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Abstract

The integration of deep learning models and classical tech-
niques in robotics is constantly creating solutions to problems
once thought out of reach. The issues arising in most models
that work involve the gap between experimentation and real-
ity, with a need for a quantification of risk in real-world situ-
ations. In order to translate advances in robot planning tech-
niques that use deep learning to safety-critical applications,
strategies must be developed and applied to assess the risk in-
volved with different models. This work proposes the use of
Bayesian approximations of uncertainty from deep learning
in a robot planner, showing that this produces more cautious
actions in safety-critical scenarios. An example setup involv-
ing a deep learning semantic image segmentation, followed
by a path planner based on the resulting cost map, is used to
provide an empirical analysis of the proposed method.

Introduction
Recent advances in deep learning (DL) training algorithms,
paired with significant improvements in hardware, have
shown potential in many fields, including robotics. From en-
abling robot systems to navigate using high-dimensional im-
age inputs, to allowing tractable trial-and-error robot learn-
ing both in simulation and reality; deep learning is every-
where. However, as promising as applications of DL to robot
planning seem, the potential of the positive impact they may
have on real-world scenarios is inevitably proportionate to
their interpretability and applicability to imperfect environ-
ments.

For an example setup, this work utilizes a DL image seg-
mentation model to generate a cost map used in an A*
path planner. Figure 1 shows qualitative results given by the
DL model and the subsequent planner. In this image taken
from the Aeroscapes dataset (Nigam, Huang, and Ramanan
2018), the pedestrian near the top center is not sufficiently
segmented by the DL model prediction shown in Figure 1a.
Incorporating uncertainty associated with this prediction be-
fore passing it to the planner produces a more reasonable
and risk-aware resulting path, as seen in Figure 1f. Higher
levels of uncertainty are visualized by darker spots in Figure
1e.

DL is known for its data-driven rather than algorithmic
learned representations (LeCun, Bengio, and Hinton 2015).
A DL hierarchical structure can learn directly from data with

(a) Handcrafted ground truth seg-
mentation

(b) Planning based on ground
truth segmentation

(c) DL model segmentation (d) Planning based on DL model
segmentation alone

(e) Uncertainty of DL model seg-
mentation

(f) Planning based on DL model
segmentation with uncertainty

Figure 1: Qualitative results showing the path planned from
start to goal given (a) handcrafted ground truth image seg-
ments, (b) deep learning model segmentation alone, (c) deep
learning model segmentation with uncertainty.
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little to no handcrafted features or learning variables (Good-
fellow, Bengio, and Courville 2016). However, this often
comes at the expense of the interpretability of the learning
outcomes. Deep neural networks can even misrepresent data
outside the training distribution, giving predictions that are
incorrect without providing a clear measure of certainty as-
sociated with the result (Gal 2017). The outputs of a deep
neural network are generally point estimates of the parame-
ters and predictions present, so they do not provide a mean-
ingful measure of correlation to the overall data distribution
the network was trained on (Gal 2017). For this reason, deep
learning models are considered deterministic functions, of-
ten called “black-boxes”, unlike probabilistic models which
inherently depict uncertainty information.

As a step towards risk-aware robotic systems that utilize
the powers of DL, this work combines methods of approx-
imating uncertainty in DL with robot planners that are par-
tially reliant on an otherwise black-box approach. We utilize
modern methods of uncertainty extraction from deep learn-
ing models, specifically those that do not interfere with the
overall structure or training process (Gal and Ghahramani
2016). The extraction of uncertainty information, as opposed
to the reliance on point estimates, is crucial in safety-critical
applications, such as autonomous navigation in an urban set-
ting. If a robot planner encounters out-of-distribution data at
test time, it is preferable that the system provides an uncer-
tainty metric to allow for more meaningful interpretation of
a forced point estimate. With the acquired Bayesian uncer-
tainty estimates, the system produces an explicable metric
and can therefore be altered to accommodate for risks in the
environment.

In the robotics community, an emphasis has been placed
on methods that work in a controlled experimental setup,
but more recently risk-aware methods aim to ensure that
these methods are also safe in the real-world. As a relatively
new application to robotics, techniques have been adapted
from the fields of statistics and machine learning. Common
statistical methods of accommodating risk include altering
the optimization criterion so that it becomes risk-sensitive
(Garca and Fernández 2015). Although modern DL models
are usually considered black-boxes due to their mathemati-
cal nature, recent work has initiated theoretically grounded
understandings of them. Such works investigate the integra-
tion of deep learning techniques with information theoreti-
cal and statistical approaches for the purpose of calculating
model uncertainties (Gal 2017). It is these practical meth-
ods of quantifying risk associated with DL models that are
utilized in the proposed planning systems of this paper.

