
Myopic and Non-Myopic Communication Under
Partial Observability

Alan Carlin and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003, USA

acarlin@cs.umass.edu, shlomo@cs.umass.edu

Abstract—In decentralized settings with partial observability,
agents can often benefit from communicating, but communication
resources may be limited and costly. Current approaches tend
to dismiss or underestimate this cost, resulting in overcommu-
nication. This paper presents a general framework to compute
the value of communicating from each agent’s local perspective,
by comparing the expected reward with and without communi-
cation. In order to obtain these expectations, each agent must
reason about the state and belief states of the other agents,
both before and after communication. We show how this can
be done in the context of decentralized POMDPs and discuss
ways to mitigate a common myopic assumption, where agents
tend to overcommunicate because they overlook the possibility
that communication can be deferred or initiated by the other
agents. The paper presents a theoretical framework to precisely
quantify the value of communication and an effective algorithm
to manage communication. Experimental results show that our
approach performs well compared to other techniques suggested
in the literature.

I. INTRODUCTION

In multiagent settings, each agent is faced with three types
of uncertainty. The first is uncertainty about the effects of
its actions. This uncertainty is often addressed using the
Markov Decision Process (MDP). The agent’s world consists
of states, and the agent’s actions have probabilistic outcomes
that change the state. The agent can receive a reward for
entering a desirable state. The second type of uncertainty is
about the state that the agent is in. This uncertainty can be
addressed by adding observations to the model. The agent can
reason about its state by combining its knowledge about state
transitions with knowledge of its past actions and observations.
The third type of uncertainty is about the state that the
other agents are in and the future actions that they will take,
while accounting for the fact that the other agents perform
similar reasoning. In this paper, we consider the Dec-POMDP
(Decentralized Partially Observable MDP) model [2], and how
this third type of uncertainty manifests itself within a Dec-
POMDP.

One way to alleviate the latter type of uncertainty is to
communicate with the other agents. In fact, it would usually
be unrealistic to assume that agents do not communicate in a
cooperative setting. But assuming ubiquitous communication

is unrealistic for two reasons. First, trivially, if communication
were ubiquitous, then in fact the problem could be solved and
executed by one centralized agent, removing a key feature of
multiagent systems. Second, in the real world communication
is often not ubiquitous. Agents may be separated by distance,
or the bandwidth between them may be limited, or they may
operate in a low power environment where energy must be
conserved. A common approach to factor this into the model
is to assign communication a negative reward or cost.

In this paper, we will use the sync model of communication
[14]. That is, when one agent decides to communicate, the
result will be that all agents mutually exchange all available
information. Because we assume that agents can synchronize
in this manner, the paper studies the question of when to
communicate. There is a rich, separate branch of the literature
that studies what to communicate as well [10].

The paper proceeds as follows. First we discuss previous
work on communication. Then we discuss the specific model
that we use to produce communication decisions. An algorithm
is developed that converts the complicated multiagent domain
into a Hidden Markov Model in order to estimate the state of
the other agents. The algorithm is expanded so that each agent
can account for the communication policies of the other agents
as well as their states. Finally, we show that the resulting
planner performs well empirically.

II. RELATED WORK

The literature on communication algorithms can be divided
into works that start with a centralized plan and those that
do not. In the former group, agents generate a centralized
policy at planning time, and then at execution time they
communicate to enforce execution of the centralized plan.
Xuan et al. consider the view of a “monitoring agent” whose
knowledge consists only of jointly observable information
since the last synchronization time [14]. Agents communicate
whenever the monitoring agent notices ambiguity in what an
agent should plan next. Roth et al. use the tell model of
communication instead of the sync model [9]. Each agent uses
its local history and the QPOMDP heuristic to reason about the
joint action that should be taken. The history is also used to
reason about communication.



Other works do not start with a centralized policy. Nair et al.
introduce the Communicative DP-JESP (Dynamic Programing
Joint Equilibrium-Based Search for Policies) technique, which
integrates a communication strategy into K-step pieces of the
JESP algorithm and finds a Nash equilibrium of policies for
multiple agents [6]. In order to keep the algorithm tractable,
the authors enforce a rule that communication must occur at
least every K steps.

Some recent work explores the concept of delayed commu-
nication. Spaan et al. find the best domain-level policy given
that communication delays are stochastically possible [8].

