch. For each (s,a), at most |Z| OSPs are to
be evaluated and this takes at most 7,,,, time (as men-
tioned above). Since this process is repeated for ev-
ety (s,a), ® takes O(|S||A||Z|Timaz) to generate T”. In
the worst case, every action may transition to all states,
T(s,a,s") > 0,Y(s,a,s’) € M, and the OSPs in Z may be
redundant in terms of the number and specific outcomes set
produced by them. Hence, the evaluation is restricted to the
set of unique outcomes sets denoted by &, |k| < |P(5)[, with
P(S) = 2!5!. Then, it suffices to evaluate the |k| outcome
sets instead of |Z|, reducing the complexity to O(|A] - 251 .
Tmaw)~ O

This shows that the complexity is independent of |Z
which may be a very large number in the worst case.

)

Corollary 1. The worst case time complexity for @, to gen-
erate T' for a 0/1 RM is O(|A] - |S|? - Timaz)-

Proof Sketch. This proof is along the same lines as that of
Proposition 1. To formulate a 0/1 RM of an SSP, it may be
required to evaluate every p; € Z that corresponds to a deter-
minization or a full model. Hence, in worst case, ® /1 takes
O(|S| 14| - |Z| - Tmaz) to generate T". The set of unique out-
comes, k, for a 0/1 RM is composed of all unique determin-
istic outcomes, which is every state in the SSP, and the full

model, |k| < |S| + 1. Replacing |Z| with | k|, the complexity
is reduced to O(|A] - |S)? * Trmaz)- O

Since T4, could significantly reduce the runtime savings
of using the reduced model, these results underscore the need
for developing faster evaluation techniques to identify rele-
vant outcome selection principles. This would be particularly
useful in automated generation of efficient model selectors.
In this paper, we focus on creating reduced models that yield
high quality results using the existing OSPs from the litera-
ture. Therefore, future improvements in OSPs can be lever-
aged by PRMs.

In the following section, we propose a technique that ac-
counts for the outcomes ignored in the reduced model by ad-
justing the action costs. We also explain how this acts as a
heuristic for selecting OSPs in a PRM, allowing us to rea-
sonably balance the trade-off between solution quality and
planning time, as in our experiments.

4 Reduced Models with Cost Adjustments

One of the reasons for existing reduced model techniques pro-
ducing poor solutions is that some outcomes are completely
ignored. In fact, certain ways of accounting for the ignored
outcomes could result in optimal action selection for the SSP.
Traditionally, only the transition function is altered in a re-
duced model. To account for the ignored outcomes, we pro-
pose a technique that alters the costs of actions in the reduced
model. We introduce planning using cost adjustment, a tech-
nique that accounts for the ignored outcomes by adjusting the
costs of actions in the reduced model, thus resulting in opti-
mal action selection in the reduced model.

Definition 3. A cost adjusted reduced model (CARM) of an
SSP M is a reduced model represented by the tuple M, =
(S, A, T',C", s0,Sc) and characterized by an altered cost
Sunction C' such that ¥(s, a) in reduced model,

C'(s,a) + Q*(s,a) — Z T'(s,a,s")V*(s).

s'€0’(s,a)

Given an SSP and its reduced model (not necessarily a
PRM), the costs are adjusted for every (s, a) in the reduced
model to account for the ignored outcomes. Since the costs
are adjusted based on the difference in values of states, this
may lead to negative cost cycles in an SSP. Therefore, the
necessary and sufficient condition for non-negative cost in
CARM is that T” satisfies

Q*(s,a) > Z T'(s,a,s)V*(s). 3)

s'€6’(s,a)

This condition may be relaxed as long as there are no negative
cost cycles in the reduced model. The optimal state values and
action values in M/, are denoted by V};(s) and Q%(s,a),
and its optimal policy by 5. Let X and X™ denote the
set of states reachable by executing a policy 7 in M/, and
executing 7 in M, respectively. Since 6'(s,a) C 6(s, a), we
get Xp CX™.

