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THE COMPLEXITY OF DECENTRALIZED CONTROL OF
MARKOV DECISION PROCESSES

DANIEL S. BERNSTEIN, ROBERT GIVAN, NEIL IMMERMAN,
and SHLOMO ZILBERSTEIN

We consider decentralized control of Markov decision processes and give complexity bounds
on the worst-case running time for algorithms that find optimal solutions. Generalizations of both
the fully observable case and the partially observable case that allow for decentralized control are
described. For even two agents, the finite-horizon problems corresponding to both of these models
are hard for nondeterministic exponential time. These complexity results illustrate a fundamental
difference between centralized and decentralized control of Markov decision processes. In contrast
to the problems involving centralized control, the problems we consider provably do not admit
polynomial-time algorithms. Furthermore, assuming EXP �= NEXP, the problems require superex-
ponential time to solve in the worst case.

1. Introduction. Markov decision processes (MDPs) have received considerable atten-
tion, and there exist well-known algorithms for finding optimal control strategies in the case
where a process is centrally controlled and the controller (or agent) has access to complete
state information (Puterman 1994). Less well understood is the case in which a process is
controlled by multiple cooperating distributed agents, each with possibly different informa-
tion about the state.
We are interested in studying how hard these decentralized control problems are relative to

analogous centralized control problems, from the point of view of computational complexity.
In particular, we consider two different models of decentralized control of MDPs. One is
a generalization of a partially observable Markov decision process (POMDP), which we
call a decentralized partially observable Markov decision process (DEC-POMDP). In a
DEC-POMDP, the process is controlled by multiple distributed agents, each with possibly
different information about the state. The other is a generalization of an MDP, called a
decentralized Markov decision process (DEC-MDP). A DEC-MDP is a DEC-POMDP with
the restriction that at each time step the agents’ observations together uniquely determine
the state. The MDP, POMDP, and DEC-MDP can all be viewed as special cases of the
DEC-POMDP. The relationships among the models are shown in Figure 1.
A number of different problems can be viewed as decentralized control of a Markov

process. For example, consider problems involving the control of multiple distributed robots,
such as robotic soccer (Coradeschi et al. 2000). In these domains, it is necessary to develop
a strategy for each robot under the assumption that the robots will have limited ability to
communicate when they execute their strategies. Another problem that fits naturally within
this framework is the distributed control of a power grid (Schneider et al. 1999). Finally,
several types of networking problems can be viewed within this framework (Altman 2001).
It would be beneficial to have general-purpose algorithms for solving these decentralized

control problems. An algorithm for similar problems was proposed by Ooi et al. (1996).
Under the assumption that all agents share state information every K time steps, the authors
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Figure 1. The relationships among the models.

developed a dynamic programming algorithm to derive optimal policies. A downside of
this approach is that the state space for the dynamic programming algorithm grows doubly
exponentially with K. The only known tractable algorithms for these types of problems
rely on even more assumptions. One such algorithm was developed by Hsu and Marcus
(1982) and works under the assumption that the agents share state information every time
step (although it can take one time step for the information to propagate). Approximation
algorithms have also been developed for these problems, although they can at best give
guarantees of local optimality. For instance, Peshkin et al. (2000) studied algorithms that
perform gradient descent in a space of parameterized policies.
Is there something inherent in these problems that forces us to add assumptions and/or

use approximation algorithms? Papadimitriou and Tsitsiklis (1982) presented some results
aimed at answering this question. The authors proved that a simple decentralized decision-
making problem is NP-complete, even with just two decision makers. They later noted
that this implies that decentralized control of MDPs must be NP-hard (Papadimitriou and
Tsitsiklis 1986). We strengthen this result by showing that both the DEC-POMDP and
DEC-MDP problems are NEXP-hard, even when the horizon is limited to be less than the
number of states (and they are NEXP-complete in the latter case). Although it is not known
whether the classes P, NP, and PSPACE are distinct, it is known that P �=NEXP, and thus the
problems we consider are provably intractable. Furthermore, assuming EXP �= NEXP, the
problems take superexponential time to solve in the worst case. This result is in contrast to
the best known bounds for MDPs (P-hard) and POMDPs (PSPACE-hard) (Papadimitriou and
Tsitsiklis 1987, Mundhenk et al. 2000). Thus, we have gained insight into the possibility of
a fundamental difference between centralized and decentralized control of Markov decision
processes.
In §2, we give a brief review of the concepts we will need from complexity theory.

In §3, we define the MDP and POMDP models. Section 4 contains the definitions of the
DEC-MDP and DEC-POMDP models, and a proof that the short-horizon versions of these
problems fall within the complexity class NEXP. In §5, we present our main complexity
result—a proof that these decentralized problems are NEXP-hard. Finally, §6 contains our
conclusions.

2. Computational complexity. In this section, we give a brief introduction to the the-
ory of computational complexity. More detail can be found in Papadimitriou (1994). A com-
plexity class is a set of problems where a problem is an infinite set of problem instances,
each of which has a “yes” or “no” answer. To discuss the complexity of optimization prob-
lems, we must have a way of converting them to “yes/no” problems. The typical way this
is done is to set a threshold and ask whether or not the optimal solution yields a reward
that is no less than this threshold. The problem of actually finding the optimal solution can,
of course, be no easier than the threshold problem.
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The first complexity class we consider is P, the set of problems that can be solved in
polynomial time (in the size of the problem instance) on a sequential computer. NP is the
set of problems that can be solved nondeterministically in polynomial time. A nondetermin-
istic machine automatically knows the correct path to take any time there is a choice as to
how the computation should proceed. An example of a problem that can be solved nonde-
terministically in polynomial time is deciding whether a sentence of propositional logic is
satisfiable. The machine can guess an assignment of truth values to variables and evaluate
the resulting expression in polynomial time. Of course, nondeterministic machines do not
really exist, and the most efficient known algorithms for simulating them take exponential
time in the worst case. In fact, it is strongly believed by most complexity theorists that
P �= NP (but this has not been proven formally).
Complexity can also be measured in terms of the amount of space a computation requires.

One class, PSPACE, includes all problems that can be solved in polynomial space. Any
problem that can be solved in polynomial time or nondeterministic polynomial time can
be solved in polynomial space (i.e., P ⊆ NP ⊆ PSPACE)—that P ⊆ PSPACE can be seen
informally by observing that only polynomially much space can be accessed in polynomially
many time steps.
Moving up the complexity hierarchy, we have exponential time (EXP) and nondetermin-

istic exponential time (NEXP). By exponential time, we mean time bounded by 2n
k
, where

n is the input size and k > 0 is a constant. It is known that PSPACE⊆ EXP⊆ NEXP, and
it is believed that EXP �= NEXP (but again this has not been proven). It has been proven
that the classes P and EXP are distinct, however.
The notion of a reduction is important in complexity theory. We say that a problem A

is reducible to a problem B if any instance x of A can be converted into an instance f �x�
of B such that the answer to x is “yes” if and only if the answer to f �x� is “yes.” A
problem A is said to be hard for a complexity class C (or C-hard) if any problem in C is
efficiently reducible to A. If the complexity class in question is P, efficient means that f �x�
can be computed using at most logarithmic space, while for the classes above P, efficient
means that f �x� can be computed using at most polynomial time. A problem A is said to
be complete for a complexity class C (or C-complete) if (a) A is contained in C, and (b) A
is hard for C. For instance, the satisfiability problem mentioned above is NP-complete and
P-hard. However, unless P= NP, satisfiability is not P-complete.