The above approaches do not explicitly represent any
cost to communicating. Overcommunicating is thought to
be undesirable, either out of general principle, or because
it can add to planning time. Williamson et al. compute an
explicit reward for communicating [13]. They introduce the
dec POMDP Valued Com model, which includes a commu-
nication reward function. Reward for communicating is based
on the KL Divergence in the agents’ belief states.

The approach most similar to ours has been developed by
Becker et al. [1]. Communication incurs a negative reward,
determined by the domain. Each agent determines the Value
of Communication (VoC), which is the difference between the
expected value of future policies with and without commu-
nication. However, the technique assumes that the world has
joint full observability, that each agent fully observes its own
local state, and furthermore that the other agents cannot affect
its transitions or observations. The only interaction between
the agents is via the joint reward function. The resulting
problem is “only” NP-Complete [4], as the elimination of
observations means that each agent only needs to reason
about the global state, and not the belief states or observation
histories of the other agents. In this paper, we will use a
similar methodology to solve instances of the more compli-
cated Dec-POMDP model, where each agent receives partial
observations, and the agents are not transition or observation
independent. Computing the value of communication in this
more general context is substantially more complicated and is
one of the key contributions of this paper.

We retain the sync model of communication, as we will see
in the next section. Other models of communication include
the Dec-POMDP-Comm [3] and Comm-MTDP [7]. In both
of these models, which are equivalent to each other under an
assumption of perfect recall, agents are able to select from an
alphabet of messages, and messages have unique costs.

III. DEC-POMDP MODEL

A Dec-POMDP is a Decentralized Partially Observable
Markov Decision Process with Communication [3]. It is de-
fined by the following components:

• A set of agents numbered 1..n
• S, the set of domain states.
• b0 ∈ ∆S, the initial belief state distribution.
• A = ×iAi ,the set of joint actions, where Ai is the set

of actions available to agent i. At each time step, agents

take one joint action a = 〈a1, .., an〉.
• T , the transition model: T (s′|s,a) is the probability of

transitioning to state s′ given the previous state was s and
joint action a was taken by the agents.

• R, the reward function: R(s,a) is the immediate reward
for taking joint action a in state s.

• Ω1..Ωn, the sets of observations possible for each agent.
Each agent i receives only its own observation oi ∈ Ωi

at each timestep. The vector of received observations is
o = 〈o1, .., on〉.

• O, the observation function. It specifies joint observation
probability O(o|s′, a1..an), the joint probability that ev-
ery agent i sees corresponding observation oi after the
agents took joint action a causing a state transition to s′.

• H , the horizon, or number of steps, in the problem.

We add communication to the model. Each agent has the
option to initiate communication before taking an action. We
restrict this paper to the sync communication model, so the
communication language simply allows transmission of the
agents’ action/observation histories before each action. Com-
munication is instantaneous, a message is received without
delay as soon as it is sent. We also include C, a fixed cost on
each step of communicating these synchronization messages.
The fixed cost of C is incurred if any number of agents choose
to communicate. Otherwise, if no agent communicates, they
incur no penalty. This problem is NEXP-hard. Indeed, when
communication is prohibitively expensive, the model becomes
a Dec-POMDP with no communication.

Since the problem has a finite horizon H , we can use a
policy tree to represent a non-communicative policy of an
agent. In the policy tree representation, nodes represent actions
and branches represent observations. Each agent i follows its
own policy tree generated at the last synchronization step,
referred to as π0

i with its first action corresponding to the root
at time t = 0, and its last action corresponding to the leaves.
π0

i contains a number of subpolicies, each corresponding to
an observation sequence as the tree is traversed. We refer to
an observation sequence as ō and the resulting subpolicy as
πi(ō). Note that if we know an agent’s initial policy and its
sequence history of observations, we can derive its sequence of
actions. Furthermore, the next sections will show that the local
history of an agent can be combined with Bayesian reasoning
on the Dec-POMDP model and the initial policies of the other
agents to form a belief about the histories of other agents. To
summarize, each node of an agent’s policy tree maps to:

• A unique action/observation sequence ōi

• A future local subpolicy rooted at the node πi(ōi)
• A belief about the global S as well as the ac-

tion/observation histories of the other agents.

