
Adaptive Control of Acyclic Progressive Processing Task Structures

Stéphane Cardon Abdel-Illah Mouaddib Shlomo Zilberstein Richard Washington
CRIL-IUT de Lens-Université d’Artois Computer Science Dept NASA Ames Research Ctr

Rue de l’université, S.P. 16 University of Massachusetts MS 269-2 Moffet Field
62307 Lens Cedex France Amherst, MA 01003 USA CA 94035, USA�

cardon, mouaddib � @cril.univ-artois.fr zilberstein@cs.umass.edu rwashington@arc.nasa.gov

Abstract

The progressive processing model allows a system
to trade off resource consumption against the qual-
ity of the outcome by mapping each activity to a
graph of potential solution methods. In the past,
only semi-linear graphs have been used. We ex-
amine the application of the model to control the
operation of an autonomous rover which operates
under tight resource constraints. The task structure
is generalized to directed acyclic graphs for which
the optimal schedule can be computed by solving a
corresponding Markov decision problem. We eval-
uate the complexity of the solution analytically and
experimentally and show that it provides a practical
approach to building an adaptive controller for this
application.

1 Introduction
Planetary rovers are unmanned vehicles equipped with cam-
eras and a variety of scientific sensors. They have proved
to be a cost-effective mechanism in space exploration and
will continue to play a major role in future NASA mis-
sions [Washington et al., 1999]. Despite dramatic improve-
ments in capabilities and computational power, space systems
continue to operate with scarce resources such as power, com-
puter storage, and communication bandwidth. They also have
a limited life span. As a result, it is necessary to maximize
operation time during periods of no communication with the
control center. It is also necessary to manage resources care-
fully when deciding what activity should be performed and
how to best accomplish the rover’s tasks. The main objec-
tive of this work is to develop planning and monitoring algo-
rithms that can optimize scientific return when operating with
limited resources.

For this purpose, the progressive processing model pro-
vides a suitable framework [Mouaddib and Zilberstein, 1997;
1998]. Progressive processing allows a system to trade off
computational resources against the quality of the result sim-
ilar to other resource-bounded reasoning techniques such
as “flexible computation” [Horvitz, 1987],“anytime algo-
rithms” [Dean and Boddy, 1988; Zilberstein, 1996], “impre-
cise computation” [Hull et al., 1996; Liu et al., 1991] and
“design-to-time” [Garvey and Lesser, 1993]. The specific

characteristic of progressive processing is the mapping of the
computational process (or a plan) into a hierarchical graph of
alternative methods. Each method has an associated proba-
bilistic description of the resource/quality tradeoff it offers.

In previous work, Mouaddib and Zilbertstein [Mouaddib
and Zilberstein, 1997; 1998] presented a solution to the con-
trol problem of progressive processing. This problem is to
decide at run-time which subset of methods should be exe-
cuted so as to maximize the overall utility of a system. The
reactive controller is adaptive and takes into account the re-
maining resources and possible changes in the environment.
This is achieved by reformulating the control problem as a
Markov decision process (MDP). An efficient implementa-
tion that can handle run-time modifications of the overall plan
has been implemented [Mouaddib and Zilberstein, 1998]. In
the past, only semi-linear task structures have been used. That
is, each step of a task could be implemented by one of several
alternatives, after which the next step is considered.

The rover application, however, requires several extensions
of the previously developed controller. Figure 1 shows a sam-
ple plan that illustrates the problem. In the plan, the rover
locates an object and aims the camera, possibly after moving
closer to the object. It can take a picture at one of three differ-
ent resolutions, and can compress it using either high or low
compression methods. In between, depending on the analysis
of the image, the rover may decide to investigate the chemi-
cal components of the object. This plan presents several new
requirements that have not been previously addressed:

Task inter-dependency: Task execution may depend on the
outcome of previous actions. For example, the ability
to investigate the chemical components depends on the
results of image analysis.