3. Centralized models. In this paper, we consider discrete-time finite sequential deci-
sion processes under the undiscounted finite-horizon optimality criterion. We build into our
problem definitions the (unusual) assumption that the horizon is less than the number of
states. Note that this assumption actually strengthens the hardness results; the general prob-
lems must be at least as hard as their short-horizon counterparts. Unfortunately, the assump-
tion is needed for each of the upper bounds given below. Finding tight upper bounds for
problems with arbitrary horizons remains an open problem (Blondel and Tsitsiklis 1999, §5).
Below we describe the partially observable Markov decision process and its associated

decision problem. The Markov decision process is viewed as a restricted version of this
model.
A partially observable Markov decision process (POMDP) is defined as follows. We are

given a tuple, �S�A�P�R���O�T �K�, where
• S is a finite set of states, with distinguished initial state s0.
• A is a finite action set.
• P is a transition probability table. P�s�a� s′� is a rational representing the probability

of transitioning from s to s′ on taking action a. Here s� s′ ∈ S and a ∈ A.
• R is a reward function. R�s�a� s′� is a rational representing the reward obtained from

taking action a from state s and transitioning to state s′. Again, s� s′ ∈ S and a ∈ A.
• � is a finite set of observations.
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• O is a table of observation probabilities. O�s�a� s′� o� is a rational representing the
probability of observing o when taking action a in state s and transitioning to state s′ as a
result. Here s� s′ ∈ S, a ∈ A, and o ∈�.
• T is a positive integer representing the horizon (and T < 	S	).
• K is a rational representing the threshold value.
A POMDP is fully observable if there exists a mapping J � �→ S such that whenever

O�s�a� s′� o� is nonzero, J�o� = s′. A Markov decision process (MDP) is defined to be a
POMDP that is fully observable.
A policy � is defined to be a mapping from sequences of observations ō = o1 · · ·ot over

� to actions in A. We wish to find a policy that maximizes the expected total return over the
finite horizon. The definitions below are used to formalize this notion. We use the symbol
� to denote the empty observation sequence. For an observation sequence ō = o1 · · ·ot , ōo
is taken to represent the sequence o1 · · ·oto.
Definition. The probability of transitioning from a state s to a state s′ following policy

� while the agent sees observation sequence ō, written P̄��s� ō� s
′�, can be defined recur-

sively as follows:

P̄��s� �� s�= 1�

P̄��s� ōo� s
′�=∑

q∈S
P̄��s� ō� q�P�q���ō�� s

′�O�q���ō�� s′� o��

where � is the empty sequence.
Definition. The value V T

� �s� of following policy � from state s for T steps is given
by the following equation:

V T
� �s�=

∑
ō

∑
q∈S

∑
s′∈S

P̄��s� ō� q�P�q���ō�� s
′�R�q���ō�� s′��

where the observation sequences have length at most T −1.
The decision problem corresponding to a finite-horizon POMDP is as follows. Given a

POMDP D= �S�A�P�R���O�T �K�, is there a policy for which V T
� �s0� equals or exceeds

K? It was shown in Papadimitriou and Tsitsiklis (1987) that the decision problem for
POMDPs is PSPACE-complete and that the decision problem for MDPs is P-complete.

4. Decentralized models. We now describe extensions to the aforementioned models
that allow for decentralized control. In these models, at each step, each agent receives a
local observation and subsequently chooses an action. The state transitions and rewards
received depend on the vector of actions of all the agents.
A decentralized partially observable Markov decision process (DEC-POMDP) is defined

formally as follows (for ease of exposition, we describe the two-agent case). We are given
�S�A1�A2�P�R��1��2�O�T �K�, where
• S is a finite set of states, with distinguished initial state s0.
• A1 and A2 are finite action sets.
• P is a transition probability table. P�s�a1� a2� s

′� is a rational representing the prob-
ability of transitioning from s to s′ on taking actions a1� a2. Here s� s

′ ∈ S, a1 ∈ A1, and
a2 ∈ A2.
• R is a reward function. R�s�a1� a2� s

′� is a rational representing the reward obtained
from taking actions a1� a2 from state s and transitioning to state s′. Again s� s′ ∈ S, a1 ∈A1,
and a2 ∈ A2.
• �1 and �2 are finite sets of observations.
• O is a table of observation probabilities. O�s�a1� a2� s

′� o1� o2� is a rational representing
the probability of observing o1� o2 when taking actions a1� a2 in state s and transitioning to
state s′ as a result. Here s� s′ ∈ S, a1 ∈ A1, a2 ∈ A2, o1 ∈�1, and o2 ∈�2.
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• T is a positive integer representing the horizon (and T < 	S	).
• K is a rational representing the threshold value.
A DEC-POMDP generalizes a POMDP by allowing for control by multiple distributed

agents that together may not fully observe the system state (so we have only partial observ-
ability). We also define a generalization of MDP problems by requiring joint observability.
We say that a DEC-POMDP is jointly observable if there exists a mapping J � �1×�2 → S
such that whenever O�s�a1� a2� s

′� o1� o2� is nonzero, J�o1� o2� = s′. We define a decen-
tralized Markov decision process (DEC-MDP) to be a DEC-POMDP that is jointly
observable.
We define a local policy for agent i, �i, to be a mapping from local histories of observa-

tions ōi = oi1 · · ·oit over �i, to actions in Ai. A joint policy, �= ��1� �2�, is defined to be
a pair of local policies, one for each agent. We wish to find a joint policy that maximizes
the expected total return over the finite horizon. As in the centralized case, we need some
definitions to make this notion more formal.
Definition. The probability of transitioning from a state s to a state s′ following joint

policy �= ��1� �2� while agent 1 sees observation sequence ō1 and agent 2 sees ō2 of the
same length, written P̄��s� ō1� ō2� s

′�, can be defined recursively as follows:

P̄��s�����s�=1�

P̄��s�ō1o1�ō2o2�s
′�=∑

q∈S
P̄��s�ō1�ō2�q�P�q��1�ō1���2�ō2��s

′�O�q��1�ō1���2�ō2��s
′�o1�o2��

where � is the empty sequence.
Definition. The value V T

� �s� of following policy �= ��1� �2� from state s for T steps
is given by the following equation:

V T
� �s�=

∑
�ō1�ō2�

∑
q∈S

∑
s′∈S

P̄��s� ō1� ō2� q�P�q��1�ō1�� �2�ō2�� s
′�R�q��1�ō1�� �2�ō2�� s

′��

where the observation sequences are of length at most T − 1, and both sequences in any
pair are of the same length.
The decision problem is stated as follows. Given a DEC-POMDP D = �S�A1�A2�P�

R��1��2�O�T �K�, is there a joint policy for which V T
� �s0� equals or exceeds K? We

let DEC-POMDPm and DEC-MDPm denote the decision problems for the m-agent DEC-
POMDP and the m-agent DEC-MDP, respectively.
We conclude this section by showing a straightforward upper bound on the worst-case

time complexity of DEC-POMDPm for any m ≥ 2. Because any DEC-MDP is trivially a
DEC-POMDP, this upper bound also applies to DEC-MDPm.

Theorem 1. For all m≥ 2, DEC-POMDPm ∈ NEXP.
Proof. We must show that a nondeterministic machine can solve any instance of

DEC-POMDPm using at most exponential time. First, a joint policy � can be “guessed” and
written down in exponential time. This is because a joint policy consists of m mappings
from local histories to actions; and because T < 	S	, all histories have length less than 	S	.
A DEC-POMDP together with a joint policy can be viewed as a POMDP together with a
policy, where the observations in the POMDP correspond to the observation m-tuples in
the DEC-POMDP (one from each agent), and the POMDP actions correspond to m-tuples
of DEC-POMDP actions (again, one from each agent). In exponential time, each of the
exponentially many possible sequences of observations can be converted into a belief state
(i.e., a probability distribution over the state set giving the probability of being in each
state after seeing the given observation sequence). We note that every POMDP (Kaelbling
et al. 1998) is equivalent to a “belief-state MDP” whose state set is the set of reachable
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belief states of the POMDP. The transition probabilities and expected rewards for the cor-
responding exponential-sized belief-state MDP can be computed in exponential time. Using
standard MDP solution techniques (Puterman 1994), it is possible to determine whether the
guessed policy yields expected reward at least K in this belief-state MDP in time that is
at most polynomial in the size of the belief-state MDP, which is exponential in the size of
the original DEC-POMDP problem. Therefore, there exists an accepting computation path
if and only if there is a policy that can achieve reward K. �

5. Decentralized control of MDPs is NEXP-hard. We now turn our attention to prov-
ing that the upper bound just shown in Theorem 1 is tight—specifically, we show that
NEXP is also a lower bound for the worst-case time complexity of decentralized problems
by showing that any problem in the class NEXP can be reduced in polynomial time to a
DEC-MDP2 problem. It then follows that both DEC-MDPm and DEC-POMDPm are NEXP-
complete for any m≥ 2.
The proof of this lower bound is quite involved and will occupy most of the remainder

of this paper. Each subsection of this section contains a piece of the development, and at
the end of the section the main theorem is asserted. We begin by introducing the known
NEXP-complete problem TILING used in the proof. We then present an overview of the
proof and its major constituents. Next we present the reduction from TILING formally, and
finally we prove that the reduction is correct.