We will use these mappings throughout the paper. Unless
stated otherwise we will also assume some housekeeping on
the part of the algorithms that we describe, that knowledge of
πi(ōi) implies knowledge of ōi.



Let b(s) be a belief state, and let q be a variable representing
a successor state. Let ai and a−i be the root actions of policies
〈πi, π−i〉. Standard theory on Dec-POMDPs says that the
value of a joint policy tree, 〈πi, π−i〉 at a given belief state
is recursively defined as the expected sum of the rewards of
the subpolicy trees. That is:

V (〈πi, π−i〉, b) =
∑

s,q,oi,o−i

[
b(s)T (q|s, ai, a−i)

O(oi, o−i|q, ai, a−i)V (〈πi(oi), π−i(o−i)〉, q)
]

The above equation says that the value of the joint policy at
b0 can be decomposed into cases where the root actions result
in a transition to state q, resulting in observations oi and o−i.
The base case of the recursion occurs at the last step of a
finite horizon problem, where value simply corresponds to the
reward R(s, ai, a−i) of the last actions taken.

IV. SOLUTION METHOD

In our method, plans and communication strategies are
determined offline and stored for use at runtime. The planner
starts by precomputing optimal joint policies without com-
munication. Any non-communicative planner which generates
policy trees can be used for this step. It also precomputes
non-communicative joint policies for various reachable belief
states of horizons 1...T (more details on this are in the next
section), and stores these policies and their value in a cache.
It uses these to construct a cache function for reachable belief
distributions on the global state, and at runtime the cache will
be accessed by each agent through a function call:

CACHEi(b(S), h)→ 〈π∗i (b(S)), π∗−i(b(S))〉

where i is the identity of the local agent accessing the cache,
b(S) is the belief state it wants to query, h is the depth of
the policy and π∗ represents that the policy is specific to that
belief state. It also optionally stores a mapping of some or
all observation sequences to communications decisions (if
these are not stored, they could be recomputed by the agent
at execution time).

〈b(S), ōi〉 → {true, false}

where ōi is a vector composed of the observations agent i has
made on prior steps. At execution time, each agent follows its
policy and its communications policy. Upon communication,
it retrieves the appropriate policy from the cache for the
discovered belief state. We note trivially that if agents’ policies
are known to each other, then a joint observation sequence
〈ōi, ō−i〉 also determines a unique action history, and a unique
b(S) can be constructed by starting at the initial belief state
and performing a forward computation as in a POMDP.

Before each action, each agent must decide whether to com-
municate. To do this, it uses the Value of Communication. Let
P (q, ō−i|ōi, 〈πi, π−i〉, b0) represent the probability of reaching
state q while the other agents receive observations ō−i after |ōi|
steps, given a starting belief state b0 with policies 〈πi, π−i〉,

and local observations ōi. (The computation of this probability
will be deferred to the next section). Let 〈πi, π−i〉 be the joint
policy before communication and 〈π∗i (bh), π∗−i(bh)〉 be the
joint policy that results from communication and discovery
of joint belief state bh.

Definition 1: The Value of Communication (VoC) is the
difference between the expected value when communicating
and the expected value for remaining silent.

V oC(ōi, 〈πi, π−i〉, b0) =
∑

q

∑
ō−i

Pq,ō−i(V
∗ − C − V )

where

Pq,ō−i = P (q, ō−i|ōi, 〈πi, π−i〉, b0)

V ∗ = V ∗(〈π∗i (bh), π∗−i(bh)〉, q, t)
V = V (〈πi(ōi), π−i(ō−i)〉, q, t)

bh is the belief distribution at time h given 〈oi, o−i〉 and b0.

To understand the above definition, consider the perspective
of agent i. It has synchronized with the other agents and
determined that they synchronized in belief state b0, it knows
that the other agents have been following policies π−i since
then, and that it has observed ōi since synchronization. In
order to contemplate the value of remaining silent, it must
consider the joint probability that the other agents’ have
observed ō−i, and that the real current state is q. If this is the
case, it knows that the agents will continue along subpolicies
〈πi(ōi), π−i(ō−i)〉, and the value of staying silent is simply
the value of the joint subpolicy from state q. If the agents
do communicate, they will combine observations to form a
new joint belief state bh, and they will follow a new joint
policy for the belief state, 〈π∗i (bh), π∗j (bh)〉. The new joint
belief state does not affect the fact that the true state is q, and
so it computes the value of the new joint policy for q.