Non linearity: The overall task structure becomes a directed
acyclic graph. Execution follows a linear path through
the graph.

Multiple resources: The controller must optimize its opera-
tion with respect to multiple resources.

The contribution of this paper is three fold. First, we gen-
eralize progressive processing to non-linear task structures
with one resource and construct an optimal controller for such
plans. Second, we analyze the complexity of the solution both
analytically and empirically and show that it is an effective
approach. Third, we examine the implications of increasing

�

�

�

Go to a site &

composants

Low High
compressioncompression

Search chemical

resolution
Picture low Picture high

Unit 1

Unit 2

Unit 3

Picture medium
resolution

resolution

Picture analysis

Arm camera
arm camera

Step 1

Step 2

Step 3

Figure 1: Planetary rover’s plan

the number of resources and size of the plan on the complex-
ity. We address this problem by introducing the notion of
opportunity cost that can be estimated quickly for large, non-
linear plans.

2 Progressive processing control problem
The work presented in this paper builds on the concepts of
progressive processing units and plans. In this section, we
define these notions and define our problem.

2.1 Preliminary definitions
Progressive processing is a reasoning technique that creates
an incremental solution of a problem by using a hierarchy
of steps, where each step contributes to the solution. This
hierarchy can be viewed as the reasoning scheme which leads
us to the solution. We denote by PRU (progressive processing
unit) this hierarchy. Notice that we may associate a utility
to the execution of a PRU’s step. This utility is an abstract
measure of the step’s quality in the solution.

With this intuitive definition, a rover’s plan may be seen
as an ordered set of PRUs. More generally, the plan may be
non-linear, i.e., a directed acyclic graph of PRUs. One unit
has many successors. In this graph, a step will be considered
for execution when the succession of steps executed so far has
sufficient quality to enable this step.

For the example of planetary rovers, we have three PRUs.
The first corresponds to going to a site, taking a picture and

analyzing this image in order to find rocks. The second de-
pends on the analysis results. If the site contains rocks, the
rover may activate its APXS (alpha proton X-ray spectrom-
eter) in order to determine the chemical components of the
rocks. The last PRU corresponds to compressing the scien-
tific data (images and chemical components).

We may transform this plan to a linear plan but, in that
case, we lose generality and the inter-unit dependency infor-
mation. In fact, the non-linearity of a plan and the notion of
dependence allow for more realistic applications.

The planetary rover’s problem (or progressive processing
problem control) is to choose the set of executing tasks that
maximize the global utility while respecting resource con-
straints.

2.2 Formal definitions
We formalize these definitions, focusing on one resource: op-
eration time.

Definition 1 A plan
�

is a directed acyclic graph of progres-
sive processing units, �������	�
���
���
����� .

Example: One plan is figure 1, where � � is unit 1, � � is unit
2 and �	� is unit 3.

Definition 2 A progressive processing unit (PRU), ��� , con-
sists of a set of steps, ��� � ������� � ������� � ���
���
������� ���! #" ,
a deadline $ � and a set of successors,% � � � %'&�()(+*�, ��-.���
�
��� %�&�()(+*
, �0/ 1-2" , where%'&3(�(+*�,'4 - � *65
78:9 ��� 8:9 - and 5;78:9 is the utility interval< =?> ��@ 8:9 � =BA;C @ 819�D corresponding to minimal and maximal
utilities required to move to the next unit � 8:9 .
Example: PRU �0� has three steps: �E� � � is step 1, �E� � � is step
2 and � � � � is step 3. It has two successors: � � and �	� .
Definition 3 A step , of a unit

>
, ����� 8 , consists of a set

of tasks, F1��� 8 � �'GH��� 8 � � ��G���� 8 � � ���
���
�IGH��� 8 � �	J� LK M�" and a user-
specified attribute, skippable, which indicates if this step may
be skipped or not. We denote by % ��� 8 the skippable attribute,
and % ��� 8 �ON when ����� 8 is skippable and 0 otherwise. We de-
fine ����� P to be the special step (with no tasks) that is used to
show the beginning of executing a unit.