Lemma 1. Given a CARM and policy m,Vs€ X} : VI (s)=
V™ (s), whose goal reachability is preserved in CARM.



Proof Sketch. We show this using proof by induction on ¢
starting from the goal state and following policy 7 (assuming
proper policy). Trivially, the base case holds as we start from
a goal. For readability, let 0 =0'(Ss, 7(S;)), Si=1 =s and
Si—1=8".Whent=1:V"(s) = C(s,n(s)), Vs € X™ and
Vi(s) = C'(s,n(s)), Vs € XE. Using 7 and Definition 3,
we get Q7 (s,a) =V7(s) and C'(s,a) = V™ (s). Therefore,
Vi (s)=V7(s),¥s € XF. Thus, this holds true for ¢t =1.

Inductive Step: Assume true for ¢ — 1 (induction hypothe-
sis), must show that for ¢, VZ (S;) =V ™ (S;). Then,

VE(Sy) = C'(S¢, m(St)) + ZS’EH’SM T’ (S, m(Sy), s")VE ().
Using Definition 3 in the above,

VE(S) = Q™ (S, m(S) + Y T'(S,7(Sh), o)

’ !
s EOSt’ﬂ

(V(s") =V7(s).

By induction hypothesis, V7 (s") = V™ (s’), and for a fixed
policy, 7, Q™ (S, w(St)) =V ™(S:). Using these in the above
equation, we get V5 (S;) = V™ (S;). Thus, by induction, this
holds true for all ¢, VE (s)=V"(s),Vs € XE. O

If 77 does not preserve the goal reachability (introduces
dead ends by ignoring certain outcomes) for a state, then the
expected cost of reaching the goal will be different in the orig-
inal problem and CARM.

Proposition 2. A CARM that preserves goal reachability
vields optimal action selection for the SSP, if there exists a
proper policy in the SSP.

Proof. We prove this by showing that V(s,a) € M/, the
optimal Q-values of the SSP and its cost adjusted reduced
model are equal, Q% (s,a) = Q*(s,a). However, if the re-
duced model introduces dead ends by ignoring certain out-
comes (does not preserve goal reachability and has improper
policy), then the Q-values will be different. Therefore, we re-
strict the proof to a CARM that preserves goal reachability.

By definition, V(s,a) € S x A:

Qn(s,a) =C'(s,a)+ Y T'(s,a,8)Vi(s).

s'€0’(s,a)

Using Definition 4 in the above equation, we get

Qils,0)=Q" (s, > T'(s,0,8) (Va(s)-V*(s)).

s'€0'(s,a)

Since we assume a proper policy and for all states whose goal
reachability is preserved in CARM, using Lemma 1 in the
above equation yields Q% (s, a) =Q*(s, a). O

Thus, a CARM that preserves goal reachability, produces
optimal action selection for the SSP.

4.1 Approximate Cost Adjustments

Generating a CARM may involve solving the SSP to estimate
the optimal values of the outcomes, which defeats the pur-
pose of using reduced models. Hence, we propose an approx-
imation for cost estimation, and the resultant reduced model

with approximate costs is referred to as approximately cost
adjusted reduced model (ACARM).

Learning feature-based costs In a factored state represen-
tation, the cost of an action can depend on a subset of state
features [Boutilier er al., 1999]. Along these lines, we pro-
pose estimating the costs based on features of the states.

Definition 4. A feature-based cost function estimates the
cost of an action in a state using the features of the state,
C'(s,a) = g(f(s),a), where g: f x A — R

Let f(s) = (f1(s), ..., fn(s)) denote features in a state
s that significantly affect the costs of actions. Identifying
such important features has been actively studied over the
years in the context of state abstraction and value func-
tion approximation [Kolobov et al., 2009; Mahadevan, 2009;
Parr et al., 2007], and machine learning techniques such as re-
gression and decision stump [Shah et al., 2012]. These tech-
niques along with using domain knowledge offer a suite of
methods to identify features that significantly affect the cost.