For example, consider the well-known multiagent Tiger
problem [5]. In this problem, agents take a joint action of
opening either the right or the left door, or they listen for
the tiger. If both agents choose to listen, each agent will then
receive its own observation with some defined probability of
error, and because of this probability of error it is possible that
both agents will not receive the same observation. Consider the
perspective of an agent after it has listened and observed Tiger-
Left. In order to evaluate the value of communicating, the
agent must consider each scenario that occurs after communi-
cation, one of which is the chance that the other agent has also
observed Tiger-Left, that they use the combined observations
to open the door on the right, but that the true state was Tiger-
Right, resulting in a large penalty. Although the possibility of
this happening is small, it will motivate communication if the
penalty is large enough.

A. Estimating the Joint History

We now explain how P (q, ō−i|ōi, 〈πi, π−i〉, b0) is com-
puted. There are three sources of difficulty in this compu-
tation: (1) the local agent’s history of actions has affected



Algorithm 1: Find SSTs for other agents at current step
input : Synchronized Belief State b, Nonlocal Policies Q−i,

Local Observation History ōi, Local Action History
āi, steps

output : An array of SSTs, each containing the true state, the
remaining policies of the other agents, and a
probability

begin
D, E ← arrays of StateSubTrees, initialized to empty
for i = 1 to |S| do

D[i]← 〈i, Q−i, b(i), false〉
for step = 1 to steps do

E ← empty
for i = 1 to |D| do

ā−i ← the root actions of D[i].tree
ai ← āi[step]
oi ← ōi[step]
for s′ = 1 to |S| do

for o−i = 1 to |Ω−i| do
SST ← new SST
α← (D[i].p)T (s, ai, a−i, s

′)
O(s, ai, a−i, oi, o−i, s

′)
if nonmyopic then

Lookup SST.comm
if SST.comm == true then

prune SST

SST.s = s′

SST.p = α
SST .Q = D[i].Q.subTrees[o−i]
Add SST to E

Merge SSTs with equivalent subpolicies
Prune SSTs with p < threshold from E
Normalize each SST.p in E
D ← E

return D
end

the transition matrix of the global state; (2) the other agents
have adjusted their actions based on their observation history,
not the true state; and (3) each local agent only holds its
own observations, not necessarily the observations of the other
agents.

Definition 2: Let a State SubTree (SST), be a tuple
〈s,Q, p, comm〉, where s is a state, Q is a finite-horizon policy,
p is a probability, and comm is a boolean.

Algorithm 1 shows how P (ō−i, q|ōi, 〈πi, π−i〉, b0) is esti-
mated. The algorithm takes as input initial belief state b0, the
action and observation histories of the current agent i, and the
known policies of the other agents at b0. It outputs a set of
SSTs at the current time step, each SST assigns a probability
to one world state, composed of the actual state and the current
policy of the other agents. SSTs are computed in a forward
fashion. The set of SSTs is initialized to contain one element
for each nonzero entry in b0, with its p being its probability in
b0, and its Q being the initial policies of the other agents. At
each time step, the current set of SSTs are used to generate
a new set. Each SST in the new set represents a joint action

taken by the other agents, a joint observation received, and a
global state transition from an old SST, resulting in the new
SST’s state and subpolicy. The forward probability α is the
probability of the old SST times the probability that the other
agents made this transition, given the local agent’s knowledge
of its own action and observation on that step.

We also take the opportunity to merge SSTs with the same
subpolicy. That is, if two observation histories of the other
agent lead to the same subpolicy, there is no need to distinguish
the two cases. Formally, if there are two SSTs:

〈s,Q, p1, comm〉 and 〈s,Q, p2, comm〉,

they can be merged into a single SST:

〈s,Q, p1 + p2, comm〉.

This can be particularly useful in practice, if the non-
communicative plans were built by an algorithm such as
IMBDP [12], which builds plans where only a limited set of
subpolicies are generated, and different observations lead to
the same subpolicy.

There are other augmentations that can be made to Algo-
rithm 1 which are not explored in this work. (1) The cache
can be smaller and only contain likely decision points. At run-
time, when a non-cached state is encountered, the agent can
either initiate an online computation, or it can use the joint-
policy from the least (Manhattan) distant cached belief-state.
(2) SSTs can be generated by sampling from agent histories,
rather than direct computation.