Related Work
Several prior works exist which have extracted uncertainty
information from a deep learning model, mainly Bayesian
neural networks, ensemble methods, and methods that uti-
lize stochastic regularization techniques (Gal 2017; Osband
et al. 2016). These works have also produced meaningful
contributions to real-world applications, such as gas turbine
control, camera relocalization, and robotic collision avoid-
ance (Depeweg et al. 2016; Kahn et al. 2017; Kendall and

Cipolla 2016). Our work seeks to extend the most suitable
of these approaches to robot planning.

Bayesian Neural Networks
Some of the earliest attempts to bind the reasoning of proba-
bilistic models, such as Gaussian processes, with deep learn-
ing (DL) is seen in Bayesian neural networks (BNN) (Gal
2017; Kononenko 1989). Unlike the DL models used in
modern practice which do not depict uncertainty, a BNN
produces an output that is a probability distribution over
its predictions. Probability distributions are placed over the
weights of a BNN, making it an approximation of a Gaus-
sian process as the number of weights tends to infinity. Un-
certainty can be extracted as a statistical measure, such as
variance or entropy, over this output distribution in order
to capture how confident the model is with its prediction.
However, BNN require a larger number of parameters to
be trained, with less practical training methods available for
them. A recent example of a Bayesian neural network ap-
plied to a stochastic dynamic system utilizes a smaller model
and trains by minimizing alpha-divergences (Depeweg et al.
2016). The system dynamics are learned using the BNN and
are fed into a model-based reinforcement learner for control,
with application to a gas turbine.

Ensemble Methods
Since the practicality of Bayesian neural networks is ques-
tionable, approximations of these structures have arisen, in-
cluding ensemble methods. One such recent method is re-
ferred to as the bootstrapped neural network, where sev-
eral deep learning (DL) models are trained on subsets of
the larger dataset sampled with replacement. The underlying
concept behind this method is that the different models will
agree in high density areas and disagree in low density areas
of the complete dataset. The outputs of the separate models
combine to form a probability density function from which
uncertainty of a particular prediction can be measured. This
method is theoretically sound; however, it is not ideal for ap-
plications that are faced with time and resource constraints,
such as robotics.

A recent work proposes using bootstrapped deep Q-
learning networks quantifying uncertainty to direct the
learning process towards more efficient exploration, which
is a key issue in reinforcement learning (Osband et al. 2016).
The technique involves sampling the past experiences in Q-
learning, rather than taking the whole sequence, in order to
form an estimate of the Q-value at a given state. Sampling is
also meant to scale better to large state-spaces. A similar ap-
proach is used to improve a form of Q-learning, Deep Deter-
ministic Policy Gradient (DDPG) (Kalweit and Boedecker
2017). The work demonstrates that using bootstrapped un-
certainty to direct data collection produces faster learning
that is also less expensive, tedious, or likely to lead to phys-
ical damage for a real robot.

Stochastic Regularization Methods
Most recently, the use of stochastic regularization meth-
ods common in deep learning (DL) has been shown to also
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Class Sky Building Pole Road Pavement Tree Sign Symbol Fence Car Pedestrian Bicyclist Unlabeled
Cost 15 11 10 1 2 7 9 8 12 14 13 16

Color

Table 1: The fixed costs assigned to each segmentation to be used in A* search. These costs are hand-designed to generate
qualitative examples that demonstrate the utility of the proposed approach. In the real world, classes that are not navigable (e.g.,
fence, car, bicylist) will be assigned infinite cost.

approximate Bayesian neural network models without any
changes to the ready structures being used or their training
process (Gal 2017). Regularization methods are used as a
means to avoid overfitting of a DL model to its training set,
so that it generalizes to data that is similar enough but not
exactly the same. This ensures the learning model has not
simply memorized the training data, but has actually learned
something meaningful about the data that will translate to a
slightly different setting. At a high level, stochastic regular-
ization techniques work by introducing randomness in the
training process to increase the robustness of the model to
noise. Dropout is one such popular method that is inspired
by the probabilistic interpretations of deep learning models
that consider activation nonlinearity a cumulative distribu-
tion function (Bishop 2006). In its traditional use, dropout is
activated during training, in which case the weights of a deep
learning model are randomly multiplied by zero or one in a
certain predefined proportion. In this approach, at test time,
weight averaging by the percentage of dropout applied dur-
ing training is performed on the trained model, which then
leads to point estimate results.

