
From Abstract to Executable Models for Multi-Agent Path Finding on Real Robots

Roman Barták, Jiřı́ Švancara, Věra Škopková, David Nohejl
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

bartak@ktiml.mff.cuni.cz

Abstract

Multi-agent path finding (MAPF) deals with the prob-
lem of finding a collision-free path for a set of agents
(robots). An abstract model with a graph describing the
environment and agents moving between the nodes of
the graph has been proposed. This model is widely ac-
cepted by the MAPF community and majority of MAPF
algorithms rely on this model. In this paper we argue
that the model may not be appropriate, when the plans
are to be executed on real robots. We provide some pre-
liminary empirical evidence that abstract plans deviate
from real plans executed on robots and we compare sev-
eral variants of abstract models. The paper motivates
further research on abstraction of problems with respect
to applicability of solutions in practice.

Introduction
Abstraction is the process of removing details from a prob-
lem representation. It is a critical step in problem solving as
without abstraction “intelligent agents would be completely
swamped by the real world” (Russell and Norvig 2009).
Despite its importance, little attention has been paid to ab-
straction techniques compared to, for example, solving tech-
niques. In areas, such as planning, the formal abstract model
has been proposed and many concrete domain models are
used for benchmarking, but the studies how to obtain such
models and how the models relate to real world are rare.

In this paper, we look at a specific planning problem
called multi-agent path finding (MAPF) that deals with find-
ing collision-free paths for a set of agents. We selected this
problem for several reasons. First, MAPF has a strong prac-
tical applicability in areas such as warehousing and intelli-
gent road junctions. Second, there exists a widely-accepted
uniform abstract model of MAPF that uses only a few ab-
stract types of actions that are easily executed on real robots.

Our goal is studying appropriateness of MAPF abstract
models from the perspective of executing the obtained plans.
We will present the core abstract model used by state-of-the-
art solvers together with several extensions closer to reality.
The obtained plans will be empirically compared by execut-
ing them on real robots called Ozobots (Ozobot & Evollve,
Inc. 2018). This is a short version of paper (Barták et al.
2018), which gives full technical details. We focus on moti-
vating this type of research and on discussing futures steps.

Background on MAPF
Formally, the MAPF problem is defined by a graph G =
(V,E) and a set of agents a1, . . . , ak, where each agent ai
is associated with starting location si ∈ V and goal location
gi ∈ V . The time is discrete and in every time step each
agent can either move from its location to a neighboring lo-
cation or wait in its current location. A grid map with a unit
length of each edge is often used to represent the environ-
ment (Ryan 2008). The task is to find a collision-free path
for each agent, where the collision occurs when two agents
are at the same node at the same time or two agents move
along the same edge at the same time in opposite directions.
The makespan (the maximal time when all agents reached
their destinations) objective function is often studied in the
literature (Surynek 2014). The problem to find a makespan-
optimal solution is NP-hard (Yu and LaValle 2013). Though
the plans obtained by different MAPF solvers might be dif-
ferent, the optimal plans are frequently similar and tight
(no superfluous steps are used). Hence, any optimal MAPF
solver can be used. We used the reduction-based solver in
the Picat programming language (Barták et al. 2017).

MAPF Models and Executable Plans
For our study we designed an environment that is intention-
ally close to the abstract model of MAPF, that is, it is a
grid map with equal distances between vertices that are con-
nected by lines used by robots to easily navigate between the
vertices, see Figure 1. The abstract plan outputted by MAPF
solvers is, as defined, a sequence of locations that the agents
visit. However, a physical agent has to translate these loca-
tions to a series of actions that the agent can perform. We as-
sume that the agent can turn left and right and move forward.
By concatenating these actions, the agent can perform all
the required steps from the abstract plan (recall, that we are
working with grid worlds). This translates to five possible
actions at each time step - (1) wait, (2) move forward, (3,4)
turn left/right and move, and (5) turn back and move. As the
mobile robot cannot move backward directly, turning back
is implemented as two turns right (or left). Ozobot robots,
used in our study, can directly perform these actions, which
together with the specific map simplifies typical “robotics”
problems such as localization and control.

As the abstract steps may have durations different from
the physical steps, the abstract plans, which are perfectly

Reasoning and Learning in Real-World Systems for Long-Term Autonomy (LTA)
Papers from the AAAI 2018 Fall Symposium

13



Figure 1: Instance map for Ozobots. Ozobots follow the
black line, the gray circles indicate starting and goal loca-
tions (not printed on real map).

synchronized, may desynchronize when being executed,
which may further lead to collisions. The intuition says that
such desynchronization will indeed happen. In our setting,
the speed of the robots was set in such a way that moving
along a line takes 1600ms and turning takes 800ms. Note
that the real robots only blindly follow the computed plan
and do not intervene if, for example, an obstacle is detected.

