

Using hierarchical expectations grounded in perception for reasoning

about failures during task execution

Priyam Parashar€, Ashok K. Goel£ and Henrik I. Christensen€
€ Contextual Robotics Institute, CSE Department, UC San Diego, 9500 Gilman Drive, La Jolla, CA USA

£ Design & Intelligence Laboratory, College of Computing Georgia Institute of Technology, Atlanta, Georgia USA

[pparasha, hichristensen] @eng.ucsd.edu, ashok.goel@cc.gatech.edu

Abstract

Traditionally, meta-reasoning architectures for planning
have used abstract representations of expectations about the
states of the world. However, embodiment of meta-
reasoning on a robot requires grounding the expectations in
perception. We propose a dual encoding of expectations
based in the concept of occupancy grids. We illustrate this
encoding for the task of designing shapes by block place-
ment on a tabletop.

Introduction

Agent architectures for meta-reasoning typically contain
three levels or types of information processing: an object
level that perceives the world and acts on it; a deliberative
level that makes sense of observations of the world and
plans actions on world, and a meta-level that monitors and
controls the deliberative level through goals and strategies,
failures and repairs, and learning and adaptation. Figure 1
outlines a basic general meta-reasoning architecture. (Cox
2005) provides a review of many meta-reasoning architec-
tures; Cox & Raja (2011) provide a more recent anthology
of projects on meta-reasoning.
 In a meta-reasoning architecture, when an agent reasons
about failures, it first generates expectations about the state
of the world, then compares the observed state of the world
with the expected state, next maps the discrepancy between
expected and observed state (the failure) into one or more
repairs at the deliberative level (Stroulia & Goel 1995;
Murdock & Goel 2008). The recognition of a failure
through a comparison of the expected state and the ob-
served state can be challenging if the observations are
made through low-level sensors and the expectations are
encoded in terms of abstract knowledge representations.
Meta-reasoning architectures sometimes use specialized
procedures to address this problem (Stroulia & Goel 1999;
Jones & Goel 2012). For example, the Augur system uses

specially designed “empirical verification procedures” to
map abstract knowledge representations with perceptual
observations (Jones & Goel 2012).
 For our work on robots capable of meta-reasoning (e.g.,
Parashar, Sheneman & Goel 2017), we seek a more general
strategy for comparing expected and observed states and
recognizing failures. In robotics, seeing sometimes garners
more information than translating it in terms of the pres-
ence or absence of pre-defined symbols. Grounding the
expectations into perception may have more transparency
between the way a robot and the algorithm operating in its
mind experience the world. Thus, we propose the use of
dual encodings of expectations that include low-level visu-
al encodings along with abstract representations.

In particular, in this article, we tackle the problem of de-
signing shapes on a tabletop via block placements. Such a
task design problem requires visual details beyond symbol-
ic bindings to be actuated. Our approach uses the concept
of functional indexing in meta-reasoning (Stroulia and
Goel 1995) to encode domain knowledge from visual per-
cepts into a grid-map which describes the form of physical
placement of objects on the workspace. We propose a hier-
archical representation for expectations where top-levels
are defined by variables bindings and graph-based block-
level symbol relationships, which can then be traced down
into the hierarchy to find the grid-map encoding of ex-
pected block placement.

Our experimental setup uses the robot Baxter which is
furnished with a library of hand-coded hierarchical task

Figure 1. General Meta-reasoning Architecture

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

70

networks and annotated expectation databases to plan for
drawing shapes. We create example failure cases to com-
pare the meta-reasoning cycle which uses our expectations
against one which only uses the symbolic-level.

The rest of the paper gives a quick introduction of rele-
vant concepts and related literature. Next we explain the
experimental setup and our methodology for extracting
expectation annotations from an image feed. Finally, in the
results section we present a qualitative assessment of our
system for failure recovery where failures are induced by
changing the environmental conditions to mismatch plan
pre-conditions at different depths.