Example: Step 2 of unit 1 has three tasks. The first G � � � � �
is “Picture low resolution”, the second G � � � � � is “Picture
medium resolution” and the third G	� � � � � is “Picture high res-
olution”. This step can be skipped if we don’t want to take a
picture at a particular site.

Definition 4 A task Q of a step , of a unit
>
, G ��� 8 � R , consists

of an executable module, a utility (or quality) and a discrete
probability distribution S (��� 8 � R of resources consumed when
the module is executed. The number of elements of S (��� 8 � R isT S (��� 8 � R .

The probabilities can be determined from ground experimen-
tal rovers and simulations.

Example: Task 2 of step 2 of unit 1, G � � � � � consists of taking
a medium resolution picture of the site. The distribution of re-
source consumption for this task, as used in our experiments,
is S (� � � � �U�V� *6W!X ��YZ� W -.� *6W+[��YZ� \;-.� *6] YZ��Y^� W -." .

Definition 5 The progressive processing control problem is
to select at run-time the set of tasks that maximizes the global
utility.

2.3 Selecting tasks
When the rover has completed step � ��� 8 (meaning that a task
G ��� 8 � R of that step has been executed or that the step has been
skipped), it has three possible decisions:� it can execute one task G ��� 8�� � � R�� of the next step � ��� 8�� �

if this step exists,� it can skip the next step � ��� 8�� � , if it exists and it is skip-
pable,� it can move to a accessible successor unit � /��	����
���� .

The optimal decision is the one that maximizes the global
utility. The sequence of decisions will determine the set of
tasks executed. The global utility is the cumulative reward of
the executed tasks (reward is measured by the qualities asso-
ciated to the tasks).

In this context, the progressive processing control problem
is a state space where a transition from one state to an another
is the decision made by the rover. The state represents the last
executed step and the remaining resources. In fact, the choice
of the next action (when the rover is in a particular state) de-
pends only on the current state. This is the Markov property.
So, the progressive processing problem control may be seen
as a problem of controlling a Markov decision process.

2.4 Markov Decision Process Controller
We now define the corresponding Markov decision process.

States
A Markov decision process is a graph of states such that:

Definition 6 A state,
< � ��� 8�
���� D , consists of the last executed

step � ��� 8 and the remaining resources.

Definition 7 The accumulated quality is the sum of qualities
of all executed task.

Definition 8 Quality dependency of units: A state< � ����� P
������ D is the successor of
< � ��� 8�
���� D when the

accumulated quality of
< ����� 8
������ D belongs to the utility

interval 5;7� � and *65;7� � ��� ��� -�� %'&�()(� . We say in this case that< � ����� P
������ D is an accessible state from
< � ��� 8�
������ D .

With the quality dependency, we express the dependence
between the problems, including the precedence constraint
(quality not null or belonging to a certain interval).

Example: To go to site 2, the rover should have executed
G�� � ��� � (analysis of taken picture). So, we give a high reward
to G � � ��� � and

=?> ��@ � ��� � � ��� � , where *�5;7� �#� � -�� %�&�()(� .
Definition 9 A state is terminal when all the resources have
been fully elapsed, or when there is no accessible successor.

Transitions
We have three possible transition types: � , � , and � .

Definition 10 A transition ��� � ��� � (type �) is probabilistic. It
consists of executing a task G���� 8 � R of the next step ����� 8 . We

denote it
< � ��� 8�� �
���� D! �K M6K "#�$ < � ��� 8�
���� #&% � D , where % �

represents the resources consumed for the execution of G ��� 8 � R .

