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Abstract

This paper presents a practical model of dis-
tributed reasoning and planning for a fleet of
robots serving people in a shopping mall using
distributed knowledge-based reasoning and dis-
tributed Markov Decision Process (MDP) where
the environment changes frequently and the set of
goals is not static. The model we present, in this
paper, consists of distributed local reasoning and
planning where each robot locally reasons on its
perceived data (locally: onboard cameras and also
from global perception system: external cameras)
to update its local Knowledge Base (KB). Local
KBs derive local goals and the local planners select
the goal to accomplish and compute the policy to
accomplish it while maintaining a coordinated be-
havior with the other robots by avoiding conflicts
on goals. To this end, we propose a distributed
market-based auction planning algorithm using a
regret and opportunity costs in a distributed value
function leading to augmented MDPs to coordinate
the robots and to select the appropriate goals to ac-
complish. Our approach assumes communication
between robots and external sensor and we will de-
scribe a method to minimize the dis-coordination
(conflits on goals) when the communication is lack-
ing. Experimental results on the algorithm per-
formance and the implementation on real service
robots in a shopping mall showed a very satisfying
behavior as shown in the video.

1 Introduction
The claim of this paper is to present a practical model and
algorithm for a multi-robot system to be deployed in a public
area like a shopping mall, airport, train station, hospital, ...
to assist and guide customer. In our case, we consider assis-
tance, advertisement and security goals in a shopping mall.
The characteristics of such applications are :

• The environment is highly dynamic and a long-term
horizon planning could be unsuitable.

• No central planner or system could be considered.

• The set of goals is dynamic and can change during the
execution.

• The nature of the application is highly distributed in
terms of perception, reasoning and planning since the
robots sweep as large as possible the public space to de-
tect events to handle.

• Goals accomplishments are durative and planning for
the full set of goals could be inappropriate since new
high prior goals could be generated.

Reasoning and planning in such contexts make some clas-
sical approaches inappropriate. Indeed, local KB reasoners of
different robots can derive different goals distributed among
their Knowledge-Base and central planner should compute a
plan among all distributed goals to derive an optimal goal
allocation. While most central planners require a central
Knowledge base [Ghallab, Nau, and Traverso, 2016], plan-
ning with distributed knowledge bases becomes out of reach
of these existing algorithms [Ghallab, Nau, and Traverso,
2016]. Formalizing the planning problem where robots have
their own local observations leads to some strong mathe-
matical tools like DEC-POMDP [Bernstein, Zilberstein, and
Immerman, 2000; Amato, Bernstein, and Zilberstein, 2007;
Seuken and Zilberstein, 2007; Dibangoye et al., 2016]. How-
ever, DEC-POMDPs require a central planner which make
their use in this context inappropriate. Considering only in-
teractions between agents to formalize the planning prob-
lem has been considered in different POMDPs-based ap-
proaches like Networked POMDPs [Nair et al., 2003; 2005],
interactive POMPDs [Sonu and Doshi, 2015] or Augmented
MDPs [Matignon, Jeanpierre, and Mouaddib, 2012]. Such
approaches are promising to deal with distributed planning
which is more appropriate to the problems where knowledge-
based are distributed. Hiowever, they can show some limits
where the environment is highly dynamic and the set of goals
changes frequently. To this end, we extend the approach pre-
sented in [Iocchi et al., 2016] to the multi-robot system set-
tings where the architecture is fully decentralized and com-
bine auctionning and MDPs to coordinate the robot policies.
The combination between auctionning and (PO)MDPs is not
novel and has been introduced in [Spaan, Gonçalves, and Se-
queira, 2010]. However the auctionning phase is centralized
while our approach is fully decentralized and the auctionning
is distributed among robots.

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

55



We present an approach which allows the robots to plan in
a distributed way and with a changing set of goals using a
distributed market-based auction algorithm combined with a
distributed value function [Matignon, Jeanpierre, and Mouad-
dib, 2012] allowing each robot to locally plan and select the
goals to accomplish. This algorithm has been implemented
and tested on real robots serving people and guiding them to
their requested destination showing a very satisfying behavior
as shown in the video1.