Background

We use Hierarchical Task Networks (Erol, Hendler and
Nau 1994) to represent the plans for drawing shapes out of
blocks. HTNs have two kinds of tasks: primitive actions or
nonprimitive tasks. Each goal task is recursively decom-
posed into sub-tasks until a network of primitive actions
remains, which is the base unit of execution, directly trig-
gering some physical actuation in the agent. Nonprimitive
tasks on the other hand are compound entities which can be
further decomposed into sub-tasks. Each task has a set of
pre-conditions and effects attached to it. Pre-conditions
define in which state can a task be used to decompose a
parent goal and effects depict how the task changes the
state. In order to decompose a task into sub-tasks HTN
uses the following rule: {t} → {t′, t′′}, if pre(t’) = pre(t),
pre(t’’) = eff(t’) and eff(t’’) = eff(t). In our system, each
task is a hand-coded network which can be executed for
drawing the symbol, for example, task A is a network
which when executed forms the shape A on the table using
blocks.

We know from the introduction section above that a me-
ta-reasoner (figure 1) uses expectations to monitor agent’s
processes, records an execution trace and then reasons over
it to find explanations for a failure. A complete meta-
reasoning cycle would: (1) note ambiguities using expecta-
tions, (2) assess the reason for the unexpected scenario,
and (3) reason over the plan trace and environment to
guide a solution. Ambiguities are defined as mismatch be-
tween expected state description and encountered state
during execution, defined by a mismatch vector which is a
zero-vector of the same size as an expectation’s symbolic
description with mismatched variables assigned a 1. Find-
ing explanations for ambiguities is a research area of its
own and we are focusing on a very narrow range, i.e., un-
seen configurations of known objects. The current paper
only addresses the first two stages of this pipeline for the
outlined problem.

Related Work

Another framework relevant to meta-reasoning is that of
goal-driven agents (Muñoz-Avila, et al. 2010) which uses
expectations to monitor failures, and uses failures as an
opportunity to learn new intermediate goals which can help
with the overall task goal. Our work has some similarity
with (Dannenhauer and Muñoz-Avila 2015), since they too
use HTN plans annotated with expectations to conduct
meta-level reasoning over their incomplete plans. Howev-
er, their expectations are of a conceptual form, abstracted
on top of environmental symbols.
 (Stroulia and Goel 1995) use an explicit “structure-
behavior-function” model in to assign blame to various
parts of system’s current design in a failure case. (Jones
and Goel 2012) present “Empirical Verification Proce-
dures” which ground all high-level concepts and axioms
known to the agent in lower-level percepts of a video
game. (Parashar, Sheneman and Goel 2017) combine meta-
reasoning with reinforcement learning using purely visual
form expectations. However, they still use symbolic de-
scriptions or computerized descriptions of visual which
simplifies the perception part of the problem.

In robotics, (Beetz, Mösenlechner and Tenorth 2010)
and (Cox, et al. 2016) have used reasoning over abstracted
concepts to help with low-level manipulation and task
planning in robotics. However, all these methods use the
symbolic layer to integrate reasoning with the environ-
ment.

Approach

Experimental Setup

 We are using Mega BloksTM to draw shape and for sim-
plicity will be referring to a single unit as a block. Our sys-
tem considers two different shapes of blocks: 1x1 and 1x2;
and supports two different colors: blue and red. Goals are
communicated as strings naming the shape to be drawn.
Each block’s physical placement is described by two at-
tributes, its orientation with respect to the table’s axis and
the location of its centroid in the workspace (figure 1).
When blocks are recognized in an image they are indexed
with a number starting at 0, e.g. b0 = {color, shape}. To
describe the placement of two blocks with respect to each
other we use a graph-based format where R0,1 is a trans-
form which when applied to the orientation and location of
centroid of block b0 would result in the centroid of block
b1. A 1x1 sized Mega Blok is of length 6.1 cm and width
6.1 cm, which we denote as lb in the rest of the paper.
 In order to codify the pre-conditions and effects of the
HTN tasks we use a symbolic state descriptions which in-
clude: (a) obgrip: a single-value set depicting the block in
the gripper, φ if empty and {i, j} if a block of color i and

71

shape j is in the gripper, and (b) B: set of pairs depicting
the required blocks and their availability. Other variables
have been abstracted because they are not relevant to cur-
rent discussion. Similarly, the only primitive action is:
place(b, x, y) which subsumes smaller actions within it.