Definition 11 A transition ' � � � (type �) is deterministic.
It consists of skipping the next step � ��� 8 . We denote it< � ��� 8�� �
���� D�(LK M#�$ < � ��� 8�
���� D .
Definition 12 A transition) � (type �) is deterministic.
It consists of passing to an another unit. We denote it< � � � � 8*
���� D�+ #�$ < � ��� P
,��� D , where � � is an accessible suc-
cessor of � ��� .
Transition rules
Now, let us define transition rules.

Pr(state -/. state 0 , transition F) is the probability of moving
from 0 to - when taking transition F .

Let 0U� < ����� 8�� �
���� D be the current state.

1. Transitions � ��� 8 � R
Let % � be the resources consumed by task G���� 8 � R .
(a) % �213��� , � S * < ����� 8
���� #4% � D . 0;��� ��� 8 � R!- �

� S * S (��� 8 � R � % � - ,
(b) % � 5 ��� , � S * < � � � � P
 $ � � # $ � D . 0;��� ��� 8 � R - �

� S * S (��� 8 � R 56��� - , where
< � �7��� P
 $ ��� # $ � D is ac-

cessible from 0 .
2. Transitions � ��� 8 (if % ��� 8 � N , i.e., the step is skippable)

� S * < ����� 8
,�8� D . 0;�9�H��� 8 -��ON .
3. Transitions �E�

� S * < � ���6� P
 $ ��� # $ �,: ��� D . 0;��� � -��ON , where
< � �7��� P
 $ ��� #

$ �;: �8� D is accessible from 0 .
2.5 State’s value
The value associated to each state < * < � ��� 8=
,�8� D - is a measure
of utility of this state in the MDP. This value is calculated
recursively by using the value of successor states.

For this, we denote 0U� < � ��� 8�� �
���� D , >@? �V� states ac-
cessible from 0!" and 0 A � � �A> ? an accessible state for which
the associated task is in unit ���7� .� Transitions � ��� 8 � R

B � CDFEHGIEJE
< � S * S (��� 8 � R � % � -
K < * < � ��� 8=
���� #L% � D - D

: � ��� 8 � RB*M � NPO	QR ����� SUT ��V�WYX
< � S * S (��� 8 � R 5Z��� -
K < * < � � � � P
 $ � � # $ � D - D

� Transitions � ��� 8
B (� % ��� 8 K < * < ����� 8
,��� D -

� Transitions �E�
B + � N[O*QR � � � SUT � V�W X < *

< ��� � � P
 $
� � # $;� : ��� D -
So, the value of one state is:

< * 0 -�� NPO	QR LK M K " � (�K M � +
*\B : B M � B (� B + - (1)

3 Performance of the MDP controller
We have implemented the execution model described above,
the policy-construction algorithm, and a simulator that allows
plans to be executed and visualized in the rover domain. The
performance of the resulting system is evaluated using the
simulator. This section illustrates the results obtained using
the system.

3.1 Analysis
Because of the one-to-one correspondence between the states
of MDP and the states of the control, the optimal solution of
the MDP is the optimal control.

Claim 1 (MDP size) The number of states in the MDP is
bounded by: � K NPO	QR�� $
� K NPO	QR�� T � � (2)

Proof: Note that two states with same remaining resources
and associated step generate the same successors. So, to avoid
an exponential complexity, we must notice already created
states.

Since consumable resources are bounded, as well as the
number of steps, we obtain a bounded number of states.
Moreover, two states are different if and only if the associ-
ated steps are different or the remaining resources are differ-
ent. So, we have the bound:

� K N[O*Q R�� $
� K NPO	Q R�� T � � .�
Claim 2 (solution time) The time elapsed to calculate the
optimal policy for the MDP is bounded by:� K * NPO	QR�� $ � - � K NPO	QR�� T � �

K � NPO	QR�� � R�� �K M T F ��� 8 K NPO	QR�� � R�� �K M � R�� LK M K " T S (��� 8 � R : W�� (3)

Proof: The time consumed to solve the MDP is bounded by
the number of transitions multiplied by the cost of searching
already created states (if we don’t want an exponential com-
plexity).