The rest of the paper is organized as follow: section 2 de-
scribes the overall architecture and the interaction between lo-
cal reasoners and planners. Section 3 presents the distributed
knowledge-base reasoning and the communication with the
planners. Section 4 representing the main contribution of the
paper where we describe the market-based auction algorithm
and the distributed value functions using opportunity cost and
the regret functions. Section 5 is dedicated to the evaluation
of our approach in terms of solution quality and the imple-
mentation on real robots.

2 Distributed multi-robot Architecture
The distributed architecture of the multi-robot system con-
sists of, as depicted in Figure 1, communicative local
knowlege-based reasoners, planners and executors. Each
robot has each local knowledge-based module which is split-
ted into two parts : static part describing the semantic map of
the environment (shops, restaurants, social areas in the mall
for instance) and the dynamic part describing the new incom-
ing information from sensors (onboard cameras of the robots
and external cameras in the environment) and from the other
modules such as the status of the robots (idle or active), their
goals under accomplishment and their priorities maintaining
a global partial view on the overall system. The KB is a set of
logical predicates similar to the classical STRIPS-like plan-
ning language [Ghallab, Nau, and Traverso, 2016]. The KB
uses a simple rule-based reasoning to derive new goals to ac-
complish. These new goals are communicated to the plan-
ning module which uses a maket-based auctionning algorithm
which is descibed bellow. This algorithm allows the robot to
select the goal to accomplish and to formalize it as an MDP
as presented in [Iocchi et al., 2016] and then communicate the
policy to the executor module to act. In order to compute the
goal to accomplish, each robot communicates with the others
the set of locally derived goals and the vector of associated
optimal policy values. Each robot fuses the set of received
goals with the locally derived ones. This shared information
allows to each robot to use global information to plan.

3 Distributed Knowledge-based reasoning
3.1 Local KB reasoning
Each robot maintains a local KB which is split into a static
KB representing the semantic map and a dynamic KB rep-
resenting the events occurring in the environments or on the
status of the robot. Indeed, when external or on-board sen-
sor detect an event (a person, an object for example), the KB
inserts a logical formula representing this event and executes

1https://youtu.be/iFC6-sCL3XI
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Figure 1: General multi-robot decision-making Architecture

its logical inference engine to derive new goals. These new
goals are added to the existing ones and sorted according to
their priority. In the shopping mall case, the security goals
have higher priority than assistance goals which have high
priority than advertising goals. This order allows the robots
to start by allocating the goals according to their priority. The
other knowledge in the dynamic part concern the informa-
tion on the other robots particularly their status describing
whether the robot is active and which goal is achieving or
idle and its initial location when starting the execution of the
goal achievement policy.

3.2 KB update and Synchronization
The local KB for each robot should be updated by external
information coming from the environments (perception) and
the other robots. In Figure 2, we represent information com-
ing from the other robots by G∗

i meaning the goal under ac-
complishment by the other robot and the information coming
from perception allow the KB module to generate Gt a goal
list at time t. These information allow the KB module to gen-
erate the new list of goals: Gt = Gt − G∗

i . This list is then
sent to the decision module which uses a distributed matrix-
based auctioning algorithm, described in the next section, to
select a goal to accomplish and computes the policy to ac-
complish it. The decision module updates the KB with the
selected goal and the exec module about the policy to execute.
The exec module during the execution sends the status of the
execution and the current level of priority which is necessary
for considering new goals or not. The exec module updates
the KB at the end of the execution and this update is sent to
the other robots for their local KB update. This processing
is depicted in Figure 2. At the end of the goal accomplish-
ment, the robot switches to the idle status to consider a new
auctioning step. This information is sent to the other robots
which is useful when performing the distributed Matrix-based
auctioning algorithm.

Communication allows robot to exchange the information
concerning the status of execution and also the level of inter-
ruptibility allowing at the receipt of a list of goals to consider
only robot that could accomplish the goals according to their
current status and to synchronize their local KB, and to con-
struct their local matrix.
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Figure 2: Communication between KB, decision and execution

It’s possible that some messages contain values of some
goals that the robot hasn’t in its list. For these goals, the
robot initializes the value of these goals in its value vector
to −Vmax.