Theorem 1: The problem of estimating M.p has an equiv-
alent Hidden Markov Model (HMM) representation. Further-
more, the algorithm is correct. That is, suppose agent i calls
Algorithm 1 with threshold 0 at time t after observing ōi,
and the algorithm returns a set Z of SSTs. Then ∀M ∈ Z, if
M = 〈s,Q, p, comm〉, then p is the probability that the global
state is s and the other agents’ policies on this step are Q at
time t.

Proof: We can convert the problem of estimating M.p
into an HMM, and then solve using the forward-backward
algorithm [11]. Each state of the HMM corresponds to a global
state and an observation history of the other agents (we use
the fact that each joint observation history maps to a specific
joint subpolicy such as Q). State transition probabilities of
the HMM correspond to state transition probabilities of the
Dec-POMDP, given the local agent’s action histories, times
the probability of making the last observation. The transition
probability is zero if the new observation history can not
follow from the old. That is, a state with an observation history
w1w2 can not transition to a state with an observation history
w2w2w3, but it can transition to a state with observation
history w1w2w3.

Given this transition model, it is clear through induction
(with the base case consisting merely of S when Algorithm
1 is initialized) that the forward computation used to generate
the leaves in the last step of Algorithm 1 are the same as the



steps used to generate the corresponding states in the Hidden
Markov Model.

We note that this proof of Algorithm 1 is similar in spirit
to proofs of algorithms in the literature such as JESP-belief,
with the addition of the SST data structure that allows it to
reason more precisely and formally over this belief space, as
well as some nuances such as the merging operation described
above. However, we are unaware of an equivalency proof to
an HMM in the literature, and we are hopeful that such an
equivalency can be used in future work to leverage the rich
HMM literature in Decentralized POMDPs.

Proposition 1: Assume the agents synchronize at belief
state b0 and form policies 〈πi, π−i〉, and the cost of commu-
nication is C. Assume a myopic perspective (the local agent
may communicate only once, and the other agent can not
communicate at all). The error introduced when agent i makes
a single communication decision after observation sequence ōi

is at most:
P (ōi|〈πi, π−i〉, b0) · C

Proof: Assuming Theorem 1, if an agent computes its
expectation of communication and decides not to communi-
cate, it can never be wrong in the expected case. However, if
it decides to communicate, it may be making an error. Since
V ∗ ≥ V , that is, the policy after communication is always at
least as good as the one before, the error on this case bounded
by C, and weighing by the probability of encountering the case
in the first place, we have P (ōi|〈πi, π−i〉, b0) · C. Note that
we are only considering the single communication decision;
not possibilities that involve multiple future communication
actions. This analysis is considerably more complex and will
be handled in future work.

The communication may not be necessary, as there are cases
where (1) the other agent may initiate communication in all
of the necessary states, or (2) communication can be deferred
to a future step when more information is known.

Note that the number of SSTs can grow exponentially in
each step, in the worst case. In practice, however, the number
only grows with reachable belief states, and often on real-
world problems only a small number of observations will be
possible on each step. In order to keep the algorithm tractable,
the algorithm can optionally prune SSTs with low probabilities
at each step.

V. NON-MYOPIC REASONING

Algorithm 1 does not take into account the communication
policy of the other agents, nor does it take into account the fact
that communication need not be immediate, it may be deferred
to future steps. In this section, we discuss how we improve the
algorithm past this myopic assumption. The algorithm can be
improved in three ways, first by using the fact that other agents
did not communicate since the last sync, second by using the
fact that other agents can communicate in the present, and

finally by using the fact that communication can be deferred
to the future.

A. Other agents in the past

We can use the knowledge that the other agents have not
communicated since the last synchronized state. To do this, we
use the comm field in the SST structure. At planning time, each
agent computes VoC given its possible observation sequences
and synchronized belief states. If VoC is positive, it sets comm
to true. The comm value is stored for this history.

As Algorithm 1 is executed, each SST represents one
possible observation history of this agent, and its children
represent a continuation of that history. If the comm field is
set to true for a corresponding observation history, this means
that the agents would have communicated at this point. But
any agent executing Algorithm 1 knows that didn’t happen,
since the algorithm initialized at the last communication point.
Therefore it is known that the observation histories represented
by such an SST never occurred, and the SST can be pruned.

