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Abstract

Endowing robots with cognitive capabilities for recognising
contextual object affordances is a big challenge, which re-
quires sophisticated and novel approaches. In this paper, we
propose a hybrid approach to interpret contextualised object
affordances from sensor data. The proposed approach com-
bines both Deep CNN networks for object and indoor place
recognition with probabilistic DL reasoning for affordance
inference. We argue that our hybrid approach can be an inter-
esting alternative in situations where no specific dataset for
contextualised affordances exists.

Introduction

Visual intelligence is one of the most important aspects of
human cognition, and the paramount goal of the visual in-
telligence is the contextual visual reasoning. Take a cup as
an example. From a single image, humans can infer its name,
texture, colour, and what actions the object affords. In (Gib-
son 2014), Gibson defined the notion of object affordance
as the “properties of an object that determine what actions
a human can perform on them.” In this paper, we define
the notion of contextual object affordance as the relation-
ship between an object and a set of actions this object al-
lows in a given situation. In other words, objects might af-
ford different actions at different places, times, or situations.
In this work, contextual object affordances are proposed as
means to filter the possible actions that a companion robot
can monitor/do in an ambient environment. Besides, contex-
tual affordances can be used as part of a bigger process to
extract an agent intentions, by restricting the possible inten-
tions based on the affordable actions in the environment in a
given time.

The previous attempts to recognise object affordances can
be divided into two categories: visual features classifications
models, knowledge-based inference models. In (Fergus et al.
2005), the proposed approach is able to learn an object cat-
egory from its name, based on the output of Google Image
search results. In (Kjellstrom, Romero, and Kragi¢ 2011),
the inference of the object affordances is based on moni-
toring humans while they use objects in different actions.
In (Yao, Ma, and Fei-Fei 2013), the proposed approach is
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able to model the affordance of an object based on the ma-
jority of human poses while interacting with that object.
In (Chu and Thomaz 2017), object affordances are discov-
ered by a guided exploration approach that combines self-
learning with supervised learning. In (Do et al. 2017), Affor-
danceNet deep learning model is proposed to detect ambient
objects and their affordances simultaneously from RGB im-
ages. In (Zhu, Fathi, and Fei-Fei 2014), the authors propose
a Markov Logic Network (MLN) knowledge base to apply
zero-shot object affordance prediction besides object recog-
nition given human poses. Despite the previous serious at-
tempts, only the latter model is able to predict the object
affordances for unseen novel objects.

From a pure machine learning perspective, while it would
be possible to train a model to produce contextual affor-
dances, frequently data sets are not available for this task.
To the best of our knowledge, no data set with these charac-
teristics exists. Therefore alternative solutions are needed in
order to use this kind of information in autonomous systems.

In this work, we propose our initial findings to extend
a previously proposed cognitive architecture (Ayari et al.
2015; 2017) to predict the contextual object affordances
based on place information. The extension is based on Deep
Convolutional Networks (CNNs) and Probabilistic Descrip-
tion Logics (DL) Reasoning. The role of the probabilistic
DL reasoning is to provide the ability to produce contextual
affordances based on low-level object and place information.
Our contribution is methodological: we demonstrate how the
integration of Deep CNNs models and DL reasoning compo-
nents can produce more valuable output even in a situation
where the data of training is missing.

Cognitive Architecture

The overall cognitive architecture proposed in (Ayari et al.
2015; 2017) is depicted in Fig 1. At the low level, a commu-
nication service is implemented to enable the entities pop-
ulating the ambient environment to connect and subscribe
to cloud services as well as to interchange knowledge. The
communication service is based on standard communica-
tion technologies such as (XMPP, REST, etc.) In addition
to the communication service, emotion recognition, metric
maps and topological maps based environment modelling,
and multi-modal data sensing services are implemented at
the low level.
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Figure 1: Overview of the architecture.

Here we focus on the object recognition and indoor place
recognition services, as well as the probabilistic reasoning
service. Their objective is to enable the companion robots to
recognise the indoor places and the objects populating the
environment. Implemented as Deep CNNs, models, they ex-
tract and recognise ambient objects and the indoor places in
which these objects are located. This information is fed into
the High Level, where the DL reasoning is able to infer the
contextual object affordances based on probabilistic object
and place data provided by the Low Level, using mainly in-
stance classification and subsumption checking.