3.3 Interruptibility and changing set of goals
In this section, we address the problem of changing goal sets.
When the list of goals are communicated to the decision mod-
ule, the robot can have different status. Indeed, the robot can
be in a idle status or in a active status. When the robot is in
a idle status, she is able to consider new goals and decides
for the goals to accomplish. However, when the robot is in
active status, the robot should consider the new goals only
in the situations where the priority of one new goal is higher
than the one under accomplishment.

All robots with priority lower than the priority of new
goals, should consider them for a new auctioning. When the
matrix-based auctioning algorithm of a robot has been per-
formed and no goal is allocated, the robot pursues with the
current policy, otherwise, the robot executes the policy of the
new goal.

The priority of the robot is the one of the goal under pro-
cessing. However, this priority can change during the execu-
tion since when the execution task is at its beginning stages,
it’s easier to cancel the execution and skip to another task
rather than at its final execution stage. In our case, tasks
are represented in an hierarchical structure called PRU+ as in
[Iocchi et al., 2016]. Indeed, one benefit of the PRU+ struc-
ture is that goals could be accomplished partially and thus
could be interrupted when the rest of the goal is not highly
prior and in such case, we can enhance the PRU+ definition
with the priority of levels.

4 Distributed Matrix-Based Auction Planning
4.1 General principle
The allocation of goals to the robots is performed by a dis-
tributed decision-theoretic market auction algorithm, extend-
ing the approach presented in [Spaan, Gonçalves, and Se-
queira, 2010] to distributed auctioning and also using a dis-
tributed value function based on regret and opportunity cost
to solve different potential conflicts on goals and robots. The
proposed solution is illustrated in Figure 3 where each robot
has a local auctioneer which receives the list of goals G from

the local KB and sends this list to the decision-making mod-
ule. This latter uses a library of task MDP models to solve for
each goal in the list of goal its corresponding MDP by consid-
ering the current state of the robot. Thus the decision module
of robot i solves { MDPi(g, s

t
i)|∀g ∈ G }. This allows the

decision maker to compute the optimal value for each goal in
the G (vg1i , vg2i , . . . , vgki ) for all gi ∈ G. This vector of values
is sent the local auctioneer that exchanges with the other lo-
cal auctioneers. Once the local auctioneers collect all values
and organize them in matrix 4. This matrix allows us to solve
Equation (1). We consider in our approach the cases where
this equation can have more than one solution meaning that
more than one goal could be preferred by a robot and many
robots can have one preferred goal leading to some conflicts
situations which are not addressed in [Spaan, Gonçalves, and
Sequeira, 2010].
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Figure 3: Each robot has an MDP for each goal represented by an
acyclic PRU graph. The MDP of selected goal is active (solid box)

(α, g∗) = argmaxAi,gkVAi
(gk) (1)

To address these issues, we introduce regret and opportu-
nity cost functions. The regret function measures the loss in
value for a robot to accomplish a goal rather than it’s pre-
ferred and the opportunity cost of accomplishing a goal by a
robot measures the loss in value of the other robots because
of preventing them from this goal. More formally speaking,
the Regret of not accomplishing a goal g∗ is given by the fol-
lowing equation :

regretj(g) = V π∗
j (g)−max

g� �=g
V π∗
j (g�)

And the opportunity cost is defined by :

OCR(g) = max
R� �=R

max
g� �=g

V ∗,g�

R� − V ∗,g
R�

Let Sg be the set of robots α optimizing the value of ac-
complishing the goal g (solutions of Equation 1), the best
robot to which we allocate the goal g is the one minimizing
the regret (Equation 2). If we havemany solutions, we can
proceed in the same way with the other goals and so on.
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Let Gr be the set of the preferred goals of robot r. The best
goal selected by robot r is the one minimizing the maximum
opportunity cost (Equation 3).

