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Abstract

We examine Probabilistic Partial Policy Reuse (PPR) for the
purposes of developing tailored coaching strategies in the
Coach-Trainee Problem (CTP). Policy reuse (PR) aims to im-
prove a reinforcement learning agent by guiding exploration
with past similar problems’ learned policies. PPR extends
probabilistic policy reuse that transfers only relevant parts of
a policy for new problems. We explore PPR in the context of
a human CTP where a coaching agent must develop a coach-
ing strategy for the human trainee in order for the trainee to
efficiently solve their problem (e.g. lose weight). In human
CTPs, coach training data is limited because collecting too
much data may annoy/discourage/harm the human trainee. In
this paper, we present a decision tree-based algorithm, DT-
partition, to identify partitions in the state space based on the
problem’s features, and also examine the effects of group-
ing problem meta-data (i.e. pruning the decision tree) on CTP
performance. Particularly, we demonstrate that PPR improves
task library generation and expert policy utilization compared
with policy reuse.

Introduction
Wearable devices, such as smart watches, allow people to
monitor their daily behaviors. Current population estimates
of accelerometer-derived data indicate nearly 90% of US
adults are insufficiently active and are sedentary for over half
of all waking hours (55% or 7.7 hours/day) (Tucker, Welk,
and Beyler 2011; Troiano et al. 2008; Matthews et al. 2008).
Smart coaches, hosted/integrated with wearable devices, can
improve physical activity by nudging their users to do ex-
ercise. Unfortunately, most commercial smart coaches only
provide general intervention strategies and don’t make use
of the available information specific to their user. For ex-
ample, Fitbit provides nudges 15 minutes prior to the end
of each waking hour if the wearer does not walk more than
250 steps. Instead, an effective smart coach should take the
context of the wearer into consideration and provide nudges
when the wearer is receptive to the nudge. To create this tai-
lored intervention strategy (i.e. determining when to nudge),
a smart coach may learn when their user is receptive. We re-
fer to learning the intervention strategy as the coach-trainee
problem (CTP). For the purposes of this paper, we assume
learning is done via reinforcement on the human responses.
In order to learn the intervention strategy, the smart coach

can probe the human user with a nudge and observe the be-
havioral response. Learning human behavior in this scenario
is challenging because too many unsuccessful nudges may
result in the smart coach being ignored or not worn. How-
ever, because there are similarities across humans, we can
consider solving a single CTP by using information from
different, previously solved CTPs (i.e. multi-task learning).

In this paper, we examine probabilistic policy reuse (PR)
where past policies are used to guide the exploration of a
new, never-before-seen problem. Unfortunately, as seen with
many multi-task learning problem solutions, reusing past
policies may yield negative transfer. In the human CTP, neg-
ative transfer may result with significant consequences (e.g.
non-wear). PR attempts to avoid negative transfer by devel-
oping a core library of policies, then uses a policy from the
library with a probability based on the utility it achieves an-
nealed over time. In many multi-task learning scenarios, as-
pects of learning problems may be associated with a set of
common features. In human coaching domains, humans with
common traits often share similar behaviors. For example,
many graduate students stay up late, while most preschool-
ers go to bed early. In a reinforcement learning context, these
problem features may affect the underlying reward function
or transition model of the problem. For the purposes of this
paper, we assume that our CTP problem features are the
trainee’s accessibility to the gym, park, and unhealthy food
options which are known contributors to a person’s exercise
habits. The set of problem features in a particular multi-task
learning scenario are specific to the domain. For example, in
a Pacman learning environment, the problem features may
be the number and difficulty of the ghosts. In human coach-
ing domains, parts of an intervention strategy may be use-
ful to many different types of behavioral profiles but the full
strategy may include some useless or harmful nudges to par-
ticular individuals. Through an indirect relationship, the so-
lutions to learning individuals’ coaching strategies are influ-
enced by these problem features.