Given such features, the feature-based approximate costs
are estimated by generating and solving sample problems.
The samples are either known small problem instances in the
target domain or generated automatically by sampling states
from the target problem. In this paper, smaller problems are
created by multiple trials of depth limited random walk on the
target problems and solved using LAO* [Hansen and Zilber-
stein, 2001]. The feature-based costs are learned by comput-
ing the cost adjustments in hindsight for these samples using
their exact solutions and the given features. The learned val-
ues are projected onto the target problem using the feature-
based cost function. Trivially, as the number of samples and
the depth of the random walk are increased, the estimates con-
verge to their true values [Bonet and Geffner, 2003]. For prob-
lems with unavoidable dead ends, sampling states may not be
a good representative of the target problem; smaller problem
instances from the domain may be used instead.

State Independent Costs We also consider an extreme case,
where the feature set characterizing each state is empty.

Definition 5. A state independent cost adjustment assigns a
constant cost per action, regardless of the state, resulting in a
constant cost C'(s,a) = g(a), where g : A — R.

This simple form of generalization of the cost adjustment
ignores the state altogether. In particular, PPDDL description
of problems in a domain [Younes and Littman, 2004] have
a shared action schema and hence having constant cost ad-
justment for actions in a problem instance can be extended to
various problem instances in the domain. If the cost of an ac-
tion, C(s, a), and the relative discrepancy between the values
of the outcomes of a are the same in every state, then the cost
adjustment can be trivially generalized with a state indepen-
dent cost adjustment.

Example 1. Consider an SSP in which an action achieves a
successful outcome with probability 1—p or fails with prob-
ability p, leaving the state unchanged. Let s denote a state
for which a successful execution of action a with cost C (s, a)
results in outcome state s’ [Keyder and Geffner, 2008].



This example describes a class of problems for which state
independent cost produces optimal action selection.

Proposition 3. State independent cost adjustment results in
optimal action selection for the class of problems identified in
Example 1, for a fixed policy.

Proof Sketch. Since the policy is fixed and a is stochastic, for
a problem identified in Example 1,

C(s,a)
* , — ) V* / .
Q(s.0) = 22 AV
To satisfy Equation 3, the failure outcome would be ignored
in the reduced model. Substituting these in Definition 3,

C(s,a)
C’ = —1 - 4
(ss0) = T )
This illustrates a class of problems for which state indepen-
dent cost is accurate with optimal action selection. O

An example of Proposition 3 is the Blocksworld do-
main [Little and Thiebaux, 2007]. In this domain, given an
initial configuration, the blocks need to be rearranged to sat-
isfy some goal conditions. Since the actions are stochastic, an
action, for example, “pick block” may be unsuccessful. If un-
successful, the block slips and is dropped on the table. Since
the relative discrepancy in the values of the outcomes is con-
stant, a constant state independent cost exists. Consider the
setting with unit cost actions that fail with a probability of
0.25. Empirically, regardless of the specific block, the state
independent cost for this action is constant and our experi-
mental results match the value of 1.33 obtained using Equa-
tion 4. Identifying domains and actions that have this property
would alleviate pre-processing and help exploit the hidden
structure in the given domain.

Thus, a good approximation can considerably improve the
solution quality of an ACARM without affecting the planning
time, as learning the costs is a pre-processing step.

5 Complementary benefits of the approaches

In this section, we discuss the complementary benefits of us-
ing a portfolio of reduced models and cost adjustments in for-
mulating a safe reduced model. Specifically, we focus on two
key aspects: (i) how the cost adjustments act as a heuristic
for model selector in a PRM; and (ii) the benefits of using
cost adjusted actions in a PRM. For the sake of clarity and
simplicity, we discuss these in the context of 0/1 RM with a
portfolio consisting of the most likely outcome determiniza-
tion and the full model. However, the extension to a richer
portfolio is straightforward.