Hierarchical Representation of Expectations

The planning framework is still only using symbolic de-
scriptions since we do not want the high-level planner to be
bogged down by the details of the scene, however if a fail-
ure is noted we need access to a deeper knowledge-base
which is encoded in our expectations. Hierarchical expec-
tations are coded so that the 0th level has block-symbols
describing the resultant composition effect an action and
on the next or 1st level, we have cropped visual grid-maps
centered on each block to capture a locally detailed de-
scription of its placement. Each grid-map is of length
3𝑙𝑏x3𝑙𝑏 to include the block and some of the surrounding
context. The plans are annotated with expectations at the
primitive action level and backtracked to the goal task-
level by assigning the parent task the expectation of last
primitive action in its decomposition.

The expectation extractor uses a top-view image feed of
workspace, via the robot’s eye-in-hand setup, to extract
expectations associated with each stage of the hierarchical
task network. The block-level description of a symbol is
extracted by performing HSV color-thresholding for blob
detection on the tabletop view of the symbol under-
construction. Once a colored blob is found, its shape is
assigned by comparing blob-axis with 𝑙𝑏. Next, the visual
expectation is a cropped centered on the centroid of the
blob, and a quantized view of the form of the blob, i.e., a

grid-map is created. A grid-map is like an occupancy grid
where the occupancy of a cell is decided based on color
presence of the block on a uniformly colored background.
The resolution of grid-map is

1

2
lb .

It is to be noted that such a low-level description would
require domain knowledge to be encoded since its form is
tightly integrated with the goal of the problem itself. In the
current implementation, the HTN plan is executed by an
expert kinesthetically driving the agent to annotate the plan
with resulting “ideal profile” of expectations. After the full
execution, the expectation annotator creates two kinds of
databases, one of annotated plans, denoted as Pa, and an-
other one of the low-level grid-maps and symbolic expec-
tations annotated by the causing action(s) which points
back to the parent task itself, denoted by Edb. If multiple
instantiations collide with the same expectation entry, then
that expectation is annotated with all the corresponding
action labels. The second database is key for a two-way
communication between sensor information and plan
knowledge even when symbol grounding fails during run-
time.

Experimental Results

As one can see by looking at the state description, the fail-
ure can be of logical or physical kind. By physical we
mean misplacement of gripper, wrong state of gripper, etc.
This paper does not address these failures. In the rest of the
paper when we explain our algorithm we are addressing
only the logical failures, i.e., missing blocks, unexpected
configuration of blocks, etc. We broadly classify the fail-
ures into two kinds, one where known entities are observed
in an unseen configuration thus going against the explicit
nature of pre-conditions, and one where unknown entities
are observed breaking the planner’s assumptions. We pre-
sent here an example case where we create both kinds of
failures by manipulating the environment. In this example,
we have provided the agent with the plans for shape A and
H (figure 2), using two 1x1 blocks for H rather than one
1x2 block. We use these shapes because they possess the
kind of form similarities we want our algorithm to identify.
We want to see if our expectations can help in creating
connections between pieces of knowledge already stored in
our database better than symbolic expectations. Next, the
environment is modified to progressively make the failure
more difficult for drawing the shape A. We replace re-
quired 1x2 block with another:

• Block of same shape but different color
• Set of two 1x1 blocks of same color
• Set of two 1x1 blocks of different color

The mismatch vector is used to identify the 1st instance
of action in the invoked task which uses the mismatched
entity, i.e., block in our case. Next, this action’s expecta-

Figure 2. Depiction of Hierarchical Expectations, position of

centroid removed from symbolic description for brevity. At the

top, darker H shape is blue while lighter A is red.

72

tion is retrieved from 𝑃𝑎 and a nearest-neighbor algorithm
is invoked to find ranked matches from 𝐸𝑑𝑏 . We compare
the entries retrieved by symbolic matching and grid-map
matching to qualitatively assess the usefulness of our hier-
archical expectation representation.