In this paper, we examine the effects of problem features
on our CTP reinforcement learning problem solutions in or-
der to more effectively develop smart coaches. First, we de-
velop an algorithm to identify the subset of states controlled
by the problem features (i.e. state space partitions) based on
previously solved problems. Second, we develop a library of
partial policies, where a partial policy is a policy for a sub-
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set of states. Lastly, we examine how to integrate the partial
policy library into the exploration of a new problem. The key
benefit of partial policy reuse is that it captures the most rele-
vant parts of the policy, rather than using irrelevant parts of a
whole policy that resulted in net positive transfer. Addition-
ally, completed partial policies could be used immediately
without learning the whole policy. Finally, the decision trees
generated by our algorithm could be initially developed by a
human expert rather than computed strictly from the source
tasks as presented in this paper. A human expert (e.g. fitness
coach) with domain specific knowledge (e.g. what types of
individuals respond well to different intervention strategies)
can effectively provide initial solutions. In the human coach-
ing domain, initial human data may be scarce so a human ex-
pert can effectively jump start the proposed algorithms (i.e.
build the decision trees for DT-partition).

The remainder of this paper is outlined as follows: In sec-
tion 2, we discuss the related work done in multi-task learn-
ing. In section 3, we discuss our problem definition. In sec-
tion 4, we introduce the specific problem that we are trying
to address. In section 5, we discuss our partial policy reuse
algorithms. In section 6, we describe our experimental setup,
results, and analysis. Finally, we conclude our work and dis-
cuss our next steps in section 7.

Related Work
In many multi-task learning domains, meta-data regarding
problem features may describe the types of problems previ-
ously learned (Sinapov et al. 2015; Rosman, Hawasly, and
Ramamoorthy 2016). For example, in the coaching domain,
occupation and BMI may influence a person’s ability to do
moderate exercise throughout the day (e.g. waitresses walk
around the restaurant while at work whereas graduate stu-
dents must sit in front of a computer all day). Sinapov et al.
use multi-task meta-data to develop a M5 model tree to esti-
mate the transfer benefit from source to target task (Sinapov
et al. 2015). Policies of the highest estimated benefit source
tasks were directly used for the targets. Unfortunately, their
approach requires a significant amount of data (i.e. solved
problems) to develop their trees which makes it infeasible
in the human coaching domain. In this paper, we attempt to
use the problems’ meta-data to a develop decision tree for
each state to identify which parts of the solutions’ (i.e. par-
tial policies) state space are controlled by which problem
features and thus useful for transfer. In order to address the
training data issue, we extend Fernandez et al.’s work (Fern-
ndez, Garca, and Veloso 2010). Fernandez et al. develop a
policy reuse algorithm for guiding policy exploration for re-
inforcement learning problems; however, Fernandez et al.’s
problems do not have meta-data regarding problem features.
Particularly, policy reuse uses a Boltzmann exploration strat-
egy on past solved policies weighting the use of a policy
based on how well it did to solve the new problem. In this
paper, we address a common issue found in both of these
works—irrelevant/not useful parts of the source tasks’ poli-
cies are being transferred. Because our state space partition-
ing algorithm identifies relevant parts of the solution based
on the problem features, we improve transfer effectiveness.
Furthermore, we extend Fernandez et al.’s Boltzman explo-

ration to partial policies which then improves training data
utilization. Finally, we extend Fernandez et al.’s algorithm
to identify the core policy library to identify a core partial
policy library.

In reinforcement learning scenarios, deep architectures
typically require substantial data to train (Glatt, Da Silva,
and Costa 2016). In human coaching domains, training data
is limited. Furthermore, existing deep architectures require
completed solutions prior to transfer. Deep architectures like
ADAAPT and Actor-mimic network use neural networks to
determine how to do transfer; however, decision trees pro-
vide meaningful descriptions that a domain expert (e.g. hu-
man fitness coach) may utilize to jump start agent learn-
ers (Parisotto, Ba, and Salakhutdinov 2015; Rajendran et al.
2015). Additionally, attribution of problem features to so-
lutions can be easily identified and later used for feedback
to the human fitness coaches to update then guide coaching
agent learners’ domain knowledge (both jump start and on-
line).