5.1 Model selection guided by cost adjustments

Typically, ignoring states with higher expected costs of reach-
ing the goal in the reduced model results in higher cost ad-
justment value. Ignoring such outcomes in the reduced model
results in an optimistic view of the problem. Since the cost
adjustment value reflects the criticality of a state for goal
reachability, it can be used as a heuristic for the model se-
lector in a portfolio of reduced models. For example, a @/,

can be designed such that it employs the full model in the
states with high cost adjustment values, and determinization
in other states.

By altering the cost adjustment threshold at which the full
model is triggered, reduced models with different levels of
sensitivity to risks may be produced. This also produces re-
duced models with possibly different levels of computational
gains and solution quality, due to the difference in fraction of
full model usage in the reduced model.

5.2 Cost Adjusted Actions in a PRM

To understand the need for combining a PRM with cost ad-
justed actions, we discuss the drawbacks in formulating a safe
reduced model with each approach independently.

In a 0/1 RM, the model selector would aim to minimize the
use of full model to reduce the planning time, by employ-
ing a full model at critical states, and determinization other-
wise. The states using the most likely outcome determiniza-
tion may affect the solution quality in the following ways.
First, it is possible that the most likely outcome determiniza-
tion in some states could prevent the planner from reaching
or expanding these critical states in the search phase. Second,
the optimal policy in the states with the full model cannot
compensate for the poor solutions produced by states using
the most likely outcome determinization. Because of these
two reasons, a 0/1 RM may still result in poor solution qual-
ity despite using the full model sparingly in critical states.

The primary motivation for using approximate costs is that
calculating the exact cost adjustments without solving the
problem is non-trivial. Since the feature-based approximate
costs do not guarantee bounded performance, using a cost
adjusted determinization alone does not guarantee optimal
or near-optimal solutions. However, future advancements in
techniques that compute the cost adjustment without solving
the problem or compute approximate cost adjustments with
bounded errors may be leveraged to produce safe reduced
models without using a portfolio. With the current machin-
ery, a cost adjusted determinization alone may be insufficient
to formulate a safe reduced model.

These illustrate the need for augmenting a 0/1 RM with
cost adjusted actions. Our experiments show that using a
0/1 RM with cost adjustment both as a heuristic for a model
selector and to adjust the costs of the actions in states using
determinization produces safe reduced models that yield al-
most optimal results.

6 Experimental Results

We experiment with the approximately cost adjusted
0/1IRM (ACARM-0/1 RM) on three domains including an
electric vehicle charging problem using real world data from
a university campus, and two benchmark planning problems:
racetrack domain and sailing domain. The aim of these ex-
periments is to demonstrate that planning using a portfolio of
reduced models with cost adjustments improves the solution
quality without compromising the runtime gains. Therefore,
we experiment with a 0/ RM and a simple portfolio Z =
{most likely outcome determinization (MLOD), full model}.
We compare the results of ACARM-0/1 RM with the results
obtained by solving:



e a 0/1 RM of the problem using the cost adjustment val-
ues as a heuristic for model selector;

e the models formed by using each OSP in the portfolio
independently, that is MLOD and full model only, with
and without cost adjustment; and

e the original problem using FLARES, a state-of-the-
art domain-independent algorithm, with horizon 0 and
1 [Pineda et al., 2017].

We compare our results with that of FLARES as it is short-
sighted labeling based algorithm, which is another popular
approach to solve large SSPs apart from reduced models. We
evaluate the results in terms of plan quality, which is the ex-
pected cost of reaching the goal and planning time. In the
domains used in our experiments, the most likely outcome is
also the most desirable outcome, thus providing an optimistic
baseline for comparison.