Results and Discussion

Our results are summarized in table 1 and compare the
grid-map retrievals against symbol expectation matching.
The most significant result is shown in row 3 where due to
functional encoding of grid-maps its matches were able to
search for a visual similarity of form unlike symbolic
matching. For row 2, neither found a match since no shape
uses {1x1, red} blocks in the current HTN plan library.

Our approach lends itself naturally to hybrid execution
architectures where reactive learners manipulate raw-data
and work in synchrony with deliberative planners which
rely on some heuristic or some other form of domain
knowledge. While it is easy to think of meta-reasoner as
only an additional layer, its strength lies in enabling trading
of valuable information across these two layers. It is this
strength of meta-reasoner to form a global view which we
believe will be a valuable addition to the long-term auton-
omy literature in robotics. Specifically, its across-event
reasoning can augment the strength of episodic perfor-
mance exhibited by reactive learners and task-oriented
planners.

Conclusion

We presented in this paper dual encoding of expectations
used in meta-reasoning to ground abstract representations
of world states within perceptual encodings. We performed
an experiment by changing our task environment to break
pre-conditions coded for the required task and compared
the visual expectations against the abstract expectations to

see which form can help in recognizing failure as a first
step towards failure recovery. Our results match our hy-
pothesis: by encoding functional and visual form of the
world within expectations, the meta-reasoner can make
better connections within its knowledge base.

References

Beetz, M., L. Mösenlechner & M. Tenorth. 2010. CRAM - A
Cognitive Robot Abstract Machine for everyday manipulation in
human environments. IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1012-1017.

Cox, M.. 2005. Field Review: Metacognition in Computation: A
Selected Research Review. Artif. Intell. 169: 104-141.Cox, M. ,
Z. Alavi, D. Dannenhauer, V. Eyorokon, H. Muñoz-Avila & D,
Perlis. 2016. MIDCA: A Metacognitive, Integrated Dual-Cycle
Architecture for Self-Regulated Autonomy. AAAI. 3712-3718.

Dannenhauer, D & H. Muñoz-Avila. 2015. Goal-Driven
Autonomy with Semantically-Annotated Hierarchical Cases.
Case-Based Reasoning Research and Development, 88-103.

Erol, K., J. Hendler & D. Nau. 1994. HTN planning: Complexity
and expressivity. AAAI. 1123-1128.

Jones.,J. & A. Goel. 2012. Perceptually grounded self-diagnosis
and self-repair of domain knowledge. Knowledge-Based Systems
27: 281-301.

Muñoz-Avila, H., U. Jaidee, D. Aha & E. Carter. 2010. Goal-
Driven Autonomy with Case-Based Reasoning. Case-Based
Reasoning. Research and Development, pp. 228-241.

Parashar, P, B. Sheneman & A. Goel. 2017. Adaptive Agents in
Minecraft: A Hybrid Paradigm for Combining Domain
Knowledge with Reinforcement Learning. In Procs AAMAS-
2017, pp. 86-100.

Stroulia, E, & A. Goel. 1995. Functional representation and
reasoning for reflective systems. Applied Artificial Intelligence 9:
101-124.

Stroulia, E., & Goel, A. 1999. Evaluating Problem-Solving Meth-
ods in Evolutionary Design: The Autognostic Experiments. Hu-
man-Computer Studies 51:825-847, 1999.

Type of Replacement Affected Action-Exp Pair Grid-map Match Symbolic Match

1x2, red → 1x2, blue

b0 = {1x2,red} at 90o

b4 = {1x2,blue} at 90o b4 = {1x2,blue} at 90o

1x2, red → 1x1, red +

1x1, red

b0 = {1x2,red} at 90o

None None

1x2, red → 1x1, blue +

1x1, blue

b0 = {1x2,red} at 90o

b2 = {1x1,blue} at 0o

None

Table 1. Summary of Match results. The white square shows which block’s resultant placement expectation in shape H was matched

73