The number of transitions from a state
< � ��� 8�� �
���� D is

bounded by the number of transitions of each type:
T S (��� 8 � R

of type � , and one each of type � and � . So, for that one
state, the number of transitions generated is bounded by:	
 �	J� �K M

C
R�� � T S (��� 8 � R�
� : W

1 NPO	QR�� � R�� �K M T F1��� 8 K NPO	QR�� � R�� �K M � R�� LK M K " T S (��� 8 � R : W �
Therefore, the bound on the number of transitions in the

entire MDP is (using equation 2):� K NPO	QR�� $ � K NPO	QR�� T � �
K � NPO*QR�� � R�� �K M T F ��� 8 K NPO	QR�� � R�� �K M2� R�� LK M K " T S (��� 8 � R : W �

Finally, the search of already created states involves $ �
states in the worst case: since we store states by unit and by

step, only those states associated with the specified unit and
step need to be checked.

So, we obtain the following bound:� K * NPO*QR�� $;�6- � K NPO	QR�� T � �
K � NPO*QR�� � R�� �K M T F1��� 8 K NPO	QR�� � R�� �K M � R�� LK M K " T S (��� 8 � R : W � �

In conclusion, our controller has a complexity of � * � K
NPO	Q R�� $
� - in space and � * � K * NPO	Q R�� $
� - � - in policy-
construction time. We also notice that if the deadline is not a
function of N, we obtain a linear complexity.

3.2 Experimental results
We take a non-linear plan composed of

�
units and of depth����� �

. Each unit is composed of four steps. The first step
consists of going to a site, the second of arming the camera,
the third of taking the photo (low, medium or high resolution)
and the last of compressing the obtained scientific data.

For our experiments, we set the average time to execute
this unit to be 32 seconds. So, the deadline of each unit in
plan is 32 seconds multiplied by the depth of this unit in the
plan. If we assume that the number of nodes at each level of
the plan increases by at least a constant factor � 5 N , then the
depth of the plan is � * ����� � - , and we obtain the complexity� * � K ����� � - in space and � * � K * ����� � - � - in time.

However, we notice that we use exactly the resources
needed to execute a task. What happens if we consume re-
sources in fixed-size packets instead of exactly the needed
resources?�

Value (size=1) Value (size=2) Error
20 94.38 90.80 3.79%
40 133.76 129.88 2.90%
60 166.76 160.71 3.63%
80 197.37 187.95 4.77%
100 219.37 209.51 4.49%

Table 1: Value computed as a function of
�

, using packets of
resources.

Table 1 shows state values computed for packet sizes of
1 and 2; little error is incurred by increasing the packet size.
Figure 2 shows policy-creation time for plans of realistic size.
Using a packet size of 2, the time used to solve the MDP is
divided by 4 and the number of states created is divided by 2.

In fact, we can generalize this result:

Claim 3 If ��� is the number of states created and G�� is the
time consumed to create these states (for packet size equal to
1), then ��� is the maximal number of created states and

� ����
the maximal time elapsed (for packet size equal to &).

 ��� and
� ���� are bounds since equations 2 and 3 are bounds

for ��� and G�� .
Proof: We suppose that ��� and G�� are number of created
states and time consumed for packet size equal to 1. We now
take packets of & resources.

� �
20 40 60 80 100

�
Solution time (in seconds)

1

4

7

10

13

16

20 Size=1

Size=2

Figure 2: Solution time for packet size equal to 1 and 2

Notice that size of packet has no influence on the size of
the problem

�
. Moreover, it leaves the number of steps in

unit and number of tasks in step invariant.
So, the packet size proportionally reduces the deadline of

each unit ($;� $ � �). Therefore, equation 2 implies that ��� is
the maximal number of created states and equation 3 implies
that

� ���� is the maximal time consumed to create these states.
The last term of equation 3 can be changed by packets, but

it is just a constant.
�

4 Dynamic operation and scalability
In the previous section, we presented an optimal solution to
the control problem of acyclic progressive processing task
structures. In this section, we extend the applicability of the
solution to situations in which the global policy cannot be
computed at run-time either by the control center or the rover
itself. There are two primary motivations to avoid run-time
construction of the policy.