The approximate costs are estimated using a feature-based
cost function that uses simple and intuitive state features,
identified by us. Estimating feature-based costs is required
only once per domain and the scalability is preserved as we
limit the size of the sampled problems. These costs are also
used as a heuristic for the model selector in the 0/1 RM.
Note that the 0/1 RM uses the approximate costs only for the
model selector and the costs are unaltered, while an ACARM-
0/1RM uses the feature-based costs for the model selector
and to alter the action costs.

All results are averaged over 100 trials of planning and exe-
cution simulations and the average times include re-planning
time. Standard errors are reported for expected cost. The de-
terministic problems are solved using the A* algorithm [Hart
et al., 1968], and other problems using LAO*, and com-
plemented by re-planning. All algorithms were implemented
with e=10"" and using h,,;, heuristic computed using a la-
beled version of LRTA* [Korf, 1990].

6.1 EV Charging Problem

We experimented with the electric vehicle (EV) charging do-
main, operating in a vehicle-to-grid setting [Saisubramanian
et al., 2017], where the EV can charge and discharge energy
from a smart grid. By planning when to buy or sell electricity,
an EV can devise a robust policy for charging and discharging
that is consistent with the owner’s preferences, while mini-
mizing the long-term operational cost of the vehicle.

We modified the problem to increase the difficulty such that
parking duration of the EV is uncertain and is denoted by a
distribution, indicating that certain states could become a ter-
minal state with some probability. Therefore, the maximum
parking duration is the horizon, . Each state is represented
by (l,t,d, p,e), where [ is the current charge level, t < H is
the time step, d and p denote the current demand level and
price distribution for electricity respectively, and 0 < e < 3
denotes the departure communication from the owner. If the
owner has not communicated, then e =3 and the agent plans
for H. Otherwise, e denotes the time steps remaining for de-
parture. The process terminates when ¢ = H or if e=0.

We experimented with four demand levels, and two price
distributions. Each ¢ is equivalent to 30 minutes in real time.
We assume that the owner is most likely to depart between

four to six hours of parking with communication probability
as 0.2. For all other ¢, the owner communicates with proba-
bility 0.05. The charging costs and the peak hours are based
on real data [Eversource, 2017]. The battery capacity and the
charge speeds for the EV are based on Nissan Leaf configura-
tion. We assume the charge and discharge speeds to be equal.
The battery inefficiency is accounted for by adding a 15%
penalty on the costs. The feature-based costs are estimated
using state features and one-step lookahead. The features in-
clude the time remaining for departure, if the current time
is peak or not, and if the current charge level is sufficient to
discharge. For all states with highest feature-based costs in
this domain, the model selector uses a full model. In all other
states, MLOD is used. In our experiments, we observe that
this results in using MLOD until one hour from departure,
and then a full model is triggered.

EV Dataset The data used in our experiments consist of
charging schedules of electric cars over a four month dura-
tion in 2017 from the UMass Amherst campus. The data is
clustered based on the entry and exit charges, and we selected
25 problem instances across all clusters for our experiments,
based on frequency of occurrence in the dataset. The data is
from a typical charging station, where the EV is unplugged
once the desired charge level is reached. Since we are con-
sidering an extended parking scenario (e.g., parking at work),
we assume a parking duration of up to eight hours. Therefore,
for each problem instance, we only alter the parking duration
and retain the charge levels and entry time from the dataset.

6.2 Racetrack Domain

We experimented with four problem instances from the race-
track domain [Barto et al., 1995], with modifications to in-
crease the difficulty of the problem. We modified the problem
such that, in addition to a 0.10 probability of slipping, there
is a 0.20 probability of randomly changing the intended ac-
celeration by one unit. The feature-based costs use one-step
lookahead and state features such as: whether the successor is
a wall or pothole or goal, and if the successor is moving away
from goal, which can be estimated using heuristic value. The
feature-based costs serve as a heuristic for the model selector.
For states with highest cost adjustments, a full model is used.
Otherwise, determinization is used.