In order to form a distribution over the outputs of a model
trained using a stochastic regularization technique such as
dropout, the regularization is activated at test time, produc-
ing stochastic estimates with multiple passes of the same
input through the model (Gal and Ghahramani 2016). The
multiple stochastic passes are then averaged to form a mean
estimate, as opposed to a point estimate, and uncertainty can
be extracted given the statistical or information theoretical
metrics over the distribution.

One recent work applies Bayesian approximation using
dropout to a pre-existing model-based reinforcement learn-
ing algorithm, called PILCO, in order to better quantify
uncertainty over longer periods of learning (Gal, McAllis-
ter, and Rasmussen 2016). The authors replace the origi-
nal Gaussian processes with a deep neural network. In an-
other work, the Bayesian approximation of uncertainty with
dropout is used to assist in camera relocalization for land-
mark detection in a SLAM problem (Kendall and Cipolla
2016).The uncertainty estimate is used to approximate the
localization error with no additional hand-crafted parame-
terizations. In a similar work, the same Bayesian approxi-
mation approach to uncertainty is applied to semantic seg-
mentation for improved learning and test time estimation
(Kendall, Badrinarayanan, and Cipoll 2015). In yet another
work, the authors combine bootstrapped neural networks
with stochastic regularization methods to avoid catastrophic
or harsh collisions during robot training for collision avoid-

(a) Risk-Neutral Perception

(b) Risk-Aware Perception

Figure 2: The overall flow of information in a robot planner
that relies in part on a DL model in (a) the risk-neutral and
(b) the risk-aware case.

ance (Kahn et al. 2017). They show that their method effec-
tively minimizes dangerous collisions during training, while
also showing comparable performance to baselines without
explicit account for uncertainty. A more recent approach
proposes the use of a Mixture Density Model (MDM) as a
replacement for the stochastic passes, where a single pass
saves time in comparison to multiple in a robotics setting
(Choi et al. 2017). However, this comes at the expense of
training a separate MDM network for the task of uncertainty
extraction.

Problem Formulation
The problem setup is inspired by a previous work (Christie
et al. 2017) that uses the overhead imagery provided by an
unmanned aerial vehicle (UAV) as input to an image seg-
mentation algorithm, which is then used to assist the nav-
igation of an unmanned ground vehicle (UGV). The UAV
acts as a “scout” by flying ahead of the UGV. The over-
head orthorectified imagery is then classified (into categories
such as “road”, “pavement”, “car”, etc.). Each category is as-
signed a cost (given in Table 1) which is used to determine
a path for the ground robot to follow.

Figure 2 shows a high-level schematic of the proposed
risk-aware approach by contrasting it with the traditional,
risk-neural approach. Unlike the previous work, here, in ad-
dition to performing the semantic segmentation of the im-
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age, the uncertainty in the segmentation is also extracted.
The measure of uncertainty is then used to manipulate the
navigation away from low confidence regions. The naviga-
tion portion of the robot planner in this case is not a DL
model, but a classical method, A* search. A cost function
is mapped onto each semantic class (see Table 1). There-
fore, the uncertainty in the segmentation corresponds to un-
certainties in the cost, for which A* search is sufficient. If
the uncertainties in the transition function are to be consid-
ered instead, a Markov Decision Process (MDP) would be
more useful. Considering uncertainty is contrast to trusting
the outputs of the DL portion of the system invariably, which
could lead to catastrophic outcomes if a point estimate out-
lier is produced in the case the input is considered out-of-
distribution to the training data. In the proposed approach,
an uncertainty metric can be used to calibrate the robot plan
based on the level of confidence in the DL model predic-
tions.

The results of the segmentation given by any DL model
cannot guarantee complete accuracy in all settings. Varia-
tions in lighting, angle, or objects present in an image can
contribute to inaccurate predictions. There will always be a
prediction when a DL model is involved, as the model will
force an estimate even when it does not make sense to. A
good measure to account for this risk associated with DL
outputs being used in the robot planner is to evaluate the cer-
tainty associated with the DL result. One practical method is
using dropout, which is already being used as a regularizer
during training.