In the rest of the section, we describe the studied ab-
stract MAPF models and possible transformations of ab-
stract plans to executable sequences of physical actions. Let
tt be the time needed by the robot to turn by 90 degrees to
either side and tf be the time to move forward to the neigh-
boring vertex in the grid. Both tt and tf are nonzero. The
time spend while the agent is performing the wait operation
tw will depend on each model.

Classical Model
The first and most straightforward model is a direct transla-
tion of the abstract plan to the action sequence. We shall call
this a classic model. At the end of each timestep, an agent is
facing in a direction. Based on the next location, the agent
picks one of the five actions described above and performs it.
This means that all move actions consist of possible turning
and then going forward. There are no independent turning
moves. As the two most common actions in abstract plans
are (2) and (3,4), we suggest to set the time tw of waiting
actions to be tf + 1/2 ∗ tt as the average of durations of
actions (2) and (3,4).

One can easily see that this simple model can be prone to
desynchronization, as turning adds time over agents that just
move forward. To fix this synchronization issue, we intro-
duce a classic+wait model. The basic idea is that each ab-
stract action takes the same time, which is realized by adding
some wait time to “fast” actions. The longest action is (5),
therefore each action now takes 2 ∗ tt + tf including the
waiting action. The consequence is that plan execution takes
longer time, which may not be desirable.

Note that both of these models do not require the MAPF
algorithm and model to change. They only use different du-
rations of abstract actions which are implemented in the
translation of abstract plans to executable actions.

Robust Model
Another way to fix the synchronization problem is to create
a plan π that is robust to possible delays during execution.
The k-robust plan is a valid MAPF plan that in addition re-
quires for each vertex of the graph to be unoccupied for at
least k time steps before another agent can enter it (Atzmon
et al. 2017). In our experiments, we choose k to be 1. We pre-
sume that this is a good balance between keeping the agents
from colliding with each other while not prolonging the plan
too much. The 1-robust plan is then translated to executable
actions using the same principle as the classic model. This
yields a 1-robust model. Though, this model does not solve
the synchronization issue directly, it adds some slack that
can prevent collisions caused by various reasons.

Split Actions Model
By making the model less abstract, we can directly represent
the executable actions, in particular, by introducing an ab-
stract turning action. In the reduction-based solvers, this can
be done by splitting each vertex vi from the original graph
G into four new vertices vupi , vrighti , vdown

i , vlefti indicating
directions where the agent is facing to. The new edges now
represent the turn actions, while the original edges corre-
spond to move only actions. This change needs to be accom-
panied by constraints restricting the agents not to be at split
vertices at the same time. The abstract plan is then translated
to an executable plan in a direct way as the agent is given a
sequence of individual actions wait, turn left/right, and move
forward. The waiting time tw is set as the bigger time of the
remaining actions: tw = max(tt, tf ). We shall call this a
split model.

To make the model even closer to reality, we can ex-
ploit the weighted MAPF (Barták, Švancara, and Vlk 2018),
where each edge in the graph is assigned an integer value
that denotes its length. The weighted MAPF solver finds a
plan that takes these lengths into account. The lengths of
turning edges are assigned a length of tt and the other edges
are assigned a length of tf (or its scaled value to integers).
The waiting time tw is set as the smaller time of the remain-
ing actions: tw = min(tt, tf ). We shall call this a weighted-
split model or w-split for short.

A final enhancement to the weighted-split model is to in-
troduce k-robustness there. This will again ensure that the
agents do not tend to move close to each other to avoid un-
desirable collisions. In this case, however, it is not enough
to use 1-robustness, as the plan is split into more time steps.
Instead, we use max(tt, tf )-robustness. We shall call this
robust-weighted-split model or rw-split for short.

Results of Experiments
We generated plans using each MAPF model for the prob-
lem instance described above and then we executed the plans
five times in total for each model. Several properties were
measured with results shown in Table 1.