Object Recognition

We employ YOLO (’Y ou Only Look Once”) algorithm
(Redmon et al. 2016) in order to recognise the objects pop-
ulating an environment. YOLO object recognition model
predicts the object bounding boxes and the associated prob-
abilities for these boxes. Firstly, the input image is divided
into Sx.S regions, within each region the model outputs a
set of N bounding boxes. For each bounding box, the model
predicts the object class probability and the location values
for the bounding box. Finally, the model filters out bounding
boxes with class probabilities below a predefined threshold
value.

Y OLO model has 24 stacked convolution layers followed
by 2 dense fully connected layers. To reduce the output fea-
tures space, we applied 1X1 convolution reduction layers
followed by 3X3 convolution layers.

Indoor Place Recognition

The Deep Residual Network (ResNet) was developed by
Microsoft Research Labs and exploited in (He et al. 2016)
for image recognition. In this paper, we use a modified
ResNet deep architecture to recognise the indoor locations.
The model consists of number of stacked convolution layers,
combined with residual shortcut connections to train deeper
and more sparse networks. The input convolution layer con-
sists of 64 feature maps of size 7x7 with stride of 2. A max-
pooling layer of 3x3 kernel and stride of 2 is applied after the
input layer to down-sample the feature maps representation.
The max-pooling layer is followed by a set of 16 residual
blocks, each residual block consisting of 4 convolution lay-
ers with 3x3 kernel size. A Global Average Pooling (GAP)

layer (Lin, Chen, and Yan 2013) is used to minimise over-
fitting by reducing the total number of learned parameters.
Finally, a dense, fully connected neural network with 2000
neuron is exploited as a classification layer to recognise the
indoor location.

Probabilistic Reasoning

The objective of the probabilistic reasoning service is to in-
fer object affordances based on object and place data ex-
tracted by the CNN services described above. It is based on
a probabilistic DL reasoning model presented by (Riguzzi et
al. 2015), supported by an OWL 2 ontology.

The ontology is relatively simple (Fig. 3). It specifies the
notion of affordance as a relationship between an object in-
stance and a type of (or class of) action. It defines three main
high-level concepts: object, place and action type. Objects
are the common objects of daily living and places are the
physical places wherein these objects can be found. Objects
and places are linked by the relation placed at. Action types
are reified action concepts; its instances are types of actions
which objects may afford. The reification allows one to rep-
resent affordances as a first-order relations, without requir-
ing metamodeling subterfuges. The object relationship af-
fords captures this relation. Also, representing affordances
as relationships instance of class instances simplifies the rea-
soning, as it avoids the need of creating artificial class in-
stances during DL reasoning, which is not trivial to control.
The remainder of the ontology is a taxonomy of objects and
places which parametrizes the reasoning algorithm, as well
as a set of reified action types represented as instances.

The inference rules are captured by DL subsumption rules
with the general formula schema

O N 3dplacedAt. P C Jaffords.{T},

where O is a subclass of the Object, P is a subclass of Place
and 7T is an instance of Action Type. So, if any object in-
stance of a certain class is placed at the right place, it is
possible to reason that it affords a given action. Objects and
places can be described as specific as necessary.

The probabilistic DL reasoning is based on DISPONTE
distribution semantics (Riguzzi et al. 2015) for DL knowl-
edge bases (KBs). In this model, DL axioms are annotated
with probabilities, which are assumed to be independent.
DISPONTE defines worlds that select subsets of axioms of
the KB. The probability of a world w is defined as a joint
probability over selected and non-selected axioms. Finally,
the probability of a query axiom (i.e. a inferred axiom) is
ultimately given by a marginalised joint probability over the
worlds that entail the query. We use the BUNDLE reasoner
(Riguzzi et al. 2015) carry out the inferences. BUNDLE
implements DISPONTE by joining traditional DL reason-
ers (i.e. Pellet!) with Binary Decision Diagrams (BDD). In
brief, given a probabilistic KB and a query axiom, BUNDLE
takes worlds to be possible explanations of a query gener-
ated by a standard DL reasoner. The probability of a query
then defined by marginalising over the joint probabilities of
each of its explanations. This computation is optimised by

"https://github.com/stardog-union/pellet
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Figure 2: Deep ResNet model for indoor place recognition.
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Figure 3: Overview of the ontology being used.

calculating BDDs of a disjunction of the explanations, and
subsequently recursively calculating the probability of the
query using the BDD.