4.2 Market-based auction algorithm for goal
allocation using distributed value functions

The distributed market-based auction algorithm, illustrated in
Figure 3, consists of two steps : Matrix construction step and
Market-based auction step that we described in the following:

• Matrix construction: each robot i maintains a matrix
Mi representing the value of the optimal policy of each
robot to accomplish a goal. The matrix is constructed as
follows:

1. Each robot i computes the optimal value
V ∗,gl
i to accomplish goal gl. Value vector

(V ∗,g1
i , V ∗,g2

i , . . . , V ∗,gk
i ) represents the values of

robot i optimal policies accomplishing goals in the
list. This vector represents the line i of the matrix.

2. Each robot constructs locally this vector, commu-
nicates it to its local auctioneer and this latter sends
its value vector to the others, allowing them to com-
plete their matrix

3. Each robot i (local auctioneer) has thus a matrix 4.
• Distributed Matrix-based auctioning: Each robot pro-

ceeds as depicted in 4 to the following steps:
1. Fo each each line L of the matrix, compute

maxj V
∗,gj
l corresponding to the best goal to ac-

complish for the robot L (its bid).
2. If there is only one goal g∗L maximizing the value of

the robot L, this means that there is only a unique
preferred goal for this robot. However, we should
check that this robot is the preferred one for this
goal. To this end, we check in the column g∗L that
there is no value V

∗,g∗
L

i ≥ V
∗,g∗

L

L . In such case,
the goal g∗L is assigned to the robot L and ligne L
and column g∗L are removed from the matrix and we
repeat the same process for the matrix until all goals
have been assigned or all robots have an assigned
goal.

3. If there is more than one maximum value existing
in columns or lines, we proceed as follows :

(a) Processing columns: this means that there is a
conflict between robots R on the same goals g.
We assign the goal to the robot having the mini-
mum regret ;

argminrobot∈R max
g� �=g

V ∗,g�

robot − V ∗,g
robot (2)

Then we remove the adequate column and line.
(b) Processing lines: this means that there are more

than one goal G preferred by a robot R. In tis
situation, we assign the goal with the minimum
opportunity cost ;

argming∈GOCR(g) (3)

Then we remove the adequate column and line.
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Figure 4: Matrix allocation processing

Proposition 1 Matrix-based auctioning algorithm is based
on solving |G| MDPs with the same state space but with dif-
ferent goal states. The complexity of Matrix-based auctioning
algorithm is O(|G| · |S|2 · |A|)
Proof Matrix-based auctioning algorithm solves one MDP
for each goal of the set of goals |G| with the same state space
but with different goal states. The complexity of solving and
MDP with value iteration algorithme is O(|S|2 · |A|).
Proposition 2 The cost of communication in Distributed
Matrix-based Auctioning algorithm is in O(n2) while in auc-
tioning POMDP is in O(3 · n).

Proof In Auctioning POMDP, each robot communicates with
the central auctioning module by receiving the set of goals
and sending its bid. The auctioning module sends n mes-
sage to announce the goals, n bid messages are received
from robots and sends n messages to robots for the auction-
ing result. In Distributed Matrix-based Auctioning algorithm,
robots exchanges the goals and their bids as values of their op-
timal policies to accomplish these goals (individually). These
message exchanges consist of n − 1 messages sent by each
robot (n robots). Thus the overall number of exchanged mes-
sages is n · (n− 1). Thus the complexity is O(n2).

4.3 The overall algorithm
1. The status of the Robot i is Idle :

(a) Proceed to the message processing and produce the
list of goals and sends local messages to the other
robots;

(b) Compute for each goal g in the list the value of the
optimal policy V ∗

g and put Matrix(i, g) = V ∗
g ;

(c) Send the vector value to the decision module;
(d) The decision module selects the best goal g∗ =

Market Based auction(i,g) (section 4.2) and
sends the message to the KB;

(e) The robot constructs the policy π(g∗) ;
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(f) The robot sends to the EXEC module and it
changes its status to active;

2. The status of the robot i is active:
(a) Transforms the policy in a PNP (Petri-Net Plan) as

described in [Iocchi et al., 2016];
(b) Execute the PNP and sends at each step of the PNP,

the level of interruptibility;
(c) At the end of the execution, sends the message to

the local KB and changes the status to idle;

