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Abstract 

Traditionally, meta-reasoning architectures for planning 
have used abstract representations of expectations about the 
states of the world. However, embodiment of meta-
reasoning on a robot requires grounding the expectations in 
perception. We propose a dual encoding of expectations 
based in the concept of occupancy grids. We illustrate this 
encoding for the task of designing shapes by block place-
ment on a tabletop.  

Introduction 

Agent architectures for meta-reasoning typically contain 
three levels or types of information processing: an object 
level that perceives the world and acts on it; a deliberative 
level that makes sense of observations of the world and 
plans actions on world, and a meta-level that monitors and 
controls the deliberative level through goals and strategies, 
failures and repairs, and learning and adaptation. Figure 1 
outlines a basic general meta-reasoning architecture. (Cox 
2005) provides a review of many meta-reasoning architec-
tures; Cox & Raja (2011) provide a more recent anthology 
of projects on meta-reasoning. 
 In a meta-reasoning architecture, when an agent reasons 
about failures, it first generates expectations about the state 
of the world, then compares the observed state of the world 
with the expected state, next maps the discrepancy between 
expected and observed state (the failure) into one or more 
repairs at the deliberative level (Stroulia & Goel 1995; 
Murdock & Goel 2008). The recognition of a failure 
through a comparison of the expected state and the ob-
served state can be challenging if the observations are 
made through low-level sensors and the expectations are 
encoded in terms of abstract knowledge representations. 
Meta-reasoning architectures sometimes use specialized 
procedures to address this problem (Stroulia & Goel 1999; 
Jones & Goel 2012). For example, the Augur system uses 

specially designed “empirical verification procedures” to 
map abstract knowledge representations with perceptual 
observations (Jones & Goel 2012). 
 For our work on robots capable of meta-reasoning (e.g., 
Parashar, Sheneman & Goel 2017), we seek a more general 
strategy for comparing expected and observed states and 
recognizing failures. In robotics, seeing sometimes garners 
more information than translating it in terms of the pres-
ence or absence of pre-defined symbols.  Grounding the 
expectations into perception may have more transparency 
between the way a robot and the algorithm operating in its 
mind experience the world. Thus, we propose the use of 
dual encodings of expectations that include low-level visu-
al encodings along with abstract representations. 

In particular, in this article, we tackle the problem of de-
signing shapes on a tabletop via block placements. Such a 
task design problem requires visual details beyond symbol-
ic bindings to be actuated. Our approach uses the concept 
of functional indexing in meta-reasoning (Stroulia and 
Goel 1995) to encode domain knowledge from visual per-
cepts into a grid-map which describes the form of physical 
placement of objects on the workspace. We propose a hier-
archical representation for expectations where top-levels 
are defined by variables bindings and graph-based block-
level symbol relationships, which can then be traced down 
into the hierarchy to find the grid-map encoding of ex-
pected block placement. 

Our experimental setup uses the robot Baxter which is 
furnished with a library of hand-coded hierarchical task 

Figure 1. General Meta-reasoning Architecture 
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networks and annotated expectation databases to plan for 
drawing shapes. We create example failure cases to com-
pare the meta-reasoning cycle which uses our expectations 
against one which only uses the symbolic-level.  

The rest of the paper gives a quick introduction of rele-
vant concepts and related literature. Next we explain the 
experimental setup and our methodology for extracting 
expectation annotations from an image feed. Finally, in the 
results section we present a qualitative assessment of our 
system for failure recovery where failures are induced by 
changing the environmental conditions to mismatch plan 
pre-conditions at different depths. 

Background 

We use Hierarchical Task Networks (Erol, Hendler and 
Nau 1994) to represent the plans for drawing shapes out of 
blocks. HTNs have two kinds of tasks: primitive actions or 
nonprimitive tasks. Each goal task is recursively decom-
posed into sub-tasks until a network of primitive actions 
remains, which is the base unit of execution, directly trig-
gering some physical actuation in the agent. Nonprimitive 
tasks on the other hand are compound entities which can be 
further decomposed into sub-tasks. Each task has a set of 
pre-conditions and effects attached to it. Pre-conditions 
define in which state can a task be used to decompose a 
parent goal and effects depict how the task changes the 
state. In order to decompose a task into sub-tasks HTN 
uses the following rule: {t} → {t′, t′′}, if pre(t’) = pre(t), 
pre(t’’) = eff(t’) and eff(t’’) = eff(t). In our system, each 
task is a hand-coded network which can be executed for 
drawing the symbol, for example, task A is a network 
which when executed forms the shape A on the table using 
blocks. 