Computed makespan is the makespan of the plan returned
by the MAPF solver. It is measured by the (weighted) num-
ber of abstract actions and this is the value optimized by
the solvers. Note that the split models have larger makespan

14



Comp.
Mksp

Failed
Runs

#Colls. Total
Time

[s]

Max
Δ [s]

classic 17 5 4 NA 5
classic+wait 17 0 4.2 53 0
1-robust 19 0 0 41 4
split 27 0 2 36 3
w-split 45 0 2.6 39 0
rw-split 47 0 0 39 0

Table 1: Real performance of Ozobots for studied models.

than the rest because the split models use a finer resolu-
tion of actions, namely turning actions are included in the
makespan calculation. This is even more noticeable with w-
split and rw-split, where the moving-forward action has a
duration (weight) of two. Total time is the actual time needed
to complete the plan by all robots. To measure the level of
desynchronization, we introduced the Max Δ time. We made
abstract plans for all robots equally long by adding void wait
actions to the end (where necessary). The Max Δ time is
the time difference between the real end times of the first
and last robots. This value is zero, if the robots remained
synchronized during plan execution. The larger value means
larger desynchronization. All of the times are rounded to
seconds because the measurements were conducted by hand.

The number of failed runs is also shown. The only model
that did not finish any run is the classic model while the rest
managed to finish all of the runs. A run fails if there is a
collision that throws any of the robots off the track so the
plan cannot be finished. The average number of collisions
per run shows how many collisions that did not ruin the plan
occurred. These collisions can range from small one, where
the robots only touched each other and did not affect the ex-
ecution of the plan, to big collisions, where the agent was
slightly delayed in their individual plan, but still managed
to finish the plan. For the classic model, where no execu-
tion finished, we present the number of collisions occurring
before the major collision that stopped the plan.

Conclusions and Future Steps
The goal of the paper is showing that abstract models should
be treated more carefully, when the results are supposed to
by used in real environment. Our preliminary experiment
showed that the most widely used MAPF model, the clas-
sic one, is actually not applicable even if the environment is
made very close to the model. The reason is that durations
of real actions are different from durations of abstract ac-
tions, which leads to desynchronization of agents’ plans. A
naive extension to make all actions equally long worsens the
quality of plan (makespan) significantly. Adding robustness
to abstract plans helps, but as the Max Δ time shows, there
is some desynchronization, which may lead to collisions for
longer plans. The split model uses abstraction closer to real-
ity and adding weights makes the abstract plans even closer
to real plans when executed. However, solving such models
is more computationally expensive than solving the classical
model (Barták, Švancara, and Vlk 2018).

The results show that there is indeed a gab between
widely-used theoretical frameworks for MAPF and deploy-
ment of solutions in real environments. A wider experimen-
tal study is necessary to understand better the relations be-
tween abstract models and real environments. For example,
the ratio between the length of edges and the size of robots
seems important (Ozobots have diameter of 3 cm and dis-
tance between nodes in our map is 5 cm). Note also, that
blind execution of plans was assumed. It would be interest-
ing to look at plan-execution policies that assume communi-
cation between agents and exploit information from sensors
(Ma, Kumar, and Koenig 2017).

Acknowledgements
Roman Barták is supported by the Czech Science Founda-
tion under the project P202/12/G061 and together with Jiřı́
Švancara by the Czech-Israeli Cooperative Scientific Re-
search Project 8G15027.

References
Atzmon, D.; Felner, A.; Stern, R.; Wagner, G.; Barták, R.;
and Zhou, N. 2017. k-robust multi-agent path finding. In
Proceedings of the Tenth International Symposium on Com-
binatorial Search (SoCS), 157–158.
Barták, R.; Zhou, N.-F.; Stern, R.; Boyarski, E.; and
Surynek, P. 2017. Modeling and solving the multi-agent
pathfinding problem in picat. In 29th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI),
959–966. IEEE Computer Society.
Barták, R.; Švancara, J.; Škopková, V.; and Nohejl, D. 2018.
Multi-agent path finding on real robots: First experience
with ozobots. In Advances in Artificial Intelligence – IB-
ERAMIA 2018. Springer.
Barták, R.; Švancara, J.; and Vlk, M. 2018. A scheduling-
based approach to multi-agent path finding with weighted
and capacitated arcs. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 748–756.
Ma, H.; Kumar, T. K. S.; and Koenig, S. 2017. Multi-agent
path finding with delay probabilities. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17), 3605–3612. AAAI Press.
Ozobot & Evollve, Inc. 2018. Ozobot — Robots to code,
create, and connect with.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Prentice Hall.
Ryan, M. R. K. 2008. Exploiting subgraph structure in
multi-robot path planning. J. Artif. Intell. Res. 31:497–542.
Surynek, P. 2014. Compact representations of cooperative
path-finding as SAT based on matchings in bipartite graphs.
In 26th IEEE International Conference on Tools with Artifi-
cial Intelligence, ICTAI, 875–882. IEEE Computer Society.
Yu, J., and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In Proceed-
ings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence.

15