5 Dis-coordination minimization with lack of
communication

When communication is not available two aspects have to
be considered: (1) external sensor cannot communicate with
robots and only onboard sensor of robots can be used leading
to the lack of global perception and (2) robots cannot com-
municate and thus cannot exchange values of goals for auc-
tioning. In order to overcome these limitations, we propose
a simple policy estimation algorithm allowing each robot i to
estimate the policy of each other robot πj �=i without commu-
nication. We consider that the policy πτ

k followed by robot
k is the policy computed from the MDPk(s

τ
k, G

τ ) where sτk
is the initial state of robot k and Gτ is the set of goals at
time τ by selecting the policy maximizing the expected value
of accomplishing one goal. In order to estimate the policy
πt
j �=i followed by each robot j �= i at time t, we need to es-

timate the policies followed by the robots during the interval
[t�, t]. However, during this interval one robot k can accom-
plish more than one goal and thus has followed a sequence of
policies, noted Sπ

k starting with πt�
k which is the policy of the

MDPk(s
t�
k , G

t�) where (st
�
k , G

t�) are given by the local KB.
However, to compute the next policies we need to derive the
new MDP by deriving the new start state and the new set of
goals. To do so, we approximate the new start state of k by sτk
as the most likely state can be reached by the policy πt�

k and
that the new set of goal Gτ = Gt� − goalπt�

k
where goalπt�

k

is the goal accomplished by πt�
k and finishing at time τ . More

formally :
sτk = max

s�k
P (s�k|πt�

k , s
t�
k )

When sτk and Gτ are derived, we can compute the next
policy πτ

k of Sπ
k from the MDPk(s

τ
k, G

τ ). We repeat the
same processing until τ ≥ t. The last policy of Sπ

k , noted
πτ
k allows to estimate the sτk and thus we compute the policy

πt
k of the MDPk(s

τ
k, G

t) with the current set of goals. This
principle is repeated for all robots and thus we get an ap-
proximate joint policy where each robot is assumed accom-
plishing a goal in Gt. Robot i compute a policy πt

i of the
MDPi(s

t
i, G

t −�
k �=i goalπt

k
).

Proposition 3 The complexity of approximating the policy of
the other robots during an interval of time is O(|S|3 · |A| ·
|G|2) where S and A are respectively the state and action
spaces and G the set of goals at the lost of communication.

Proof Solving an MDP with a goal and with an initial state
using value iterationis O(|A| · |S|2) [Puterman, 1994]. When

we extend this to a set of goals where we should select the
best goal, the complexity becomes |G| · |S| · |A|2. To consider
this problem for any initial state is in |G| · |S|3 · |A| because
we repeat the same problem for each state and extending this
problem for an interval of time is at most the resolution of
all goals and thus the complexity becomes |G|2 · |S|3 · |A|.
When we solve this problem for any state space and any set
of goals, then for any robot we need just to know its initial
state and which set of goals. Thus the complexity remains
O(|G|2 · |S|3 · |A|).

6 Empirical evaluation
We developed experiments where we consider our applica-
tion of the shopping mall with 3 robots and a dozen of goals
to accomplish. We compare our algorithm with the baseline
algorithm of solving a DEC-MDP with a central planner as
presented in [Hanna and Mouaddib, 2002] and an auction-
ing MDP approach using the principle presented in [Spaan,
Gonçalves, and Sequeira, 2010]. We used different situations
where goals are not located at the same place, for example for
goals ”guiding to shop” we consider different shops.

• We compare the computation time of each method:
DEC-MDP, auctioning MDP and Decentralized Market-
based Auctioning algorithm.

• We compare the values of the three approaches

• We compare the performance of these approaches when
the set of goals changes by adding two more goals to the
current list.

• We also compare the performance of these approaches
when the communication is broken.

6.1 First results on performance comparison
The first results on computation time for three robots show
that the computation time of DEC-MDP is higher than the
others as expected which is explained by the complexity
of DEC-MDP known to be NEXT-hard while our approach
(MBAA) and Auctioning MDP have comparable computa-
tion time and MBAA is little bit higher due to the cost of
communication.