Our affordances interpretation algorithm takes probability
vectors of object and places classes detected by the CNNs
as inputs. For a given input frame, the dCNN layer out-
puts a vector O = [p; : C1,...,pn : Cy], where C; cor-
responds to the calculated class of the ¢-th detected object
with probability p;. For places, the dCNN layer outputs a
vector L = [py : C1, ..., pn : Cp], where C; corresponds to
a possible classification for the current place with probabil-
ity p;. The affordances reasoner encodes this output as a set
of instances of the ontology. An instance [ is created in the
KB and for each element p; : C; of L, an axiom p; :: [ : C;
is added to the ontology. Also, for each element p; : C; of O,
an instance z; is created and an axiom p; :: x; : C; is added
to the KB. All object instances x; are defined to be placed
at 1. This KB is loaded into BUNDLE, which infers affor-
dance relationships between instances x; and actions types
present in the model, weighted by probabilities calculated
on z; class and placement. The output of the component is
the set of action types afforded by all objects in that frame,

weighed by their infered probability. In cases where two ob-
jects in the same frame afford the same action, then the ac-
tion type with maximum probability is taken. The object and
place instances are not kept from a frame to the next.

An advantage of this method is that all the ontology ax-
ioms are taken into consideration while reasoning, even non
probabilistic ones. For example, it is possible to aggregate
common object classes in the object dataset under super-
classes, to which one can define a single reasoning rule.
Such modelling can drastically reduce the amount of infer-
ence rules to cover all possible affordances.

Preliminary Evaluation

We carried out a preliminary evaluation of the proposed
method through an empirical experiment on real-world
datasets. The datasets are as follows:

e Microsoft COCO (Lin et al. 2014) (Common Objects
in Context) dataset was exploited to evaluate the perfor-
mance of YO LO object recognition deep learning model.
The dataset consists of 80 different objects with total
number of 2.5 million annotated instances. The dataset
is divided into 118K images for training, 5K images for
validation, 41K images for testing.

e The Place365 standard dataset (Zhou et al. 2017) was
used to evaluate the Place recognition deep learning
model. The dataset consists of 2 million images of dif-
ferent 365 common places. The dataset is divided into
overlapped training, validation, and testing sets (1M, 36K,
300K images, respectively). The training set contains up
to 5,000 images per category, while the validation and
testing contains 100 and 900 images per category, respec-
tively.

e The Daily Living Activities (ADL) dataset (Pirsiavash
and Ramanan 2012) was exploited to evaluate the perfor-
mance of the DL reasoning. The dataset consists of one
million RGB frames of 20 persons while practising un-



scripted 32 daily activities. The dataset annotation con-
sists of objects, activities, hand positions, and environ-
mental events. Compared to the traditional datasets for
daily activities, this dataset combining long scale tempo-
ral activities for periods up to few minutes and complex
object interactions.

e The proposed ontology was populated with objects,
places and related action classes from COCO, Place365,
and ADL datasets respectively. We defined an initial col-
lection of 16 DL rules to cover a subset of objects, places
and action types. These rules have been defined by hand,
trying to match activities in ADL to possible combina-
tions of objects and places from COCO and Place365. By
aggregating dataset objects and places into superclasses,
we were able to define rules with higher reuse potential.

To evaluated the proposed approach, a set of 4577 con-
tinuous frames from the ADL dataset were used to ob-
tain some preliminary performance statistics. In the Low
Level, the Deep CNNs were able to recognise in average
up to three objects (z = 3.43,s = 1.91) and five indoor
places (fixed value). The average processing time of recog-
nising the ambient objects with indoor Places is 260 ms
per frame of 288x384 pixels®. In the High Level, the rea-
soner component is able to generate approximately 11 ax-
ioms (¥ = 11.87,s = 3.82), which were added to the on-
tology at each frame. Based on this input, the reasoner pro-
duced around 3 contextual affordances per frame in aver-
age (x = 3.32,s = 2.2). The average reasoning time for
recognition of contextual affordances is approximately 350
ms (Z = 354.60, s = 216.29) for each frame>.

Conclusion

In this paper, we propose a hybrid approach based on Deep
CNNs and DL reasoning to recognise contextual affor-
dances. We evaluated the proposed approach through em-
pirical experiments on real-world datasets. The preliminary
evaluation shows that the processing time of the proposed
approach is reasonably fitting the constraints of real-time ap-
plications.
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