In the risk-neutral case, the pixel classification is taken
as is from the DL model and assigned a cost accordingly.
For the proposed risk-aware method, the cost is evaluated
by adding the uncertainty value, multiplied by some factor,
to the risk-neutral cost assignment. Specifically, the cost of
pixel p is given by,

C(p) = L(p) + λV̂ (p), (1)

where L(p) is the cost associated with the semantic class
that is predicted for p (given in Table 1) and V̂ (p) is the un-
certainty value extracted by dropout. In practice, V̂ (p) does
not need to be variance; it can be another statistical mea-
sure of uncertainty taken over the distribution provided by
the stochastic passes. λ is a weighting parameter. The risk-
neutral case corresponds to λ = 0 and the risk-aware case
corresponds to λ > 0.

Algorithm 1 shows a breakdown of uncertainty extrac-
tion given an input image. First, the stochastic outputs are
generated for a number of stochastic passes, giving a soft-
max value for each pixel each time. For each pass, Bernoulli
dropout is activated on the trained network, effectively mul-
tiplying random neuron weights by zero or one in a set
proportion. The softmax outputs O are averaged over all
stochastic passes. The maximum value of this average soft-
max is taken as the output class prediction Ind. Variance
is computed over the stochastic passes for each output class,
then the average of V over all classes produces a single value
for each pixel. The value V̂ is considered the uncertainty in
that pixel’s prediction.

Algorithm 1 Uncertainty Extraction
Input: image I
Output: class of average prediction for each pixel Ind(p),
average variance for each pixel V̂ (p)

1: p ← pixels in image I
2: for t = 1 to number of stochastic passes do
3: O(p, c, t) ← softmax output of stochastic pass t
4: end for
5: Ô(p, c) ← average O(p, c, t) over stochastic passes
6: Ind(p) ← argmax of softmax in Ô(p, c)
7: for c = 1 to number of classes do
8: V (p, c) ← variance in O(p, c, t) over stochastic

passes for class c
9: end for

10: V̂ (p) ← average V (p, c) over classes

The uncertainty value is computed as the average variance
across all segment classes for a particular pixel. The higher
the average variance, the less confident the DL model is with
its prediction. Therefore, it is intuitive to incorporate this in-
formation along with the original prediction when planning
a path for navigation, especially in a safety-critical environ-
ment such as a road.

Experimental Setup
To demonstrate the utility of an uncertainty metric associ-
ated with a DL model being used as part of a robot planning
system, experiments involving this setup are portrayed to
compare the risk-neutral and risk-averse cases qualitatively.

We use the Bayesian SegNet to perform semantic seg-
mentation of every pixel in the input image (Kendall,
Badrinarayanan, and Cipoll 2015). The Bayesian SegNet
is first trained for the segmentation task using the prede-
fined model architecture, along with the pretrained weights
of the VGG16 image classification network (Kendall, Badri-
narayanan, and Cipoll 2015). Since the model is already
well adapted for image classification, less further training is
needed for per-pixel segmentation, in comparison to starting
with random model weighting. The CamVid dataset (Bros-
tow, Fauqueur, and Cipolla 2009) of 367 training and 233
testing images of road scenes is used. The model converges
with a test accuracy of 94.56 %. A batch size of 2 is used
to fit an 8GB Nvidia GeForce GTX 1080. Some results of
this network are shown in Figure 3 for the CamVid test
set, as well as for an entirely different road dataset called
KITTI (Geiger et al. 2013) in Figure 4. It is worth noting that
the KITTI dataset is an example for which the DL model is
not explicitly trained, but its images are similar enough to
the training set to expect reasonable segmentation perfor-
mance. Errors are common, and expected, in a varying or
real-world setting, but the uncertainty metric should provide
a means of detecting such errors.

After the DL model is trained to produce reasonable re-
sults on images similar to the training set, the next step
involves using the pixel segmentations as input to the A*
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(a) Input road image (b) Handcrafted ground truth seg-
mentation

(c) DL model segmentation (d) DL model uncertainty

Figure 3: An example semantic segmentation produced by
the Bayesian SegNet trained model on (a) an input image
from the CamVid test set with (b) its handcrafted ground
truth segmentation, alongside (c) the resulting output seg-
mentation and (d) the model uncertainty associated with the
output, with darker regions signifying higher uncertainty.

(a) Input road image (b) DL model segmentation

(c) DL model uncertainty

Figure 4: An example semantic segmentation produced by
the Bayesian SegNet trained model on (a) an input image
from the KITTI dataset with (b) the resulting output seg-
mentation and (c) the model uncertainty associated with the
output, with darker regions signifying higher uncertainty.