6.3 Sailing Domain

Finally, we present results on six instances of the sailing do-
main [Kocsis and Szepesvari, 2006]. The problems vary in
terms of grid size and the goal position (opposite corner (C) or
middle (M) of the grid). In this domain, the actions are deter-
ministic and uncertainty in the domain is caused by stochas-
tic changes in the direction of the wind. Each action’s cost
depends on the direction of movement and direction of the
wind. The feature-based costs are estimated using one-step
lookahead and based on state features such as: the difference
between the action’s intended direction of movement and the
wind’s direction, and if the successor is moving away from
goal, which can be estimated using heuristic value. The model
selector uses the full model in all states with the highest cost
adjustment in this domain. In all other states, MLOD is used.
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6.4 Discussion

Figures 1(a), 1(b), and 1(c) show the average differences in
cost (%) of the six techniques on the three domains. For the
EV domain, the results are aggregated over 25 problem in-
stances for each reward function. The lower values indicate
that the performance of the technique is closer to the optimal
value. In many problems, 0/1 RM and ACARM-0/1 RM yield
almost optimal results.

Table 1 shows the full model usage (%) in the 0/1 RM
using cost adjustment as heuristic for model selector. For
most problem instances, we achieve near-optimal solutions
by sparingly using the full model. However, for the sailing
domain, many states have a high cost adjustment value since
the costs of actions depend on the direction of the wind. Since
we use the full model in states with highest cost adjustments
in the domain, the fraction of full model usage is relatively
high in this domain. By altering the cost adjustment thresh-
old at which the full model is triggered, the full model usage
may be reduced, although it affected the plan quality in our
initial experiments.

Figures 2(a), 2(b), and 2(c) show the average runtime sav-
ings (%) of the techniques in each domain. The higher values
indicate improved runtime gains by using the model. Note
that these estimates include the time taken for re-planning.
The runtime of ACARM-0/1 RM is at least 20% faster than
solving the original problem, except in EV RF-1 and RF-2.

In some problem instances, the runtime of ACARM-0/1 RM
is comparable to that of MLOD and FLARES. This is pri-
marily due to better solution quality that requires fewer re-
planning. Again, the objective of our approach is not to im-

Problem % Full Model
EV-RF-1 2.685
EV-RF-2 2.750
EV-RF-3 3.764
EV-RF-4 3.505
Racetrack-Square-4 0.071
Racetrack-Square-5 0.034
Racetrack-Ring-5 1.859
Racetrack-Ring-6 0.327
Sailing-20(C) 37.414
Sailing-40(C) 37.478
Sailing-80(C) 37.495
Sailing-20(M) 37.414
Sailing-40(M) 37.478
Sailing-80(M) 37.495

Table 1: % Full model usage in 0/1 RM using cost adjustment
as heuristic for model selector.



prove runtime, but to improve the solution quality without
compromising the runtime gains of using a reduced model.
Our results indicate that ACARM-0/1 RM with a good model
selector and cost estimation can achieve near-optimal perfor-
mance without significantly affecting the planning time.

We solve 0/1 RM and ACARM-0/1 RM using an optimal
algorithm, LAO*, to demonstrate the effectiveness of our
framework by comparing the optimal solutions of the mod-
els. Since the 0/1 RM and ACARM-0/1 RM are still SSPs,
in practice, any SSP solver (optimal or not) may be used. In
our experiments, we use a simple model selector that is intu-
itive, and uses the cost adjustments as heuristic. We use the
full model in states with the highest cost adjustments in each
domain, since it denotes states which could significantly af-
fect the expected cost of reaching the goal. Automating the
model selector would benefit the approach, and this requires
faster techniques to identify and evaluate relevant outcome
selection principles for the domain, which are currently open
challenges. The aim of this paper is to demonstrate the poten-
tial of out frameworks in improving solution quality and to
identify important open questions.