1. Dynamic operation: We want to be able to modify the
plan at run-time (e.g., insert or delete a PRU) without
necessarily recomputing the control policy.

2. Scalability: We want to be able to track more resources,
and the complexity of global policy construction grows
exponentially with the number of resources.

While we focus in this paper on the dynamic operation,
scalability is also enhanced by the proposed solution. Our
approach is to exploit the fact that the units of the plan are
largely independent. We try to capture the dependency of the
execution of each unit on the remaining plan using a notion
similar to opportunity cost [Zilberstein and Mouaddib, 1999].

4.1 Dynamic control with one resource
Definition 13 Let B��0* < ����� 8
,�8� D represent the optimal local
value of the state after step � ��� 8 with remaining resources��� .

Note that B � is the same as < for a modified plan in which
unit

>
has no successors. B � is simply the value of the best pol-

icy for PRU
>

ignoring the remaining plan, hence it is called
local value.

Claim 4 The global value function can be reformulated as
follows.

< * < � ��� 8�
,�8� D - �
NPO	QDFE � B � * < � ��� 8=
,��� # % � D : B + * < � ��� 8�
 % � D -2" (4)

Proof: This is an immediate result of the definition of B�� , <
and B + , and the additivity of the utility.

�
For each PRU, we can easily compute the local value func-

tion B � and construct a local policy off-line. The global value
function (and policy) can be constructed at run-time, if we
can obtain a fast estimate of B + .

4.2 Estimating ���

One way to think about B + is as the value of terminating the
work on a certain PRU with some level of resources, then us-
ing the resources for the remaining plan. This is exactly what
we need to know. Estimating B + is equivalent to estimating
the global value of the remaining plan. We have examined
several approximation schemes for B + . Due to space limita-
tions, we only sketch one simple approach.� Construct an optimal local value function and local pol-

icy for each PRU (done once, off-line).� For each level of RR, compute the expected value and
expected resource consumption by the optimal local pol-
icy (done once, off-line).� Go over the plan graph “backwards” from the leaves and
compute an expected value for each node, for each level
of ��� at that node. The backup is relatively simple:
maximizing for each level of ��� at that node the com-
bined parent/child value. In this process, it is necessary
to take into account the difference between the deadlines
of each parent/child pair. The quality dependency con-
straints are enforced with respect to the expected quality
of the parent.

This algorithm is linear in the size of the graph. The com-
putational savings and sub-optimality of the outcome are the
result of using precalculated expected resource consumption
and value for each PRU.

5 Conclusion
We have presented a solution to the problem of adaptive con-
trol of acyclic progressive processing tasks. This approach,
which relies on solving a corresponding MDP, generalizes
earlier work on MDPC [Mouaddib and Zilberstein, 1998];
it permits for the first time the treatment of non-linear pro-
gressive processing task structures. Moreover, our approach
addresses effectively the high degree of uncertainty regard-
ing resource consumption. In that sense, it improves on ex-
isting models for resource-bounded reasoning such as “im-
precise computation” [Hull et al., 1996; Liu et al., 1991]
and “design-to-time” [Garvey and Lesser, 1993]. Finally,

the model captures inter-task quality dependency similar to
the enable and disable relationships in the “design-to-time”
framework [Garvey et al., 1993].

We also address in the paper a potential deficiency of the
approach which may require a large amount of memory and
time to create and solve the MDP and to store the resulting
policy. Using packets of consumable resources, we managed
to reduce the size of the MDP with a small loss of quality
(4.5% for packet size equal to 2). Finally, we address the
issue of dynamic operation and scalability by approximating
the solution of the MDP.