(As an aside, the algorithm only generates accurate prob-
abilities for SSTs in the current step. SST probabilities from
previous steps do not necessarily reflect the probabilities of
those histories. This is due to the nature of the forward-
backward algorithm. In the last step, only a forward computa-
tion is necessary, such as that provided in the algorithm. For
past steps, however, backwards information from subsequent
steps would be necessary. Let this backwards probability be
β, and define it to be the probability that an SST’s policy
Q was executed from its state s given future observations.
Finding β can be computationally complex, as each leaf of Q
must be evaluated. Therefore in implementation we limit the
analysis of Q to the next h steps, and only computing βh. For
instance define β1 for an SST with state s′ and whose policy
Q corresponds to an observation history ō−i to be:

β1 ←
∑
s′′

∑
ō′′∈O′′

T (s′′|a, s′)O(ō′′|a, s′′)

where a is a joint action composed of the known local action
for that step as well as the root action for each other agents’
policies in the SST, and O′′ is the set of joint observations
which must include the known observation from the local
agent’s history.)

B. Non-myopia with respect to other agents

Having modeled the communication strategy of the other
agent on past steps, we turn to modeling the present step.
To do this, we construct a matrix. For the two agent case,
each row of the matrix corresponds to the SSTs for one agent,
and each column corresponds to the SSTs for the other agent
(for the multiagent case, each dimension represents another
agent). Entries in the matrix correspond to the VoC given
the history represented by the corresponding joint history,
multiplied by the probability of that joint history. Each agent
has the ability to communicate or not to communicate given a
history. Communicating after a history corresponds to turning



a row (or column, for the other agent) “on” or “off”. The
value of a joint communication strategy is the sum of the
“on” values in the matrix. The myopic strategy discussed in
above sections corresponds to turning each row or column on if
its entries sum to a positive number. However, this illustrates
the flaw of myopia, it does not maximize the value of the
whole matrix, only its individual rows and columns. Since the
row agent and column agent are not coordinating, they may
double count entries. We improve on this by finding a better
joint strategy. The approach is similar to the one described
in [1], except (1) The rows and columns and probabilities
correspond to observation histories, not states. (2) To reduce
time of computation, agents can only alter K rows, where K
is a parameter specified by the users. The remaining rows are
toggled through myopic computation. As noted in [1], it takes
an exponential amount of time with respect to the matrix size
to find an optimal row/column strategy, but finding a Nash
equilibrium is a reasonable alternative which can be done in
polynomial time. Thus, in our implementation we find a Nash
equilibrium.

An example can be found in Figure 1. Each entry in the
table corresponds to VoC for a single joint history. Using
an agent-myopic strategy, Agent 1 has decided that it should
communicate given the history represented by s2

1, because its
VoC of 2 (the sum of its row) is positive, and Agent 2 has
decided that it should communicate from state s1

2, because
its VoC of 1 is positive. VoC decisions are shown in the
figure as π1c and π2c. In the figure, all joint-histories that
result in communication under a myopic strategy are bolded.
This strategy double counts certain elements in the table
and can result in choosing a communication policy worse
than not communicating at all. The expected value of a joint
communication policy for one step is the sum of all entries
in the table where communication happens. Because we are
using the sync model of communication, an entry is only
counted once, even if both agents initiate communication. This
corresponds to all joint-states where communication happens,
weighted by their probability. In the example, the myopic
policy has a value of −1, computed by summing the bold
entries. The reason for this negative value is because the joint
history in the first column of the second row was counted
twice for determining the policies (once for each policy), but
only once for determining the value of the table. If agent 2
did not communicate in s1 then the value would be 2. Never
communicating (πic = {no, no, no}) will always have a value
of 0.

Creating the table costs no more than the original approach
since each entry represents a reachable joint history. Note
that in problems with structure, or where communication has
occurred on a recent step, the number of reachable joint
histories is limited. For larger problems, though, there will
be a large number of reachable joint histories, and in future
work we plan on reducing the dimensionality of the matrix
while minimizing loss of information. Equilibrium solutions

 
1
2s  

2
2s  

3
2s  π1c 

 

 VoC 
1
1s  -1 0 -1  no  -2 
2
1s  4 -1 -1  yes  2 
3
1s  -2 -1 1  no  -2 

        

π2c yes no no     
        

VoC 1 -2 -1     
 

Fig. 1. A simple table M showing the expected gain in value for
communicating for the two agent case. Each row represents an agent history
for agent 1. The table represents 3 possible histories for each agent, or 9
belief states overall.

to the reduced matrix problem will correspond to reasonable
joint communication policies.