Measure Ground Truth Risk-Neutral Risk-Aware
Expected Cost 251 234 253

Actual Cost 251 413 281
Surprise Factor 0 179 28

Table 2: The surprise factor calculated as the difference be-
tween the expected cost and actual cost for the example in
Figure 1, given ground truth, risk-neutral, and risk-aware
segmentation.

search planner. In order to use semantic segmentation in
robot planning, a cost function must be defined over the seg-
mentation result to be used in the planning. The most com-
mon method of translating segment identity into a real num-
ber cost involves some quantification of the segmentation
class traversability combined with the robot’s speed. For ex-
ample, in the previous work inspiring our problem setup,
segment traversability is proportionate to the power con-
sumption of the UGV based on prior experience (Christie
et al. 2017). However, for simplicity, here, the costs of the
segment classes are set to a fixed value, as shown in Table 1.
Once a cost is assigned, a start position and a goal position
are defined in the input image, and the planning algorithm
produces a path based on the cost assigned to the predicted
pixel identification.

Results and Discussion
In order to perform a qualitative analysis of the risk-neutral
and risk-aware methods, the surprise factor is calculated to
compare the expected path cost with the actual path cost by
subtracting the two. The expected path cost is found by sum-
ming up the cost associated with every pixel along the path.
We use the predicted class of every pixel to determine the
expected cost and the ground truth class of every pixel to
determine the actual cost. If a path passes through pixels
that the DL model classifies with low uncertainty, then we
expect the predicted classes to be largely the same as the ac-
tual cost, thereby given a low surprise factor. On the other
hand, if the predicted classes are wrong, then the surprise
will be high.

Table 2 shows this factor in three planning scenarios
of Figure 1: using ground truth segmentation, using DL
model segmentation alone, and using DL model segmen-
tation while taking into account its prediction uncertainty.
When using DL segmentation alone, not accounting for
model confidence increases the chance for a higher disparity
between the expectation and reality, as seen in our example.
On the other hand, although the risk-aware approach results
in longer paths, the expectation better matches the reality
and leads to lower surprise.

Table 3 shows a similar trend for the average surprise fac-
tor calculated over 100 randomly chosen starting and goal
positions. In this case, the risk-neutral strategy tends to un-
derestimate the actual path cost resulting in a larger surprise
factor. On the other hand, the risk-aware strategy conserva-
tively chooses longer paths but gives a significantly lower
surprise factor.
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Measure Ground Truth Risk-Neutral Risk-Aware
Expected Cost 1221.60 1160.10 1427.40

Actual Cost 1221.60 1480.10 1405.35
Surprise Factor 0.00 320.00 22.05

Table 3: The average surprise factor calculated as the dif-
ference between the expected cost and actual cost for 100
randomly chosen starting and goal positions, given ground
truth, risk-neutral, and risk-aware segmentation.

Figure 5: Effect of varying λ on the surprise factor.

Figure 5 shows the effect of varying the λ parameter on
the surprise factor. When λ is small, the surprise factor is
large. This is consistent with previous findings, since λ = 0
corresponds to the risk-neutral case. As λ increases, the sur-
prise factor decreases finally converging to a fixed value.
This is because, once λ is sufficiently large, increasing λ
further does not change the path produced as output signifi-
cantly (except for a few pixels). In fact, for very large λ, the
path found will be the minimum uncertainty path since the
second term in Equation 1 dominates the first term. There-
fore, the surprise factor remains largely the same.

Conclusions and Future Work
This work proposes a risk-aware approach to robot planning
that already involves deep learning. Risk is quantified by the
model prediction uncertainty in the planning process. When
deep learning is used for perception as a portion of the plan-
ning loop, an understanding of confidence in DL estimates
is useful. Uncertainty is extracted directly from the DL mod-
els utilizing dropout as a practical method, especially in re-
source constrained settings such as robotics. Promising re-
sults show that including uncertainty in a planner provides
better predictability of actions, and even the avoidance of
catastrophic actions in a safety-critical setting. Further ex-
periments and empirical analysis are to be conducted us-
ing statistically significant data to explore the potential of
this method for real-world systems in the long run. Some
scenarios include those presented in this paper, such as the
UAV assisted navigation of a UGV using DL image seg-
mentation, on hardware and photorealistic simulators. The
main anticipated extensions of this work involve the use of a
larger dataset analysis, along with investigating different un-
certainty metrics extracted from the same experiment setup
presented in this paper.
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