7 Related Work

The Stochastic Shortest Path (SSP) [Bertsekas and Tsitsiklis,
1991] is a widely-used model for sequential decision making
in stochastic environments, for which numerous planning al-
gorithms have been developed. Among the different reduced
model techniques for SSPs, determinization has attracted sig-
nificant interest because it greatly simplifies the problem and
can solve large MDPs much faster. Interest in determiniza-
tion increased after the success of FF-Replan [Yoon et al.,
2007], which won the 2004 IPPC using the Fast Forward (FF)
technique to generate deterministic plans [Hoffmann, 2001].
Following the success of FF-Replan, researchers have pro-
posed various methods to improve determinization [Kolobov
et al., 2009; Yoon et al., 2010; Keller and Eyerich, 2011;
Keyder and Geffner, 2008; Issakkimuthu et al., 2015]. How-
ever, determinization-based algorithms may produce plans
that are arbitrarily worse than the optimal plan because they
consider each outcome of an action in isolation. The M, lk re-
duced model generalizes the single outcome determinization
by considering a set of primary outcomes (/) and a set of
exceptions (k) per action that are fully accounted for in the
reduced model [Pineda and Zilberstein, 2014]. It has shown
to accelerate planning time considerably compared to solv-
ing the problem optimally, while improving solution quality
compared to determinization. However, it is hard to identify
a priori which M} reduction is best for a problem.

Despite the success of existing reduced model techniques
in improving the runtime, they cannot be applied to many
large real-world problems in which ignoring probabilistic
outcomes can introduce considerable risks, such as wildfire
response and semi-autonomous driving [Hajian et al., 2016;
Wray et al., 2016]. A major drawback of the existing tech-
niques is the lack of a mechanism to identify risky outcomes
in the original problem and account for them in the reduced
model, which is required to produce high-quality plans.

A further benefit of our approach is the use of a portfo-

lio of reduced models that offers additional flexibility. Since
model fidelity affects both runtime and solution quality, it
makes it possible to design contract anytime algorithms [Zil-
berstein, 1996] for SSPs, which allow solution quality to de-
grade gracefully with runtime. The approach could therefore
provide multiple methods for solving a given SSP that can be
used within the progressive processing framework [Mouad-
dib and Zilberstein, 1998].

The importance of accounting for risks in Al systems is at-
tracting growing attention [Cserna et al., 2018; Zilberstein,
2015; Kulié¢ and Croft, 2005]. However, safety in reduced
model formulations has not been explored. We propose tech-
niques to formulate a safe reduced model for stochastic plan-
ning. We achieve this by switching between different out-
come selection principles and adjusting the costs of actions.

8 Conclusion and Future Work

Reduced models have become a popular approach to quickly
solve large SSPs. However, the existing techniques are obliv-
ious to the risky outcomes in the original problem when for-
mulating a reduced model. We propose two general methods
that help create safe reduced models of large SSPs. First, we
propose planning using a portfolio of reduced models that
provides flexibility in outcome selection. Secondly, we intro-
duce reduced models with cost adjustments, a technique that
accounts for ignored outcomes in the reduced model. Since
computing the exact cost adjustment requires the optimal val-
ues of the states, we propose approximate techniques for cost
estimation and also provide conditions under which state in-
dependent costs result in optimal action selection. We then
describe how cost adjustment can be used as a heuristic for
model selector in PRMs. Our empirical results demonstrate
the promise of this framework as cost adjustments in a basic
instantiation of a PRM offer improvements; ACARM-0/1 RM
yields near-optimal solutions in most problem instances. Our
results contribute to a better understanding of how disparate
reduce model techniques relate to each other and could be
used together to leverage their complementary benefits.

The 0/1 RM represents an initial exploration of a broad
spectrum of PRMs. There are a number of improvements that
could add value to our approach. First, we aim to devise on-
line learning mechanisms for the cost estimation to avoid the
preprocessing phase. Secondly, we aim to identify other no-
tions of safety in reduced models. Finally, we are working
on practical methods for automatically devising good model
selectors beyond the cost adjustment heuristic. This involves
developing improved metrics and techniques for evaluating
outcome selection principles.
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