In this paper, we make several assumptions regarding
the human model that are commonly found in the litera-
ture (Saponaro, Wei, and Decker 2017; Muntaner, Vidal-
Conti, and Palou 2015; Pavel et al. 2015). The goal for this
coaching system is to provide a tailored intervention strategy
for each trainee since general strategies tend to do poorly
(op den Akker, Jones, and Hermens 2014). Trainees in this
system are assumed to be either in the contemplation, prepa-
ration, or action phases of the trans-theoretical model of be-
havior change where trainees are thinking about and/or at-
tempting to make a behavioral change by educating or tak-
ing action in their exercise regimen (Prochaska 2013). Fur-
thermore, we provide trainees with just-in-time and adaptive
nudges precisely when trainees are susceptible for change
(in the moment), rather than scheduled. We consider trainees
persisting in free-living conditions, as opposed to laboratory
controlled environments (Suay and Chernova 2011). Fur-
thermore, in this paper, we only consider when to provide
nudges for activity. We do not consider the intention, con-
tent, or representation of the nudge due to the complexity
of the system (op den Akker et al. 2015). Instead of mod-
eling the fine-grained detail such as GPS location and heart
rate, we abstract the human state into general categories that
are meaningful across trainees, but still relevant and useful.
For example, numerical GPS location would be categorized
meaningful contexts such as park and gym. In this paper,
we consider the impulse model proposed by Hoffman et al.
(Hofmann, Friese, and Strack 2009). In Hoffman et al., hu-
mans were effectively modeled by blending a habit MDP
and impulse MDP together. Particularly, trainees will either
react or not to nudges to do exercise and learn the correct
evaluations of states due to being nudged. Furthermore, we
assume our trainees follow the markov assumption; though,
a semi-markovian model can be studied to improve accuracy
(Pavel et al. 2015), we chose to simplify our human models
to an MDP in order to compare our work with the other ma-
chine learning literature.
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Problem Definition
We demonstrate our contributions in a multi-task rein-
forcement learning scenario as described by Sinapov et al.
(Sinapov et al. 2015). We assume the underlying problem
is represented as a Markov Decision Process (MDP). An
MDP is a tuple, �S,A, T,R�, where S is the set of states
S = {s1, s2, s3, . . . , sn}, A is the set of actions, T is the
stochastic transition function T : S × A × S → R, and R
is the reward function R : S → R. The agent learner does
not have access to T and R. We assume our reinforcement
learning problems have the same domain, D = �S,A, T �
and differ only by reward function. A particular reinforce-
ment learning problem is defined as Ωi = �D,Ri�. Each
Ωi is associated with a feature vector, Fi = [f1, f2, . . . fm],
such that there is an unknown and stochastic relationship be-
tween Fi and Ri.

An episode, k, of Ωi starts with the agent located in an ini-
tial state and ends when the agent reaches a goal state (ter-
minal) or after completing H steps. In this paper, the agents’
goal is to maximize the expected average reinforcement per
episode, W . This goal definition is taken from the defining
policy reuse paper (Fernndez, Garca, and Veloso 2010):

W =
1

K

K�

k=0

H�

h=0

γhrk,h (1)

where γ is the discount factor and rk,h is the reward signal
received from step h in episode k. In our specific applica-
tion area, it is important to learn and receive positive reward
early since the human may become annoyed quickly. In or-
der to achieve its goal to optimize W , the agent learner must
develop a policy π : S → A the dictates what action to be
taken in each state. In this paper, we assume there are a set
of source tasks, Tsource ⊂ Ω, that have been completely
solved (i.e optimal policy) and a set of target tasks that have
not been solved Ttarget = Ω−Tsource. In this paper, we ex-
amine developing the policy through Q-learning, though any
learning algorithm to create a policy could be implemented.

The goal of Policy Reuse is to use solutions of previously
solved tasks, to bias the exploration when learning the action
policy of a new task in the same domain (Fernndez, Garca,
and Veloso 2010). In this paper, we extend Fernandez and
Velosa’s policy reuse library and exploration bias strategy
for partial policies. Particularly, we aim to build a partial
policy library that builds a policy library for different parti-
tions of the state space. We formally define the partial policy
library as L = {LSp1

, LSp2
, LSp3

, . . . , LSpl
} where LSpi

contains a library of core partial policies associated with the
states Spi ⊂ S. We note that Spi ∈ Sp is a partition of
the state space and that all partitions have unique states (i.e.
Spi ∩ Spj = ∅, ∀i �= j). The contributions of this paper
explore how to effectively create and use this partial policy
library (i.e. PPR). Particularly, we develop a library of rele-
vant partial policies, LSpi

= {LSpi
1 , L

Spi
2 , . . . , L

Spi

� } where

L
Spi

� is the set of core partial policies relevant to agent group
� in partition Spi

. Later in the paper, we describe how to
partition the state space (i.e. determine Sp) based on F for
the purposes of identifying related solution parts (i.e. DT-

partition). We then describe how to build a core partial pol-
icy library, L.