We know from the introduction section above that a me-
ta-reasoner (figure 1) uses expectations to monitor agent’s 
processes, records an execution trace and then reasons over 
it to find explanations for a failure. A complete meta-
reasoning cycle would: (1) note ambiguities using expecta-
tions, (2) assess the reason for the unexpected scenario, 
and (3) reason over the plan trace and environment to 
guide a solution. Ambiguities are defined as mismatch be-
tween expected state description and encountered state 
during execution, defined by a mismatch vector which is a 
zero-vector of the same size as an expectation’s symbolic 
description with mismatched variables assigned a 1. Find-
ing explanations for ambiguities is a research area of its 
own and we are focusing on a very narrow range, i.e., un-
seen configurations of known objects. The current paper 
only addresses the first two stages of this pipeline for the 
outlined problem.  

Related Work 

Another framework relevant to meta-reasoning is that of 
goal-driven agents (Muñoz-Avila, et al. 2010) which uses 
expectations to monitor failures, and uses failures as an 
opportunity to learn new intermediate goals which can help 
with the overall task goal. Our work has some similarity 
with (Dannenhauer and Muñoz-Avila 2015), since they too 
use HTN plans annotated with expectations to conduct 
meta-level reasoning over their incomplete plans. Howev-
er, their expectations are of a conceptual form, abstracted
on top of environmental symbols. 
 (Stroulia and Goel 1995) use an explicit “structure-
behavior-function” model in to assign blame to various 
parts of system’s current design in a failure case. (Jones 
and Goel 2012) present “Empirical Verification Proce-
dures” which ground all high-level concepts and axioms 
known to the agent in lower-level percepts of a video 
game. (Parashar, Sheneman and Goel 2017) combine meta-
reasoning with reinforcement learning using purely visual 
form expectations. However, they still use symbolic de-
scriptions or computerized descriptions of visual which 
simplifies the perception part of the problem. 

In robotics, (Beetz, Mösenlechner and Tenorth 2010) 
and (Cox, et al. 2016) have used reasoning over abstracted 
concepts to help with low-level manipulation and task 
planning in robotics. However, all these methods use the 
symbolic layer to integrate reasoning with the environ-
ment. 

Approach 

Experimental Setup 

 We are using Mega BloksTM to draw shape and for sim-
plicity will be referring to a single unit as a block. Our sys-
tem considers two different shapes of blocks: 1x1 and 1x2; 
and supports two different colors: blue and red. Goals are 
communicated as strings naming the shape to be drawn. 
Each block’s physical placement is described by two at-
tributes, its orientation with respect to the table’s axis and 
the location of its centroid in the workspace (figure 1). 
When blocks are recognized in an image they are indexed 
with a number starting at 0, e.g. b0 = {color, shape}. To 
describe the placement of two blocks with respect to each 
other we use a graph-based format where R0,1 is a trans-
form which when applied to the orientation and location of 
centroid of block b0 would result in the centroid of block 
b1. A 1x1 sized Mega Blok is of length 6.1 cm and width 
6.1 cm, which we denote as lb in the rest of the paper. 
 In order to codify the pre-conditions and effects of the 
HTN tasks we use a symbolic state descriptions which in-
clude: (a) obgrip: a single-value set depicting the block in 
the gripper, φ if empty and {i, j} if a block of color i and 
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shape j is in the gripper, and (b) B: set of pairs depicting 
the required blocks and their availability. Other variables 
have been abstracted because they are not relevant to cur-
rent discussion. Similarly, the only primitive action is: 
place(b, x, y) which subsumes smaller actions within it. 

Hierarchical Representation of Expectations 

The planning framework is still only using symbolic de-
scriptions since we do not want the high-level planner to be 
bogged down by the details of the scene, however if a fail-
ure is noted we need access to a deeper knowledge-base 
which is encoded in our expectations. Hierarchical expec-
tations are coded so that the 0th level has block-symbols 
describing the resultant composition effect an action and 
on the next or 1st level, we have cropped visual grid-maps 
centered on each block to capture a locally detailed de-
scription of its placement. Each grid-map is of length 
3𝑙𝑏x3𝑙𝑏 to include the block and some of the surrounding 
context. The plans are annotated with expectations at the 
primitive action level and backtracked to the goal task-
level by assigning the parent task the expectation of last 
primitive action in its decomposition. 

The expectation extractor uses a top-view image feed of 
workspace, via the robot’s eye-in-hand setup, to extract 
expectations associated with each stage of the hierarchical 
task network. The block-level description of a symbol is 
extracted by performing HSV color-thresholding for blob 
detection on the tabletop view of the symbol under-
construction. Once a colored blob is found, its shape is 
assigned by comparing blob-axis with 𝑙𝑏. Next, the visual 
expectation is a cropped centered on the centroid of the 
blob, and a quantized view of the form of the blob, i.e., a 

grid-map is created. A grid-map is like an occupancy grid 
where the occupancy of a cell is decided based on color 
presence of the block on a uniformly colored background. 
The resolution of grid-map is 

1

2
lb . 