5.1. The TILING problem. We can show this lower bound by reducing any NEXP-
complete problem to DEC-MDP2 using a polynomial-time algorithm. For our reduction,
we use an NEXP-complete problem called TILING (Lewis 1978, Papadimitriou 1994,
p. 501), which is described as follows. We are given a board size n (represented compactly
in binary), a set of tile types L = !tile-0� " " " � tile-k#, and a set of binary horizontal and
vertical compatibility relations H�V ⊆ L×L. A tiling is a mapping f � !0� " " " � n− 1#×
!0� " " " � n−1#→ L. A tiling f is consistent if and only if (a) f �0�0�= tile-0, and (b) for
all x� y �f �x� y�� f �x+1� y�� ∈H , and �f �x� y�� f �x� y+1�� ∈ V . The decision problem is
to determine, given L, H , V , and n, whether a consistent tiling exists. An example of a
tiling instance and a corresponding consistent tiling is shown in Figure 2.

H =

V =

L =

n = 4

a consistent tiling

0 1 2 3
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1

2

3

0 1 2

0 0 0 0

0 0

0 0

0 0

0 0
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0
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1 1 1

1

1 1

1 1

1

1

1

2 21 1 2

2 2

2

2

2

2 2

Figure 2. An example of a tiling instance.
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In the remainder of this section, we assume that we have fixed an arbitrarily chosen
instance of the tiling problem, so that L, H , V , and n are fixed. We then construct an
instance of DEC-MDP that is solvable if and only if the selected tiling instance is solvable.
We note that the DEC-MDP instance must be constructible in time polynomial in the size of
the tiling instance (which in particular is logarithmic in the value of n), which will require
the DEC-MDP instance to be at most polynomially larger than the tiling instance.

5.2. Overview of the reduction. The basic idea of our reduction is to create a two-
agent DEC-MDP that randomly selects two tiling locations bit by bit, informing one agent
of the first location and the other agent of the second location. The agents’ local policies are
observation-history based, so the agents can base their future actions on the tiling locations
given to them. After generating the locations, the agents are simultaneously “queried” (i.e.,
a state is reached in which their actions are interpreted as answers to a query) for a tile type
to place at the location given. We design the DEC-MDP problem so that the only way the
agents can achieve nonnegative expected reward is to base their answers to the query on a
single, jointly understood tiling that meets the constraints of the tiling problem.
This design is complicated because the DEC-MDP state set itself cannot remember which

tiling locations were selected (this would cause exponential blowup in the size of the state
set, but our reduction must expand the problem size at most polynomially—we note that
the tiling grid itself is not part of the tiling problem size, only the compactly represented
grid size n is in the problem specification); the state will contain only certain limited
information about the relative locations of the two tile positions. The difficulty of the design
is also increased by the fact that any information remembered about the specified tiling
locations must be shared with at least one of the agents to satisfy the joint observability
requirement. To deal with these two issues, we have designed the DEC-MDP to pass through
the following phases (a formal description follows later):
Select Phase: Select two bit indices and values, each identifying a bit position and the

value at that position in the location given to one of the agents. These are the only bits that
are remembered in the state set from the locations given to the agents in the next phase—the
other location bits are generated and forgotten by the process. The bit values remembered
are called value-1 and value-2, and the indices to which these values correspond are called
index-1 and index-2. Bit index-1 of the address given to agent 1 will have the value value-1,
likewise for index-2, value-2, and agent 2.
Generate Phase: Generate two tile locations at random, revealing one to each agent. The

bits selected in the above select phase are used, and the other location bits are generated at
random and immediately “forgotten” by the DEC-MDP state set.
Query Phase: Query each agent for a tile type to place in the location that was specified

to that agent. These tile types are remembered in the state.
Echo Phase: Require the agents to echo the tile locations they received in the generate

phase bit by bit. To enforce the accuracy of these location echoes, the DEC-MDP is designed
to yield a negative reward if the bit remembered from the original location generation is
not correctly echoed (the DEC-MDP is designed to ensure that each agent cannot know
which bit is being checked in its echoes). As the agents echo the bits, the process computes
state information representing whether the locations are equal or adjacent horizontally or
vertically, and whether the agents’ locations are both �0�0� (again, we cannot just remember
the location bits because it would force an exponential state set). The echo phase allows us
to compute state information about adjacency/equality of the locations after the tile types
have been chosen, so that the agents’ tile choices cannot depend on this information. This
is critical in making the reduction correct.
Test Phase: Check whether the tile types provided in the query phase come from a single

consistent tiling. In other words, check that if the agents were asked for the same location
they gave the same tile types during query, if they were asked for adjacent locations they
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gave types that satisfy the relevant adjacency constraints, and if the agents were both queried
for location �0�0� they both gave tile type tile-0. The process gives a zero reward only if
the tile types selected during the query phase meet any applicable constraints as determined
by the echoed location bits. Otherwise, a negative reward is obtained.
Note that because we are designing a DEC-MDP, we are required to maintain joint

observability: The observations given to the agents at each time step must be sufficient to
reconstruct all aspects of the DEC-MDP state at that time step. In particular, the bit indices
and values selected in the select phase must be known to the agents (jointly), as well
as the information computed in the echo phase regarding the relative position of the two
locations.
We achieve this joint observability by making all aspects of the DEC-MDP state observ-

able to both agents, except for the indices and values selected in the select phase and the tile
types that are given by the agents (and stored by the process) during the query phase. Each
agent can observe which bit index and value are being remembered from the other agent’s
location, and each agent can observe the stored tile type it gave (but not the tile type given
by the other agent). Because each agent can see what bit is saved from the other agent’s
location, we say that one location bit of each agent’s location is visible to the other agent.
We call the five phases just described “select,” “generate,” “query,” “echo,” and “test”

in the development below. A formal presentation of the DEC-MDP just sketched follows
below, but first we outline the proof that this approach represents a correct reduction.

5.3. Overview of the correctness proof. Here we give an overview of our argument
that the reduction sketched above is correct in the sense that there exists a policy that
achieves expected total reward zero at the start state if and only if there is a solution to the
tiling problem we started with.
It is straightforward to show that if there exists a consistent tiling there must exist a

policy achieving zero reward. The agents need only agree on a consistent tiling ahead of
time and base their actions on the agreed-on tiling (waiting during selection and generation,
giving the tile type present at the generated location during query, faithfully echoing the
generated location during echo, and then waiting during test, at each point being guaranteed
a zero reward by the structure of the problem). Note that it does not matter how expensive
it might be to find and represent a consistent tiling or to carry out the policy just described
because we are merely arguing for the existence of such a policy.
We now outline the proof of the harder direction, that if there is no consistent tiling

then there is no policy achieving expected reward zero. Note that because all rewards are
nonpositive, any chance of receiving any negative reward forces the expected total reward
to be negative.
Consider an arbitrary policy that yields expected reward zero. Our argument rests on the

following claims, which will be proved as lemmas in §5.5:

Claim 1. The policy must repeat the two locations correctly during the echo phase.

Claim 2. When executing the policy, the agents’ selected actions during the query phase
determine a single tiling, as follows. We define a query situation to be dangerous to an
agent if and only if the observable bit value of the other agent’s location (in the observation
history) agrees with the bit value at the same index in the agent’s own location (so that as
far as the agent in danger knows, the other agent is being queried about the same location).
During dangerous queries, the tile type selected by the agent in danger must depend only
on the location queried (and not on the index or value of the bit observed from the other
agent, on any other observable information, or on which agent is selecting the tile type).
The agents’ selected actions for dangerous queries thus determine a single tiling.