Algorithm 1 DT-Partition
1: procedure DT-PARTITION(Tsource, S,)
2: for si ∈ S do
3: dti ← buildTree (si, Tsource)
4: end for
5: D ← ∅ � initialize state partition trees
6: Sr ← S � unpartitioned states
7: Sp ← ∅ � initialize state space partitions
8: d = 0 � initialize partition index
9: while Sr �= ∅ do

10: sk ← Sr.pop ()
11: Spd

← Spd
∪ {sk} � initialize partition Spd

12: D ← D ∪ {dtk} � initialize partition’s DT
13: for si ∈ Sr do
14: if DT-equal(dti, dtk) then
15: Spd

← Spd
∪ {si} � add si to partition

16: Sr = Sr − {si}
17: end if
18: end for
19: Sp ← Sp ∪ {Spd

}
20: d = d+ 1 � increment partition index
21: end while
22: return Sp, D
23: end procedure

Figure 1: Grid-based CTP where a) through e) are source
tasks and f) is the target task.

Grid-CTP
We demonstrate the effectiveness of partial policy reuse in
a grid-based coach-trainee problem (CTP) domain where a
coach must learn where an individual is most likely to do
exercise while not being distracted by their surroundings.

In our grid-based coach-trainee problem, the underlying
MDP can be modeled such that the states, S, are the grid
locations that the trainee can be located, the actions are
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the nudged direction that the trainee should go, the transi-
tion model represents the trainee’s likeliness to follow the
coach’s nudge, and the reward function, R, is the health ben-
efits achieved by going to a particular location. All trainees
are assumed to have the same transition model—follow the
coach’s advice 90% of the time and wander randomly the
other 10%. The reward function’s are different per problem
and related to the problem features. In this paper, we ex-
amine features related to the trainee’s surrounding location.
Particularly, we examine the following trainee’s accessibil-
ity features: park, gym, candy store, and a fry shop. Candy
shops and fry shops are distractions to the health benefits
achieved at parks and gyms. In figure 1, we show 6 grid-
CTPs. Each grid-CTP have different problem features. For
example, in figure 1 a), the trainee has access to the gym,
park, fry shop, and candy store, but in figure 1 b) the trainee
doesn’t have access to a candy store. Due to the variance in
individual trainees, we assume rewards take a uniform dis-
tribution where health benefits are between 0 and 1 and dis-
tractions are between -1 and 0. If a trainee has no access to
a community utility (e.g. gym), then no reward is given for
that state. For an example, in figure 2 d), the trainee has no
access to a gym. An episode represents a day of the trainee
and the trainee may only go to one community utility; thus,
rewarding states are terminal. We assume there are only 18
steps per episode representing that a person only has 18 wak-
ing hours per day. Furthermore, we assume we have a col-
lection of previously solved CTPs where the coach policy is
complete. In this paper, we attempt to use this past collection
of coach policies to quickly learn a new trainee’s coach’s
policy.

We make several assumptions regarding CTP that do not
affect the contributions of this paper. Particularly, we assume
the transition model is fixed meaning that the trainee is not
changing any behaviors due to incomplete or incorrect per-
ceptions of the world. For example, in the full-CTP, a trainee
may initially highly value eating french fries because they
taste good, but when the coach indicates french fries are un-
healthy, the trainee would update its views on french fries
and avoid them. Furthermore, the coach does not model the
trainee’s readiness to receive an intervention. For example, a
trainee may be busy in the morning and unwilling to do exer-
cise, and therefore ignore whatever the coach says. Finally,
we limit the problem features in this paper to the accessibil-
ity of different physical locations. In the full CTP, problem
features include occupation, body mass index (BMI), age,
social status, community utilities, etc. Though we do not
examine the full problem, the algorithms in this paper can
generalize to the full problem.

Partial Policy Reuse
In policy reuse, a source task policy is used to guide the
exploration when solving a target task. We argue that the
source task’s full policy may include irrelevant/harmful parts
in the target’s problem. For example, all athletes may be
susceptible to nudges in the morning; however, some find
it beneficial to do light exercise at night, while other athletes
find it exhaustively harmful. In this example, there may be
a partition for the day coaching strategies and a partition for

the night coaching strategies. Additionally, we argue that all
source tasks may not be relevant to the target task’s solution.
For example, runners like to run at night because the air is
cool, but weight lifters do not like to lift weights at night be-
cause the gym is dirty from being used during the day. In this
example, using a coaching strategy for a jogger on a runner
may make sense since both like to do exercise at night, but
using the jogger coaching strategy for a weight lifter may
result in negative transfer. Partial policy reuse aims to miti-
gate these issues by determining what are the relevant parts
of the solution to transfer (i.e. DT-partition) and what are the
relevant source task solutions to use when transferring these
partial solutions (i.e. partial-policy library).