C. Value of deferring communication

The value of deferring communication to the future can be
computed. For a given SST, the value of delay is the reward
achieved by not communicating on the current step, added to
the expected reward after communicating on the next step. The
immediate reward is pR(s,a) and it is added to:

p
∑
s′,o′

T (s′|a, s)O(o′|a, s′)V(〈π∗i (bh+1), π∗−i(bh+1)〉, s′)

where p is the probability associated with the SST, a is the
joint action specified by continuing the current policy of the
local agent and the SST, s is the state in the SST, o′ the next
joint observation, and bh+1 is the belief state that would result
at the next step. V is used to represent the fact that VoC must
be retrieved for the local agent’s observation in o′, and if it
is positive then V = V ∗ and bh+1 is the belief state that
results from communication while if V is negative, V = V
and the joint policy merely continues. To compute the value
of delaying communication, the computation above is summed
for all SSTs returned by algorithm 1. If the sum is greater than
or equal to the value of communicating on the current step,
the agent does not communicate. A new value of delay will be
computed after the next action is executed. Because of this, it
is possible that the decision to postpone communication will
cascade across several steps.

VI. EXPERIMENTS

We considered our algorithm, labeled VoC-NM (Value of
Communication - Non-Myopic), as compared to the algorithms
of No Communication (labeled No-Comm), Full Communica-
tion (communicating on every step), Periodic Communication,
as well as the algorithm of Roth et al. For the Periodic
strategy, we ran an algorithm which communicated every K
steps, and we used results from the best value of K from 1
to the horizon of the problem. Thus, Periodic will provably
outperform No Communication and Full Communication, so



horizon Cost No-Comm Periodic VoC-NM
3 0 5.19 12.5 12.5
3 5 5.19 5.46 7.99
3 10 5.19 5.19 6.03
5 0 4.92 26.2 26.2
5 5 4.92 6.3 9.14
5 10 4.92 4.92 5.62
8 0 9.00 41.8 41.8
8 5 9.00 12.3 24.3
8 10 9.00 9.00 10.6

10 0 9.4 53.2 53.2
10 5 9.4 12.87 22.7
10 10 9.4 9.4 11.9

TABLE I
COMPARISON OF VARIOUS COMMUNICATION STRATEGIES FOR THE TIGER

PROBLEM.

horizon C=0 C=5 C=10 C=15
3 3.0 .44 0 0
5 5.0 1.4 .92 0
8 8.0 1.9 .79 .02
10 10 2.5 .72 0

TABLE II
AVERAGE NUMBER OF COMMUNICATIONS FOR EACH RUN OF THE VoC-NM

STRATEGY ON THE TIGER PROBLEM. EACH ROW REPRESENTS RESULTS
FOR A DIFFERENT HORIZON.

horizon Cost No-Comm Periodic VoC-NM
5 0 59.6 78.7 (4.0) 78.7 (4.0)
5 15 59.6 64.3 (1.0) 64.9 (.89)
5 30 59.6 60.3 (1.0) 64.1 (.80)

TABLE III
COMPARISON OF VARIOUS COMMUNICATION STRATEGIES FOR THE

BOXPUSHING-5 PROBLEM. PARENTHESES SHOW THE MEAN NUMBER OF
COMMUNICATIONS FOR EACH SIMULATION.

we do not separately list results for full communication.
Our algorithm was implemented as follows: we precomputed
values of communication for each agent for reachable histories
at planning time by running a large number of simulations, and
then stored this in a cache. We used a pruning threshold of 0,
thus we did not prune SSTs. We used the IMBDP planner [12]
as the non-communicative submodule for this step. Then we
ran a new 100,000 simulations of the non-myopic algorithm,
referencing this cache on each simulation. Since MBDP-based
planners only store a handful of subpolicies for each horizon
step (using the same subpolicies for various branches of the
larger policy tree), this choice of planners kept the size of the
cache smaller.