Claim 3. The single tiling from Claim 2 is a consistent tiling.
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Claim 3 directly implies that if there is no consistent tiling, then all policies have negative
expected reward, as desired.

5.4. Formal presentation of the reduction. Now we give the two-agent DEC-MDP
D = �S�A1�A2�P�R��1��2�O�T �K� that is constructed from the selected tiling instance
�L�H�V �n�. We assume throughout that n is a power of two. It is straightforward to modify
the proof to deal with the more general case—one way to do so is summarized briefly in
Appendix A.

5.4.1. The state set. We describe the state set S of D below by giving a sequence of
finite-domain “state variables” and then taking the state set to be the set of all possible
assignments of values to the state variables.
The finite-state automaton. One of the state variables will be maintained by a finite-

state automaton (FSA), described in Appendix A. This variable, called rel-pos because it
maintains a record of the relative position of the two location addresses echoed by the
agents in the echo phase, can take on values from the state set of the FSA. Appendix A
describes state set Q and also defines two functions (FSANEXT and FSA) based on the
underlying FSA. These functions allow us to refer to the critical FSA behaviors here in
our reduction while deferring most other details of the FSA to Appendix A. The function
FSANEXT updates the state variable rel-pos based on one more bit of echoed location
from each agent. The function FSA updates the state variable rel-pos based on a sequence
of echoed location bits from each agent—so FSA is defined as a repeated application of the
function FSANEXT.
Appendix A also describes distinguished subsets of the FSA state set Q called apart,

equal, hor, and ver representing possible relative positions for pairs of locations (not adja-
cent or equal, equal, horizontally adjacent, and vertically adjacent, respectively). These sub-
sets are used below in defining the transition and reward behavior of the DEC-MDP D.
Appendix A also defines the initial state q0 of the FSA.
The state variables. We now list the state variables defining the state set for D. We list

the variables in three groups: the first group is observable to both agents, the second group
only to agent 1, and the third group only to agent 2. These restrictions on observability are
described in §5.4.4

Observable to both agents:
phase ∈ !select�gen�query�echo� test# Current phase of the process
index ∈ !0� " " " �2 logn# Index of next location bit

to be generated/echoed
origin ∈ !yes�no# Eventually true if both tile locations are �0�0�
rel-pos ∈Q Relative tile positions during

echo—controlled by the FSA

Observable only to agent 1:
index-2 ∈ !0� " " " �2 logn−1# Index of bit remembered for agent 2
value-2 ∈ !0�1# Value of bit remembered for agent 2
pos-bit-1 ∈ !0�1# Bit for transmitting tile position to agent 1
tile-sel-1 ∈ L Tile type selected by agent 1 in query

Observable only to agent 2:
index-1 ∈ !0� " " " �2 logn−1# Index of bit remembered for agent 1
value-1 ∈ !0�1# Value of bit remembered for agent 1
pos-bit-2 ∈ !0�1# Bit for transmitting tile position to agent 2
tile-sel-2 ∈ L Tile type selected by agent 2 in query
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We write a state by enumerating its variable values, e.g., as follows: �gen�3�yes� q0'
4�0�1� tile-1'5�1�0� tile-3� ∈ S. Semicolons are used to group together variables that have
the same observability properties. We can represent sets of states by writing sets of values
in some of the components of the tuple rather than just values. The ∗ symbol is used to
represent the set of all possible values for a component. We sometimes use a state variable
as a function from states to domain values for that variable. For instance, if q matches
�gen�∗�∗�∗'∗�∗�∗�∗'∗�∗�∗�∗�, then we will say phase�q�= gen.

The initial state s0 is as follows: �select�0�yes� q0'0�0�0� tile-0'0�0�0� tile-0�.

5.4.2. The action sets and table of transition probabilities. We must allow “wait”
actions, “zero” and “one” actions for echoing location address bits, and tile-type actions
from the set of tile types L for answering during the query phase. We therefore take the
action sets A1 = A2 to be !wait�0�1#∪L.
We give the transition distribution P�s�a1� a2� s

′� for certain action pairs a1� a2 for certain
source states s. For any source-state/action-pair combination not covered by the description
below, the action pair is taken to cause a probability 1.0 self-transition back to the source
state. The combinations not covered are not reachable from the initial state under any joint
policy. Also, we note that the FSA-controlled state component rel-pos does not change from
its initial state q0 until the echo phase.
Select phase. This is the first step of the process. In this step, the process chooses, for

each agent, which of that agent’s bits it will be checking in the echo phase. The value of
that bit is also determined in this step. Transition probabilities when phase = select are
given as follows:

P�s�a1� a2� s
′�= 1

�4 logn�2
in the following situations:

s = s0 = �select�0�yes� q0'0�0�0� tile-0'0�0�0� tile-0��
s′ = �gen�0�yes� q0' i2� v2�0� tile-0' i1� v1�0� tile-0��
i1� i2 ∈ !0� " " " �2 logn−1#� and

v1� v2 ∈ !0�1#)
Generate phase. During these steps, the two tile positions are chosen bit by bit. Note

that we have to check for whether we are at one of the bits selected during the select phase,
so that the value of the bit is the same as the value chosen during selection. Transition
probabilities when phase = generate are given as follows. The second case describes the
deterministic transition from the generate phase to the query phase.

P�s�a1� a2� s
′�= 1

h
in the following situations:

s = �gen� k�yes� q0' i2� v2�∗� tile-0' i1� v1�∗� tile-0� where 0 ≤ k ≤ 2 logn−1�

s′ = �gen� k+1�yes� q0' i2� v2� b1� tile-0' i1� v1� b2� tile-0�� where

b1 = v1 if k = i1� else b1 is either 0 or 1�

b2 = v2 if k = i2� else b2 is either 0 or 1, and

h is the number of allowed settings of b1� b2 from the previous two lines.

P�s�a1� a2� s
′�= 1 in the following situations:

s = �gen�2 logn�yes� q0' i2� v2�∗� tile-0' i1� v1�∗� tile-0�� and

s′ = �query�0�yes� q0' i2� v2�0� tile-0' i1� v1�0� tile-0�)
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Query phase. The query phase consists of just one step, during which each agent
chooses a tile type. Transition probabilities when phase = query are given as follows:

P�s�a1� a2� s
′�= 1 in the following situations:

s = �query�0�yes� q0' i2� v2�0� tile-0' i1� v1�0� tile-0��
t1 =

{
a1 if a1 ∈ L
tile-0 otherwise

� t2 =
{
a2 if a2 ∈ L
tile-0 otherwise

� and

s′ = �echo�0�yes� q0' i2� v2�0� t1' i1� v1�0� t2�)
Echo phase. During the echo phase the agents are asked to repeat back the addresses

seen in the generate phase, and information about the relative position of the addresses is
calculated by the FSA described in Appendix A and recorded in the state. The FSA is
accessed here using the function FSANEXT described in Appendix A. Transition probabil-
ities when phase = echo are given as follows:

P�s�a1� a2� s
′�= 1 in the following situations:

s = �echo� k� o� q' i2� v2�0� t1' i1� v1�0� t2��
b1 =

{
a1 if a1 ∈ !0�1#
0 otherwise

� b2 =
{
a2 if a2 ∈ !0�1#
0 otherwise

�

s′ = �p�k′� o′�FSANEXT�q� b1� b2�' i2� v2�0� t1' i1� v1�0� t2��
where p�k′ =

{
echo� k+1 for 0 ≤ k < 2 logn−1
test�0 for k = 2 logn−1

� and

o′ = yes if and only if �o = yes and a1 = a2 = 0�)

Test phase. The test phase consists of just one step terminating the process in a zero-
reward absorbing state.