The expected value of AMDP and MBA are the sum of
the policy values of different goals accomplished by the three
robots while for the DEC-MDP we get a value of a joint pol-
icy for the three robots. We observed that AMDP and MBAA
are not far from a centralized planning approach representing
more than 88% which is a satisfying performance. However,
our approach outperforms the AMDP because it solves bet-
ter the conflicts. We note that when conflicts doesn’t occur,
AMDP and MBAA obtain the same value.

To get more significant results more experiments are
needed with more scenarii. Actually, we are continuing our
evaluation.

6.2 Robustness to the changes of the goal set
The first experiment consists in starting with a list of 6 goals
and during the execution of the policies we add two new
goals. For this experiment, DECMDP approach considers the
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goals only when she finishes the accomplishment of the cur-
rent goal and then consider the two new goals. The DEC-
MDP plans from scratch for 7 goals (5 remaining goals plus
the two new goals). In addition to that, the system should wait
during the execution time which depends on the goal under
execution (and the location of the shop). The AMDP finishes
the execution of the current goal and considers the new one
as DECMDP approach. This situation occurs in MBAA only
when the priorities of the goals are lower than the one under
execution otherwise, the executed is interrupted and the more
prior goals are considered. A situation we observe during the
experiment is when AMDP, DECMDP and MPAA are exe-
cuting an advertisement goal and a new assistance a person
goal arrive, the person should wait more than 3mn, 2mn and
30s respectively with DECMDP, AMDP and MPAA before
being considered. These durations doesn’t consider the exe-
cution time needed to meet the person (moving to the person).

6.3 Robustness to communication
DECMDP with no communication with the central plan-
ner they cannot work since they never receive their policy.
AMDP needs communication with the central auctioneer and
thus no solution is possible. However, MBAA can work with
degraded more where only local planning and estimation of
the other robots situations are performed. We use an experi-
ment with 3 robots and 12 goals with two classes of configu-
rations: Configuration A considers that goals scattered in the
mall and configuration B considers goals in a narrow space.
For configuration A, the approximation works well and only
one conflict is observed (one dis-coordination) at the accom-
plishment of the two last goals where two robots head the
same destination. However, in configuration B, we observe
4 conflicts (30%) where robots select the same goals. More
deeper experiments in different situations are needed and let
for future work.

6.4 Implementation on real-robots
The experiment on real robots as depicted in Figure 5 have
been developed in assistance mission of visitors of our Lab
where people can interact with the robot to ask for the of-
fice of a professor or administrative staff and then the robot
guide him to the requested destination. When the robot ac-
complishes a goal, she comes back to the welcoming point
to serve a new visitor depending on its location and the loca-
tion of the visitor. Figure 5 shows that the same robot doesn’t
serve at the same point but according to their locations, the
robot selects the appropriate welcoming point showing a very
satisfying behavior. A video of this scenario is available at
https://youtu.be/iFC6-sCL3XI.

7 Conclusion and discussion
We presented a practical approach allowing a fleet of robots to
reason on local information and plan their activities in a coor-
dinated way while activities and information are distributed
in the environment. We develop a distributed Market-based
auctioning method robust to the changes of the goal set and to
the communication unavailability showing a very satisfying
behavior. This method combines decision-theoretic planning

Figure 5: Figure showing different steps of robots serving visitors

by computing MDP policy for goals and bidding with values
of these policies to coordinate their activities. Our method en-
riches the auctioning POMDP technique [Spaan, Gonçalves,
and Sequeira, 2010] by considering distributed local auction-
eers but also to use distributed value function based on regret
and opportunity costs to solve some specific costs. Hoplites
[Kalra, Ferguson, and Stentz, 2005] addresses similar prob-
lem but it is limited to path planning tasks in the opposite
to ours. The dis-coordination minimization technique shows
satisfying results and future work will be concerned by this
aspect to deepen this problem and propose more efficient ap-
proach. Our approach has been successefuly used on real
robots showing a very convincing behavior. We will develop
more experiments to better evaluate the performance.
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