It is to be noted that such a low-level description would 
require domain knowledge to be encoded since its form is 
tightly integrated with the goal of the problem itself. In the 
current implementation, the HTN plan is executed by an 
expert kinesthetically driving the agent to annotate the plan 
with resulting “ideal profile” of expectations. After the full 
execution, the expectation annotator creates two kinds of 
databases, one of annotated plans, denoted as Pa, and an-
other one of the low-level grid-maps and symbolic expec-
tations annotated by the causing action(s) which points 
back to the parent task itself, denoted by Edb. If multiple 
instantiations collide with the same expectation entry, then 
that expectation is annotated with all the corresponding 
action labels. The second database is key for a two-way 
communication between sensor information and plan 
knowledge even when symbol grounding fails during run-
time. 

Experimental Results

As one can see by looking at the state description, the fail-
ure can be of logical or physical kind. By physical we 
mean misplacement of gripper, wrong state of gripper, etc. 
This paper does not address these failures. In the rest of the 
paper when we explain our algorithm we are addressing 
only the logical failures, i.e., missing blocks, unexpected 
configuration of blocks, etc. We broadly classify the fail-
ures into two kinds, one where known entities are observed 
in an unseen configuration thus going against the explicit 
nature of pre-conditions, and one where unknown entities 
are observed breaking the planner’s assumptions. We pre-
sent here an example case where we create both kinds of 
failures by manipulating the environment. In this example, 
we have provided the agent with the plans for shape A and 
H (figure 2), using two 1x1 blocks for H rather than one 
1x2 block. We use these shapes because they possess the 
kind of form similarities we want our algorithm to identify. 
We want to see if our expectations can help in creating 
connections between pieces of knowledge already stored in 
our database better than symbolic expectations. Next, the 
environment is modified to progressively make the failure 
more difficult for drawing the shape A. We replace re-
quired 1x2 block with another: 

• Block of same shape but different color 
• Set of two 1x1 blocks of same color 
• Set of two 1x1 blocks of different color 

The mismatch vector is used to identify the 1st instance 
of action in the invoked task which uses the mismatched 
entity, i.e., block in our case. Next, this action’s expecta- 

Figure 2. Depiction of Hierarchical Expectations, position of 

centroid removed from symbolic description for brevity. At the 

top, darker H shape is blue while lighter A is red. 
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tion is retrieved from 𝑃𝑎 and a nearest-neighbor algorithm 
is invoked to find ranked matches from 𝐸𝑑𝑏 . We compare 
the entries retrieved by symbolic matching and grid-map  
matching to qualitatively assess the usefulness of our hier-
archical expectation representation. 

Results and Discussion 

Our results are summarized in table 1 and compare the 
grid-map retrievals against symbol expectation matching. 
The most significant result is shown in row 3 where due to 
functional encoding of grid-maps its matches were able to 
search for a visual similarity of form unlike symbolic 
matching. For row 2, neither found a match since no shape 
uses {1x1, red} blocks in the current HTN plan library. 

Our approach lends itself naturally to hybrid execution 
architectures where reactive learners manipulate raw-data 
and work in synchrony with deliberative planners which 
rely on some heuristic or some other form of domain 
knowledge. While it is easy to think of meta-reasoner as 
only an additional layer, its strength lies in enabling trading 
of valuable information across these two layers. It is this 
strength of meta-reasoner to form a global view which we 
believe will be a valuable addition to the long-term auton-
omy literature in robotics. Specifically, its across-event 
reasoning can augment the strength of episodic perfor-
mance exhibited by reactive learners and task-oriented 
planners. 

Conclusion 

We presented in this paper dual encoding of expectations 
used in meta-reasoning to ground abstract representations 
of world states within perceptual encodings. We performed 
an experiment by changing our task environment to break 
pre-conditions coded for the required task and compared 
the visual expectations against the abstract expectations to 

see which form can help in recognizing failure as a first 
step towards failure recovery. Our results match our hy-
pothesis: by encoding functional and visual form of the 
world within expectations, the meta-reasoner can make 
better connections within its knowledge base. 
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Type of Replacement Affected Action-Exp Pair Grid-map Match Symbolic Match 

1x2, red → 1x2, blue 

b0 = {1x2,red} at 90o 

 

b4 = {1x2,blue} at 90o b4 = {1x2,blue} at 90o 

1x2, red → 1x1, red +  

1x1, red 

b0 = {1x2,red} at 90o 

 

None None 

1x2, red → 1x1, blue +  

1x1, blue 

b0 = {1x2,red} at 90o 

 

b2 = {1x1,blue} at 0o  

None 

Table 1. Summary of Match results. The white square shows which block’s resultant placement expectation in shape H was matched 
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