P�s�a1� a2� s
′�= 1 in the following situations:

s = �test�0�∗�∗'∗�∗�0�∗'∗�∗�0�∗�� and
s′ = �test�0�yes� q0'0�0�0� tile-0'0�0�0� tile-0�)

5.4.3. The reward function. We now describe the reward function for D. The reward
R�s�a1� a2� s

′� given when transitioning from state s to state s′ taking action pair a1� a2 is
−1 in any situation except those situations matching one of the following patterns. Roughly,
we give zero reward for waiting during select and generate, for answering with a tile type
during query, for echoing a bit consistent with any remembered information during echo,
and for having given tile types satisfying the relevant constraints during test. The relevant
constraints during test are determined by the rel-pos state component computed by the FSA
during the echo phase.
R�s�a1� a2� s

′�= 0 if and only if one of the following holds:

Select phase � s = �select�∗�∗�∗'∗�∗�∗�∗'∗�∗�∗�∗� and a1 = a2 = wait)

Generate phase � s = �gen�∗�∗�∗'∗�∗�∗�∗'∗�∗�∗�∗� and a1 = a2 = wait)

Query phase � s = �query�∗�∗�∗'∗�∗�∗�∗'∗�∗�∗�∗� and both a1 ∈ L and a2 ∈ L)
Echo phase � s = �echo� k�∗�∗' i2� v2�∗�∗' i1� v1�∗�∗� and a1� a2 ∈ !0�1#�

where �a1 = v1 or k �= i1� and �a2 = v2 or k �= i2�)
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Test Phase�i� � s = �test�∗� o�equal'∗�∗�∗� t1'∗�∗�∗� t1� and a1 = a2 = wait�

where �o = no or t1 = tile-0�)

Test Phase �ii� � s = �test�∗�∗�hor'∗�∗�∗� t1'∗�∗�∗� t2� and a1 = a2 = wait�

where �t1� t2� ∈H)
Test Phase �iii� � s = �test�∗�∗�ver'∗�∗�∗� t1'∗�∗�∗� t2� and a1 = a2 = wait�

where �t1� t2� ∈ V )
Test Phase �iv� � s = �test�∗�∗�apart'∗�∗�∗�∗'∗�∗�∗�∗� and a1 = a2 = wait)

5.4.4. Observations, threshold, and horizon. The first four component fields of each
state description are fully visible to both agents. The last eight state component fields
are split into two groups of four, each group visible to only one agent. We therefore
take the agent 1 observations �1 to be partial assignments to the following state vari-
ables: phase, index, origin, rel-pos, index-2, value-2, pos-bit-1, and tile-sel-1. Similarly,
the observations �2 are partial assignments to the following state variables: phase, index,
origin, rel-pos, index-1, value-1, pos-bit-2, and tile-sel-2. The observation distribution
O�s�a1� a2� s

′� o1� o2� simply reveals the indicated portion of the just-reached state s′ to
each agent deterministically.
We say that an observation sequence is p-phase if the sequence matches the pattern

∗�p�∗�∗�∗'∗�∗�∗�∗�, where the first “*” stands for any observation sequence. Here, p can
be any of gen, query, echo, or test.
We take the horizon T to be 4 logn+4, because the process spends one step in each of

the select, query, and test phases, 2 logn+1 steps in the generate phase, and 2 logn steps in
the echo phase. We take the threshold value K to be 0. This completes the construction of
the DEC-MDP by polynomial-time reduction from the selected tiling instance. An example
of a zero-reward trajectory of the process is shown in Figure 3. We now turn to correctness.

5.5. Formal correctness argument. Next we show that the reduction presented above
is indeed correct. Our main claim is that there exists a policy that achieves expected total
reward zero at the start state if and only if there is a solution to the tiling problem we
started with.
To make our notation easier to read, we define the following abbreviations.
Definition. Given an observation sequence ō1 over �1, we write loc1�ō1� for the loca-

tion value represented by the bits transmitted to agent 1 in the generate phase of the process.
We note that during the select and generate phases this value may be only partially speci-
fied (because not all of the bits have been generated). More precisely, loc1�ō1� = bk · · ·b0,
where the bi values are chosen by the first match of the following sequence in ō1 (with k
as large as possible while allowing a match):

�gen�1�∗�∗'∗�∗� b0�∗� · · · �gen� k+1�∗�∗'∗�∗� bk�∗�)
We define loc2�ō2� similarly. In addition, we define bit�i� l� to be bi, where bk� " " " � b0 is
the binary coding of the (possibly only partially specified) location l—we take bit�i� l� to
be undefined if the bit i is not specified in location l.
By abuse of notation we treat loc1�ō1� (or loc2�ō2�) as a tiling location �x� y� sometimes

(but only when it is fully specified) and as a bit string at other times.
The easier direction of correctness is stated in the following lemma, which is formally

proven in Appendix B.

Lemma 1. If there exists a consistent tiling, then there must exist a policy achieving
zero expected total reward.
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phase = gen
index = 0
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index = 4
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value-1 = 1
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index = 0
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index-2 = 1
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value-1 = 1
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phase = echo
index = 1
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rel-pos = q1

index-2 = 1
value-2 = 1
tile-sel-1 = tile-0
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phase = echo
index = 2
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rel-pos = q2
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index = 3
origin = no
rel-pos = q3

phase = test
origin = no
rel-pos = q4 ∈ hor
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index-2 = 1
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tile-sel-1 = tile-0
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Select
The process chooses
indices to be checked
in the echo phase.

Generate
The process generates
address bits.

Query
The agents choose
tiles.

Echo
The agents echo address
bits. The process checks
one bit for each agent
and keeps track of
information about the
addresses echoed.

Test
The process checks
that the relevant
constraints are
satisfied.

phase = test

0 1

Figure 3. An example of a zero-reward trajectory of the process constructed from the tiling example given in
Figure 2. The total reward is zero because the agents echo the “checked” bits correctly and choose tiles that do
not violate any constraints, given the two addresses that are echoed. (For clarity, some state components are not
shown.)

We now discuss the more difficult reverse direction of the correctness proof. In the
following subsections, we prove Claims 1 to 3 from §5.3 to show that if there is a policy
which achieves nonnegative expected reward for horizon T , then there is also a consistent
tiling. Throughout the remainder of the proof, we focus on a fixed, arbitrary policy � that
achieves zero expected reward. Given this policy, we must show that there is a consistent
tiling.
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5.5.1. Proof of Claim 1. Before proving the first claim, we need to formalize the notion
of “faithfulness during echo.”
Definition. A pair of observation sequences �ō1� ō2� over �1 and �2, respectively, is

said to be reachable if P̄��s0� ō1� ō2� s� is nonzero for some state s. An observation sequence
ō1 over �1 is said to be reachable if there exists an observation sequence ō2 over �2

such that the pair of observation sequences �ō1� ō2� is reachable. Likewise, ō2 over �2 is
reachable if there is some ō1 over �1 such that, �ō1� ō2� is reachable.
Definition. The policy �= ��1� �2� is faithful during echo if it satisfies both of the fol-

lowing conditions for all indices k in .0�2 logn−1/, and all reachable observation sequence
pairs �ō1� ō2�:
1. �1�ō1�= bit�k� loc1�ō1�� when ō1 = �∗�∗�∗�∗'∗�∗�∗�∗� · · · �echo� k�∗�∗'∗�∗�∗�∗�.
2. �2�ō2�= bit�k� loc2�ō2�� when ō2 = �∗�∗�∗�∗'∗�∗�∗�∗� · · · �echo� k�∗�∗'∗�∗�∗�∗�.

We say the policy � lies during echo otherwise. If the two conditions listed above are
satisfied for all indices k in .0�d−1/, where 0≤ d≤ 2 logn, we say that the policy faithfully
echoes the first d bits.
Much of our proof revolves around showing that the reachability of a pair of observation

sequences is not affected by making certain changes to the sequences. We focus without
loss of generality on changes to the observations of agent 2, but similar results hold for
agent 1. The changes of particular interest are changes to the (randomly selected) value of
the index-1 state component—this is the component that remembers which bit of agent 1’s
queried location will be checked during echo. It is important to show that agent 1 cannot
determine which bit is being checked before that bit has to be echoed. To show this, we
define a way to vary the observation sequences seen by agent 2 (preserving reachability)
such that without changing the observations seen by agent 1 we have changed which agent 1
address bit is being checked. We now present this approach formally.
Definition. We say that an observation sequence ō1 over �1 is superficially consistent

if the values of the index-2 component and the value-2 component do not change through-
out the sequence, and the value of the tile-sel-1 component is tile-0 for generate-phase and
query-phase observations and some fixed tile type in L for echo-phase and test-phase obser-
vations. Given a superficially consistent observation sequence ō1, we can write index-2�ō1�
and value-2�ō1� to denote the value of the indicated component throughout the sequence.
In addition, we can write tile-sel-1�ō1� to denote the fixed tile type for echo-phase and test-
phase observations (we take tile-sel-1�ō1� to be tile-0 if the sequence contains no echo- or
test-phase observations). Corresponding definitions hold for observation sequences over �2,
replacing “1” by “2” and “2” by “1” throughout.
Note that any reachable observation sequence must be superficially consistent, but the

converse is not necessarily true. The following technical definition is necessary so that we
can discuss the relationships between observation sequences without assuming reachability.
Definition. We say that two superficially consistent observation sequences ō1 over �1

and ō2 over �2 are compatible if

bit�index-1�ō2�� loc1�ō1��= value-1�ō2� or this bit of loc1�ō1� is not defined,

and

bit�index-2�ō1�� loc2�ō2��= value-2�ō1� or this bit of loc2�ō2� is not defined.