DT-Partition
This section explains the DT-partition algorithm. DT-
partition aims to partition the state space based on the simi-
larity of solutions for problems with the same features in or-
der to identify parts of solutions that are relevant for transfer.
We define a state space partition as a set of states Spi

⊂ S
such that a single partition has no overlap of states with any
other partition. The following DT-partition algorithm parti-
tions the states based on the agreement of the source task
policies. See algorithm 1.

Algorithm 2 DT-Compare
1: procedure DT-EQUAL(dti, dtj)
2: if nodeType (dti) �= nodeType (dtj) then
3: return False � leaf vs. internal node
4: else if isLeaf (dti) then
5: return dti.tasks == dtj .tasks
6: else
7: if dtisplitAttribute �= dtj .splitAttribute then
8: return False
9: else

10: isEqual ← True
11: for chld ∈ children do
12: subEql ← DT-equal (dti.chld, dtj .chld)
13: isEqual ← isEqual && subEql
14: end for
15: return isEqual
16: end if
17: end if
18: end procedure

For each state, si, develop a decision tree, dti, using
Ωt ∈ Tsource as the instances such that Ft are the features
and πΩt (si) is the class value. For the purposes of this paper,
we use the C4.5 decision tree algorithm. Then, group states
together (i.e. label as a partition) such that the decision trees
are equivalent in structure. We assert that two decision trees
are equivalent if the internal nodes have the same split points
and the source tasks that reach the leaves are the same. See
algorithm 2. We note that the leaf classifications may be dif-
ferent across trees, but as long as the instances that reach
the node (i.e. Ω) and their class values are in agreement (i.e.
πΩt

(si) = πΩu
(si)), we consider the trees equivalent.
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In our experiments section, we analyze how pruning the
tree structure (i.e. decreasing number of partitions) effects
transfer learning outcome. We note that if a tree were com-
pletely pruned, the algorithm would produce a single parti-
tion equivalent to S and thus replicate policy reuse.

Partial-Policy Library

The partial policy library consists of relevant core policies
for each partition of the state space for the purposes of effec-
tively transferring knowledge. We describe how to develop
a partial policy library in algorithm 3.

Algorithm 3 Build-Partial-Policy-Library
1: procedure BUILD-PP-LIBRARY(Tsource, S, θ)
2: L ← ∅
3: Sp, D ← DT-partition (Tsource, S)
4: for i ∈ {0, . . . , |Sp|} do
5: LSpi

← ∅
6: for � ∈ Di.leaves do
7: L

Spi

l ← add-core-PP (Spi , �.Ω, θ)

8: LSpi
← LSpi

∪ {LSpi

l }
9: end for

10: L ← L ∪ {LSpi
}

11: end for
12: end procedure

In our algorithm, we partition the state space using a par-
titioning algorithm like the one previously discussed. For
each partition Spi

, we use the corresponding partition’s de-
cision tree structure, Di, to determine the source tasks for
each relevant group �. Instances at each leaf in Di are con-
sidered within the same relevant source task group. In our
experiments described later, we examine pruning the tree’s
structure to show the effects of available source tasks and
relevancy for transfer.

As described in algorithm 5, using the relevant source
tasks at each leaf, Ω

Spi

� , we build the core partial library for
L
Spi

� . For a particular source task, Ωm, we add its corre-
sponding policy, πm, to the library if the percent increase
in expected performance (i.e. ŵm) of using its policy com-
pared with the expected performance of the best policy in
the library is greater than a threshold, θ. In order to estimate
the W , we use the task’s Q-values. It is non-trivial to directly
compute the partial policies expected performance because
the performance is dependent on the full policy.

We note that when we fully prune the tree’s structure
when determining source task selection, all source tasks are
used. Furthermore, when we prune both the state space par-
tition tree and the source task selection tree, we reduce our
partial policy reuse algorithms to the defining policy reuse
algorithm as defined in (Fernndez, Garca, and Veloso 2010).
Furthermore, though we present a decision tree based algo-
rithm that uses agreement between policies, other optimiza-
tions that better partition the state space and identify relevant
source tasks may be utilized.