Results for the Multiagent Tiger problem [5] on various
horizons are shown in TABLE I. Results show that the VoC-
NM planner was able to successfully communicate for both
lower and higher costs of communication. We also performed
experiments using the planner from Roth et al. [9], which was
available for use with the Tiger domain. Note that this planner
was not constructed with Cost of Communication in mind; it

develops the policies first and then each agent communicates
when it considers the state of the other agent ambiguous.
It also uses the tell model of communication. Thus we do
not present the results side-by-side in the table. Still, it is
interesting to compare [9] as an alternative to VoC-NM. VoC-
NM outperformed the Roth et al. planner on all experiments.
On the horizon 10 problem, VoC-NM outperformed the Roth et
al. planner by 11% and 36% respectively on communications
costs 5 and 10. Naturally, the difference in performance
continues to increase as the cost of communication increases.
We also sought to compare to other works in the literature
by requesting Comm-MTDP [7] and Communicative DP-
JESP [6]. The former is implemented within a framework
which evaluates based on input non-communicative policies
but does not generate the policies themselves, and the latter
was unavailable for experimentation.

Results for the VoC-NM strategy are more closely examined
in Table II. Execution of the VoC-NM strategy was simulated
100,000 times for each cost of communication (C). Each entry
is the mean number of communications for per simulation,
given that cost of communication. For example, the column
C=0 represents a configuration where there was no cost of
communication, and thus the agents communicated at every
step. As expected, the table shows that the expected number
of communications decreases as the cost of communication
increases.

Running time for VoC-NM was 9 seconds for the precom-
putation, and 2 seconds for the 100, 000 simulated runs after
that. We also ran a myopic variant of the VoC planner, it did
not include the algorithm enhancements of Section 4.2. The
result across all tests was an approximately 10% decrease in
score at C equal to 5 or 10.

We also ran the larger BoxPushing problem [12] for horizon
5, a problem in which the value of the generated central-
ized and decentralized plans only differ by 20. Still, results
similarly show that a VoC-NM methodology outperformed the
other strategies because it communicates less, resulting in a
gradual decrease in value as communication cost gets higher.
The time taken for BoxPushing-5 was 4300 seconds at the
planning stage, and then .38 seconds to run each simulation
at execution time.

Across all experiments, a simple communication policy such
as Periodic can be adequate when communication cost is low,
or when communication points can easily be picked from
the domain. As the cost of communication cost gets higher,
and agents are motivated to avoid communication if possible,
the richer VoC-NM approach is required. Even assuming, as
we did, that the best period can be determined, a periodic
communicator is forced to either choose to not communicate
at all, or else to overcommunicate. This was shown as the
VoC-NM approach reduced the amount of communication by
10% on BoxPushing when communication cost was 15, and
by 20% when cost was 30.



VII. CONCLUSION

We have presented a general approach for reasoning about
costly communication within the Dec-POMDP framework.
Computing the value of communication is challenging because
each agent receives different partial observations and must
reason about the observations of the other agent, as well as the
possible synchronized state of the system after communication.
We have shown that computing the value of communication
can be used effectively to determine the utility of communi-
cating versus the utility of staying silent. We have also shown
that there are several myopic assumptions made by a simple
implementation of a value of communication algorithm, and
that these assumptions can be mitigated by accounting for the
communication of other agents as well as the possibility of
future communication. The fact that we have shown that this
can be done under conditions of partial observability represents
an important contribution.

The approach allows each agent to make an exact estimate
of the state of the other agents. We implemented and tested
this capability using several standard benchmark problems.
The results show that our approach uses communication ef-
fectively and outperforms a naive algorithm based on periodic
communication.

One area not explored in this paper is the tradeoff between
building the cache of new policies at planning time, versus
building it at runtime. Our implementation used for experi-
ments generated the full cache at planning time, and always
accounted for all possible observation histories. We do not
claim that this is the best possible implementation, only a sim-
ple one that allows us to characterize an “offline” algorithm.
In future work, it would be interesting to trade accuracy for
speed. This can be done by pruning more improbable belief
state histories for the other agents as the algorithm progresses.
Furthermore, it may be possible to drop the requirement that
the exact value of the post-communication policies be used.
Instead, perhaps a quicker heuristic could be used, such as
the value of the centralized policy. These techniques create
practical, yet disciplined ways to manage communication in
decentralized multiagent systems.
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