Definition. Given an index i in .0�2 logn− 1/, a reachable pair of observation
sequences �ō1� ō2�, and an observation sequence ō ′

2 over �2, we say that ō ′
2 is an i-index

variant of ō2 relative to ō1 when ō ′
2 is any sequence compatible with ō1 that varies from

ō2 only as follows:
1. index-1 has been set to i throughout the sequence,
2. value-1 has been set to the same value v throughout the sequence,
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3. pos-bit-2 can vary arbitrarily from ō2, and
4. For any echo- or test-phase observations, tile-sel-2 has been set to the tile type selected

by � on the query-phase prefix of ō ′
2 , or to tile-0 if � selects a non-tile-type action on that

query.
If the pos-bit-2 components of ō2 and ō

′
2 are identical, we say that ō ′

2 is a same-address
index variant of ō2.
We note that, given a reachable pair of observation sequences �ō1� ō2�, there exists an i-

index variant of ō2 relative to ō1, for any i in .0�2 logn−1/. This remains true even if we
allow only same-address index variants. The following technical lemma asserts that index
variation as just defined preserves reachability under very general conditions. Its proof is
deferred to Appendix C.

Lemma 2. Suppose � is faithful during echo for the first k bits of the echo phase for
some k. Let �ō1� ō2� be a reachable pair of observation sequences that end no later than the
kth bit of echo (i.e., the last observation in the sequence has index no greater than k if it is
an echo-phase observation) and let ō ′

2 be an i-index variant of ō2 relative to ō1 for some i.
If the observation sequences are echo-phase or test-phase, then we require that the index
variation be a same-address variation. We can then conclude that �ō1� ō ′

2 � is reachable.
We are now ready to assert and prove Claim 1 from §5.3.

Lemma 3 (Claim 1). � is faithful during echo.

Proof. We argue by induction that � faithfully echoes all 2 logn address bits. As an
inductive hypothesis, we assume that � faithfully echoes the first k bits, where 0 ≤ k <
2 logn. Note that if k equals zero, this is a null assumption, providing an implicit base case
to our induction. Now suppose for contradiction that � lies during the k+ 1st step of the
echo phase. Then one of the agents’ policies must incorrectly echo bit k+ 1; we assume
without loss of generality that this is so for agent 1, i.e., under some reachable observation
sequence pair �ō1� ō2� of length 2 logn+k+2, the policy �1 dictates that the agent choose
action 1−bit�k� loc1�ō1��. Lemma 2 implies that the observation sequence pair �ō1� ō ′

2 � is
also reachable, where ō ′

2 is any same-address k+1-index variant of ō2 relative to ō1.
Because all the agent 1 observations are the same for both �ō1� ō2� and �ō1� ō ′

2 �, when the
latter sequence occurs, agent 1 chooses the same action 1−bit�k� loc1�ō1�� as given above for
the former sequence, and a reward of −1 is obtained (because in this case it is bit k+1 that
is checked). Therefore, the expected total reward is not zero, yielding a contradiction. �

5.5.2. Proof of Claim 2. Now we move on to prove Claim 2 from §5.3. We show
that � can be used to define a particular mapping from tile locations to tile types based on
“dangerous queries.” In §5.3, we defined an agent 1 observation sequence to be “dangerous”
if it reveals a bit of agent 2’s queried location that agrees with the corresponding bit of agent
1’s queried location (and vice versa for agent 2 observation sequences). We now present
this definition more formally.
Definition. A query-phase observation sequence ō1 over �1 is dangerous if it is reach-

able and

bit�index-2�ō1�� loc1�ō1�� = value-2�ō1�)

Likewise, a query-phase sequence ō2 over �2 is dangerous if it is reachable and
bit�index-1�ō2�� loc2�ō2��= value-1�ō2�.
Dangerous query-phase sequences are those for which the agent’s observations are con-

sistent with the possibility that the other agent has been queried on the same location. We
note that for any desired query location l, and for either agent, there exist dangerous obser-
vation sequences ō such that lock�ō�= l. Moreover, such sequences still exist when we also
require that the value of index-k�ō� be any particular desired value (where k is the number
of the nonobserving agent).
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Lemma 4. Two same-length query-phase observation sequences, ō1 over �1 and ō2
over �2, are reachable together as a pair if and only if they are compatible and each is
individually reachable.

Proof. The “only if” direction of the theorem follows easily—the reachability part fol-
lows from the definition of reachability, and the compatibility of jointly reachable sequences
follows by a simple induction on sequence length given the design of D.
The “if” direction can be shown based on the following assertions. First, a generate-phase

observation sequence (for either agent) is reachable if and only if it matches the following
pattern:

�gen�0�yes� q0' i� v�∗� tile-0� · · · �gen� k�yes� q0' i� v�∗� tile-0��
for some k� i, and v; this can be established by a simple induction on sequence length based
on the design of D. A similar pattern applies to the query phase.
Given two compatible reachable sequences of the same length, ō1 and ō2, we know by

the definition of reachability that there must be some sequence ō ′
2 such that �ō1� ō ′

2 � is
reachable. But given the patterns just shown for reachable sequences, ō2 and ō ′

2 can differ
only in their choice of i, v, and in the address given to agent 2 via the pos-bit-2 component.
It follows that ō2 is an i-index variant of ō ′

2 relative to ō1, for some i. Lemma 2 then implies
that the pair �ō1� ō2� is reachable as desired. �

Lemma 5 (Claim 2). There exists a mapping f from tiling locations to tile types such
that f �loci�ō��= �i�ō� on all dangerous queries ō over �i for both agents (i ∈ !1�2#).
Proof. To prove the lemma, we prove that for any two dangerous query sequences ōi

and ōj over �i and �j , respectively, for arbitrary i� j ∈ !1�2#, if loci�ōi� = locj�ōj� = l,
then �i�ōi� = �j�ōj�. This implies that for any such ōi we can take f �l� = �i�loci�ōi�� to
construct f satisfying the lemma. Suppose not. Then there must be a counterexample for
which i �= j—because given a counterexample for which i = j, either ōi or ōj must form a
counterexample with any dangerous query ōk over �1−i such that loc1−i�ōk�= l.
We can now consider a counterexample where i �= j. Let ō1 and ō2 be dangerous (and

thus reachable) sequences over �1 and �2, respectively, such that loc1�ō1� = loc2�ō2� but
�1�ō1� �= �2�ō2�. Note that loc1�ō1�= loc2�ō2� together with the fact that ō1 and ō2 are dan-
gerous implies that ō1 and ō2 are compatible and thus reachable together (using Lemma 4).
The faithfulness of echo under � (proven in Claim 1, Lemma 3) then ensures that the

extension (there is a single extension because D is deterministic in the echo and test phases)
of these observation sequences by following � to the test phase involves a faithful echo.
The correctness of the FSA construction in Appendix A then ensures that the rel-pos state
component after this extension will have the value equal. The reward structure of D during
the test phase then ensures that to avoid a negative reward the tile types given during query,
�1�ō1� and �2�ō2�, must be the same, contradicting our choice of ō1 and ō2 above and thus
entailing the lemma. �

5.5.3. Proof of Claim 3 and our main hardness theorem. We now finish the proof
of our main theorem by proving Claim 3 from §5.3. We start by showing the existence of
a useful class of pairs of dangerous observation sequences that are reachable together.