The solution presented in this paper includes time as the
only resource. Future work will allow us to represent a vector
of resources [Mouaddib, 2000] such as storage capacity and
power. An additional challenge is to develop more precise
estimates of the value function B + and adapt the approach to
the case of multiple resources. A related project is using rein-
forcement learning to estimate B + [Bernstein and Zilberstein,
2001].

More accurate models of resource usage can be obtained by
using results from actual rover testing or high-fidelity simu-
lations. We plan to make use of ongoing development of a
high-fidelity rover simulation at NASA Ames Research Cen-
ter to refine our models to make them more accurate and ap-
plicable to realistic rover problems, with the goal of testing
our approach on actual rover hardware.

The PRU used in our experiments (Cf. 3.2) can be extended
to solve a satellite scheduling problem. With this approach,
more units can be scheduled than by traditional methods. In-
deed, at this moment, a satellite in orbit around the world
schedules the equivalent of only about 20 units. With our ap-
proach, it would be able to schedule 100, thus increasing its
productivity 5-fold.

Acknowledgements
Support for this work was provided in part by the National
Science Foundation under grants IRI-9634938, IRI-9624992,
and INT-9612092, and by a Project of Plan Etat/Nord-Pas-
De-Calais, and by IUT de Lens.

References
[Bernstein and Zilberstein, 2001] Daniel S. Bernstein and

Shlomo Zilberstein. Reinforcement learning for weakly-
coupled mdps and an application to planetary rover con-
trol. In UAI (submitted for publication), 2001.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An analysis
of time-dependent planning. In Seventh National Confer-
ence on Artificial Intelligence, pages 49–54, 1988.

[Garvey and Lesser, 1993] A. Garvey and V. Lesser. Desing-
to-time real-time scheduling. IEEE Transaction on sys-
tems, Man, and Cybernetics, 23:1491–1502, 1993.

[Garvey et al., 1993] A. Garvey, M. Humphrey, and
V. Lesser. Task interdependencies in desing-to-time
real-time scheduling. In AAAI, pages 580–585, 1993.

[Horvitz, 1987] E. J. Horvitz. Reasoning about beliefs and
actions under computational resource constraints. In Work-
shop UAI-87, pages 429–444, 1987.

[Hull et al., 1996] D. Hull, W. C. Feng, and J. W. S. Liu.
Operating system support for imprecise computation. In
AAAI Fall Symposium on Flexible Computation, pages 96–
99, 1996.

[Liu et al., 1991] J. Liu, K. Lin, W. Shih, J. Chung A. Yu,
and W. Zhao. Algorithms sor scheduling imprecise com-
putations. IEEE Computer, 24:58–68, 1991.

[Mouaddib and Zilberstein, 1997] A-I. Mouaddib and S. Zil-
berstein. Handling duration uncertainty in meta-level con-
trol of progressive processing. In IJCAI, pages 1201–1206,
1997.

[Mouaddib and Zilberstein, 1998] A-I. Mouaddib and S. Zil-
berstein. Optimal scheduling of dynamic progressive pro-
cessing. In ECAI, pages 449–503, 1998.

[Mouaddib, 2000] A. I. Mouaddib. Optimizing multi-criteria
decision quality in a progressive processing system. In
AAAI Symposium on realtime autonomous agent, pages
56–61, 2000.

[Washington et al., 1999] R. Washington, K. Golden,
J. Bresina, D. E. Smith, C. Anderson, and T. Smith.
Autonomous rovers for mars exploration. In Proceedings
of The 1999 IEEE Aerospace Conference, 1999.

[Zilberstein and Mouaddib, 1999] S. Zilberstein and A-I.
Mouaddib. Reactive control of dynamic progressive pro-
cessing. In IJCAI, pages 1268–1273, 1999.

[Zilberstein, 1996] S. Zilberstein. Using anytime algorithms
in intelligent systems. AI Magazine, 17:73–83, 1996.