Algorithm 4 Ωnew Learning from the partial policy library
1: procedure LEARN(Ωnew, L,K,H, v,Δτ )
2: Qnew (s, a) = 0, ∀s ∈ S, a ∈ A

3: USpi
,n = 0, ∀i : Spi ∈ Sp, ∀n : π

Spi
n ∈ L

Spi

�
4: Wspi ,n

= 0
5: τ = 0
6: for k = 1 to K do
7: s ← sstart
8: φ ← φinit
9: πSpi

← πSpi
,n with probability e

τ·Wspi
,n

�
o

e
τ·Wspi

,o

10: Wk = 0
11: for h = 1 to H do
12: Spi

← Spk
s.t. s ∈ Spk

13: With probability φ, a = πSpi

14: With probability 1−φ, a = �-greedy (Ωnew)
15: s� ← next state, rk,h ← reward signal
16: Wk ← Wk + γh · rk,h
17: update Qnew and πnew
18: φ ← φ · v
19: s ← s�

20: end for
21: τ ← τ +Δτ
22: USpi

,n ← USpi
,n + 1, ∀Spi

∈ Sp

23: Wspi ,n
← Wspi

,n·(Uspi
,n−1)+Wk

Uspi
,n

, ∀Spi
∈ Sp

24: end for
25: end procedure

Algorithm 5 Add Core Partial Policies

1: procedure ADD-CORE-PP(Spi
,Ω

Spi

l , θ)
2: L

Spi

l ← ∅
3: for Ωm ∈ Ω

Spi

l do
4: πm ← Ωm.π
5: Ŵπm ← �

sj∈Spi

Qm (sj ,πm (sj))

6: Ŵbest = max
πk∈L

Spi
l

�
sj∈Spi

Qm (sj ,πk (sj))

7: if Ŵπm
− Ŵbest > θ

���Ŵbest
��� then

8: L
Spi

l ← L
Spi

l ∪ {πm}
9: end if

10: end for
11: return L

Spi

l
12: end procedure
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height of the tree and the performance is not linear. Particu-
larly, the decision trees with height 2 do worse than when the
heights are 0 and 4. We hypothesize that the decision trees
of height 2 perform poorly with respect to the other heights
because the useful amount of knowledge per partition was
low. Particularly, we believe there were too many decisive
states (i.e. parts of trajectories that led to reward), yet not
enough useful knowledge gained from the experts in these
partitions.

Increasing the Quantity of Source Tasks in Library

In this experiment, we partition the state space using algo-
rithm 1; however, after we’ve determined the state space par-
tition, we prune the decision trees to heights of 0, 2, and 4
before developing the core partial policy library. For a par-
ticular partition, pruning the tree increases the number of
source tasks used in the partial policy library for that parti-
tion. When plotting the results of average performance per
episode, We get similar results as shown in figure 2 where
the fully developed tree performs best, while the height of
2 tree performs only better than Q-learning. We hypothesize
the that partitioning algorithm may not be yielding effective
partial expert policies in some of the partitions.

Conclusion

In this paper, we demonstrate the effectiveness of probabilis-
tic partial policy reuse in the CTP domain. In human learn-
ing domains where training data is limited and costly, agents
need to quickly learn a solution in order to not be seen as an-
noying or irrelevant (i.e. low time to threshold). Partial pol-
icy reuse allows agent learners to achieve this by partitioning
the state space and using relevant partial policies to solve a
problem. In this paper, we present novel algorithms to parti-
tion the state space, develop a core partial policy library, and
use a partial policy library while learning. Our algorithms
allow for agent learners to learn parts of the state space and
become partial experts (i.e. source tasks) without completely
solving the underlying problem. The partial policy reuse al-
gorithm presented in this paper trades off both the amount of
transferred content and the availability of source tasks with
the relevance of source tasks. In this paper, we examine de-
cision tree based solutions because domain experts (i.e. fit-
ness coaches) may be able to manually provide a structure
based on their expert opinion. For example, in the CTP do-
main, a physical activity coach may notice that occupation is
a strong indicator of group behavior in physical activity. Par-
ticularly, nurses walk often during the day, so nudges may
be useless during the day, but for graduate students, nudges
may be useful during the day. Though we develop partial
policies, individual partial policy performance attribution is
an open question. In realistic human learning systems such
as CTP, a better attribution design may be needed. The work
presented in this paper attempts to improve learning effi-
ciency in order to create tailored interventions strategies in
the human coaching domain; however, our work can also be
applied to other multi-task learning domains.
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