Lemma 6. Given any two locations l1 and l2 sharing a single bit in their binary rep-
resentations, there are dangerous observation sequences ō1 over �1 and ō2 over �2 such
that:

loc1�ō1�= l1�

loc2�ō2�= l2� and

�ō1� ō2� is reachable)
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Proof. It is straightforward to show that there exist dangerous observation sequences
ō1 over �1 and ō2 over �2 such that loc1�ō1� = l1 and loc2�ō2� = l2 as desired. In these
sequences, both index-1 and index-2 are set throughout to the index of a single bit shared
by l1 and l2. Because this bit is in common, these sequences are compatible, so by Lemma 4
they are reachable together. �

Lemma 7 (Claim 3). The mapping f defined in Lemma 5 is a consistent tiling.

Proof. We prove the contrapositive. If the mapping f is not a consistent tiling, then
there must be some particular constraint violated by f . It is easy to show that any such
constraint is tested during the test phase if loc1�ō1� and loc2�ō2� have the appropriate values.
(The faithfulness during echo claim proven in Lemma 3 implies that the origin and rel-pos
components on entry to the test phase will have the correct values for comparing the two
locations). For example, if a horizontal constraint fails for f , then there must be locations
�i� j� and �i+1� j� such that the tile types �f �i� j�� f �i+1� j�� are not in H ; because these
two locations share a bit (in fact, all the bits in j, at least), Lemma 6 implies that there
are dangerous ō1 and ō2 with loc1�ō1� = �i� j� and loc2�ō2� = �i+ 1� j� that are reachable
together. During the test phase, the tile-sel-1 and tile-sel-2 state components are easily
shown to be f �i� j� and f �i+ 1� j�, and then the definition of the reward function for D
ensures a reachable negative reward. The arguments for the other constraints are similar. �

Claim 3 immediately implies that there exists a consistent tiling whenever there exists a
policy achieving zero expected total reward. This completes the proof of the other direction
of our main complexity result. We have thus shown that there exists a policy that achieves
expected reward zero if and only if there exists a consistent tiling, demonstrating that
DEC-MDP2 is NEXP-hard.

Theorem 2. DEC-MDP2 is NEXP-hard.

Corollary 1. For all m ≥ 2, both DEC-POMDPm and DEC-MDPm are NEXP-
complete.

6. Discussion. Using the tools of worst-case complexity analysis, we analyzed two
variants of decentralized control of Markov decision processes. Specifically, we proved that
the finite-horizon m-agent DEC-POMDP problem is NEXP-hard for m ≥ 2 and the finite-
horizon m-agent DEC-MDP problem is also NEXP-hard for m ≥ 2. When the horizon is
limited to be less than the number of states, the problems are NEXP-complete.
The results have some theoretical implications. First, unlike the MDP and POMDP prob-

lems, the problems we studied provably do not admit polynomial-time algorithms, because
P �= NEXP. Second, we have drawn a connection between work on Markov decision pro-
cesses and the body of work in complexity theory that deals with the exponential jump in
complexity due to decentralization (Peterson and Reif 1979, Babai et al. 1991).
There are also more direct implications for researchers trying to solve problems of this

nature. Consider the growing body of work on algorithms for obtaining exact or approximate
solutions for POMDPs (e.g., Jaakkola et al. 1995, Cassandra et al. 1997, Hansen 1998,
Meuleau et al. 1999, Lusena et al. 1999, Zhang 2001). For the finite-horizon case, we
now have stronger evidence that there is no way to efficiently convert a DEC-MDP or
DEC-POMDP into an equivalent POMDP and solve it using established techniques. This
knowledge can provide direction for research on the development of algorithms for these
problems.
Finally, consider the infinite-horizon versions of the aforementioned problems. It has

recently been shown that the infinite-horizon POMDP problem is undecidable (Madani
et al. 1999) under several different optimality criteria. Because a POMDP is a special
case of a DEC-POMDP, the corresponding infinite-horizon DEC-POMDP problems are also
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undecidable. In addition, because it is possible to reduce a POMDP to a two-agent DEC-
MDP (simply add a second “dummy” agent that observes the state but cannot affect the
state transitions and rewards obtained), the infinite-horizon DEC-MDP problems are also
undecidable.

Appendix A: Description of the finite-state automaton used. Here we describe the
domain of the rel-pos state component and how the component’s value evolves during the
echo phase based on the bit pairs chosen by the agents (recall that it remains fixed during
the other phases). The component is controlled by a deterministic finite state automaton
(FSA) with a state set Q of size polylogarithmic in n. The state set is assumed to include
four distinguished subsets of states: apart, equal, hor, and ver. Each subset corresponds to
a possible relation between the two agents’ echoed tile positions. The automaton takes as
input the string of bit pairs (the alphabet for the automaton consists of the four symbols
.00/� .01/� .10/� .11/, with the first component of each symbol representing the bit produced
by agent 1 and the second component representing the bit produced by agent 2). This
automaton is the cross product of three individual automata, each of which keeps track of
a different piece of information about the two tile positions represented by the sequence of
bit pairs. These automata are described as follows.
1. Equal Tile Positions. This automaton computes whether the two tile positions produced

are equal or not. Consider the following regular expression:

�.00/+ .11/�∗)
There is a constant-sized FSA corresponding to the above expression that, on inputs of
length 2 logn, ends in an accept state if and only if �x1� y1�= �x2� y2�, where �x1� y1� is the
tile position represented by the sequence of bits given by agent 1, and �x2� y2� is the tile
position represented by the sequence of bits given by agent 2.
2. Horizontally Adjacent Tile Positions. This automaton computes whether the second

tile position is horizontally adjacent to the first tile position by a single increment in the x
coordinate. Its regular expression is as follows:

.10/∗.01/�.00/+ .11/�∗ �.00/+ .11/� · · · �.00/+ .11/�︸ ︷︷ ︸
logn

)

There is an O�logn�-sized FSA corresponding to the above expression that, on inputs of
length 2 logn, ends in an accept state if and only if �x1+1� y1�= �x2� y2�, where x1� y1� x2,
and y2 are as in the description of the first automaton. (We note that it is not always the
case that a regular expression has a corresponding FSA that is only polynomially bigger.
However, for all the regular expressions we consider this property does hold.)
3. Vertically Adjacent Tile Positions. This automaton computes whether the second tile

position is vertically adjacent to the first tile position by a single increment in the y coor-
dinate. Its regular expression is as follows:

�.00/+ .11/� · · · �.00/+ .11/�︸ ︷︷ ︸
logn

.10/∗.01/�.00/+ .11/�∗)

There is an O�logn�-sized FSA corresponding to the above expression that, on inputs of
length 2 logn, ends in an accept state if and only if �x1� y1+1�= �x2� y2� where x1� y1� x2,
and y2 are as in the descriptions of the previous two automata.
We can take the cross-product of these three automata to get a new automaton with size

O��logn�2�. Let accept1, accept2, and accept3 be the sets of accept states from the three
component automata, respectively, and let reject1, reject2, and reject3 be the corresponding
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sets of reject states. From these sets we construct distinguished sets apart, equal, hor, and
ver of cross-product automaton states as follows:

apart = reject1× reject2× reject3)

equal = accept1× reject2× reject3)

hor = reject1× accept2× reject3)

ver = reject1× reject2× accept3)

The rest of the automaton’s states comprise the set Q′. Let q1�0, q2�0, and q3�0 denote the
start states of the three component automata. We define the start state of the cross-product
automaton to be the state q0 = �q1�0� q2�0� q3�0�.
We now define two functions based on this automaton that are needed in the main body

of the proof. One function takes as input the state of the automaton and a bit pair and returns
the next state of the automaton. The second function takes as input a pair of bit strings of
the same length and returns the state that the automaton will be in starting from its initial
state and reading symbols formed by the corresponding bits in the two strings in sequence.
Definition. For q ∈Q and a1� a2 ∈ !0�1#, FSANEXT�q�a1� a2�= q′, where q′ ∈Q is

the resulting state if the automaton starts in state q and reads the input symbol .a1a2/.
Definition. The function FSA is defined inductively as follows:

FSA��� ��= q0)

FSA�b0 · · ·bk+1� c0 · · · ck+1�= FSANEXT�FSA�b0 · · ·bk� c0 · · · ck��� bk+1� ck+1�)

Note that the range of FSA for inputs of length 2 logn is apart∪equal∪hor∪ver.
In the proof given in §5 we assumed that the TILING grid size n was an exact power

of two. We note that the proof can be adapted by adding two components to the cross-
product FSA described here, where the two new components are both FSAs over the same
alphabet. The first new component accepts a string only when both x1 and y1 (as described
above) are less than n (so that the tiling location represented by �x1� y1� is in the tiling
grid). The second new component behaves similarly for �x2� y2�. The DEC-MDP can then
be constructed using the smallest power of two larger than n but modified so that whenever
either new component of the FSA rejects the (faithfully) echoed bit sequences, then the
process gives a zero reward, regardless of the tile types returned during query.
Each new component can be viewed as an FSA over a {0,1} alphabet, because each

focuses either on just the agent 1 echoes or on just the agent 2 echoes. We describe the FSA
for checking that x1 is less than n; constructing the two components is then straightforward.
Suppose that k= �logn� is the number of bits in the binary representation of n and that the
bits themselves are given from least to most significant as b1 · · ·bk. Suppose also that there
are j different bits equal to 1 among b1 · · ·bk and that these bits are at indices i1� " " " � ij .
We can then write a regular expression for detecting that its input of k bits from least to
most significant represents a number in binary that is strictly less than n:

[
�0+1�i1−10bi1+1 · · ·bk

]+ [
�0+1�i2−10bi2+1 · · ·bk

]+· · ·+
[
�0+1�ij−10bij+1 · · ·bk

]
)

It can be shown that this regular expression has an equivalent FSA of size O��logn�2�.

Appendix B: Proof of Lemma 1. We assume there exists at least one consistent tiling,
and we select a particular such mapping f . We describe a policy �= ��1� �2� that achieves
zero expected reward at the initial state. �1 is a mapping from sequences of observations in
�1 to actions in A1, and �2 from sequences over �2 to actions in A2. Only the reachable
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part of the mapping �1 is specified below—any unspecified observation sequence maps to
the action wait. We note that �1 and �2 are symmetric.
�1�ō1�= a1 when one of the following holds:

Select phase: ō1 = �select�∗�∗�∗'∗�∗�∗�∗� and a1 = wait)

Generate phase: ō1 = ∗�gen�∗�∗�∗'∗�∗�∗�∗� and a1 = wait)

Query phase: ō1 = ∗�query�∗�∗�∗'∗�∗�∗�∗� and a1 = f �loc1�ō1��)

Echo phase: ō1 = ∗�echo� k�∗�∗'∗�∗�∗�∗� and a1 = bit�k� loc1�ō1��)

Test phase: ō1 = ∗�test�∗�∗�∗'∗�∗�∗�∗� and a1 = wait)

The local policy �2 is defined identically to �1 except that loc1 is replaced by loc2.
We first characterize the set of all reachable states from s0 under the policy �. We then

note that taking the action prescribed by � from any of these states yields a reward of zero.
Thus, V T

� �s0�= 0.
It is straightforward to show by induction that P̄��s0� ō1� ō2� s� is zero except where one

of the following patterns applies:

• s = s0 = �select�0�yes� q0'0�0�0� tile-0'0�0�0� tile-0�.
• s = �gen� k�yes� q0' i2� v2�∗� tile-0' i1� v1�∗� tile-0�, where

0 ≤ k ≤ 2 logn,
�k ≤ i1 or v1 = bit�i1� loc1�ō1���, and
�k ≤ i2 or v2 = bit�i2� loc2�ō2���.

• s = �query�0�yes� q0' i2� v2�∗� tile-0' i1� v1�∗� tile-0�, where
v1 = bit�i1� loc1�ō1��, and
v2 = bit�i2� loc2�ō2��.

• s = �echo� k� o� q' i2� v2�∗� t1' i1� v1�∗� t2�, where
0 ≤ k ≤ 2 logn−1,
v1 = bit�i1� loc1�ō1��,
v2 = bit�i2� loc2�ō2��,
t1 = f �loc1�ō1��,
t2 = f �loc2�ō2��,
o = yes if and only if bj = cj = 0 for 0 ≤ j ≤ k−1, with bj and cj as in the next

item, and
q = FSA�b0 · · ·bk−1� c0 · · · ck−1�,
with b0 · · ·bk−1 and c0 · · · ck−1 the least significant bits of loc1�ō1� and loc2�ō2�,

respectively.
• s = �test�∗� o� r'∗�∗�∗� t1'∗�∗�∗� t2�, where

o = yes if and only if loc1�ō1�= �0�0� and loc2�ō2�= �0�0�,
r = FSA�loc1�ō1�� loc2�ō2��,
t1 = f �loc1�ō1��, and
t2 = f �loc2�ō2��.

It can then be shown that the reward for any action prescribed by the policy � given
any of these reachable state/observation sequence combinations is zero given that f is a
consistent tiling. �

Appendix C: Proof of Lemma 2. We need some new notation to carry out this proof.
Given a state s, a state component c and corresponding value v from the domain of c, we
define the state “s with c set to v” (written s.c �= v/) to be the state s′ that agrees with s
at all state components except possibly c and has value v for state component c. We also
write ō1�j for the first j observations in the sequence ō1, and likewise ō2�j and ō

′
2�j .
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For any state sj reachable while observing �ō1�j � ō2�j�, we define a state s′j that we will
show is reachable while observing �ō1�j � ō ′

2�j �, as follows:

s′j = sj.index-1 �= index-1�ō ′
2�j �/.value-1 �= value-1�ō ′

2�j �/.tile-sel-2 �= tile-sel-2�ō ′
2�j �/)

We can now show by an induction on sequence length j that for any state sj such that
P̄��s0� ō1�j � ō2�j � sj� is nonzero, then P̄��s0� ō1�j � ō

′
2�j � s

′
j� is also nonzero. From this we can

conclude that �ō1� ō ′
2 � is reachable, as desired.

For the base case of this induction, we take j to be 1, so that the observation sequences
involved all have length 1, ending in the generate phase with index equal to zero. Inspection
of the definition of the transition probabilities P shows that changing index-1 and value-1
arbitrarily has no effect on reachability.
For the inductive case, we suppose some state sj is reachable by �ō1�j � ō2�j�, and that

state s′j is reachable by �ō1�j � ō ′
2�j �. Let a1 be ��ō1�j�, a2 be ��ō2�j�, and a

′
2 be ��ō ′

2�j �. We
must show that for any state sj+1 such that P�sj� a1� a2� sj+1� is nonzero, P�s

′
j � a1� a

′
2� s

′
j+1�

is also nonzero, for s′j+1. This follows from the following observations:
• When phase(sj) is select or generate, neither agent 2’s action a2 nor the values of

index-1(sj) or value-1(sj) have any affect on P�sj� a1� a2� sj+1� being nonzero, as long as
either index-1 is not equal to j or pos-bit-1(sj+1) equals value-1(sj). However, this last
condition is ensured to hold of the index-1 and value-1 components of sj and s′j by the
compatibility of ō ′

2 with ō1.
• When phase(sj) is query, the action a′2 must equal the tile-sel-2 state component of

s′j+1 by the definitions of s′j+1 and “index variant,” and changes to the index-1 and value-1
components have no effect on P�sj� a1� a2� sj+1� being nonzero during the query phase.

• When phase(sj) is echo, the actions a2 and a
′
2 must be a faithful echo of the location

address bit indicated by the index state component (because we have assumed as part of out
inductive hypothesis that � is faithful during echo for at least j bits), and this bit’s value
does not vary between ō2 and ō

′
2 because if the observation sequences reach the echo phase

we have the assumption that these are same-address variants. Thus a2 = a′2 during echo.
Again, changes to the index-1 and value-1 components have no effect on P�sj� a1� a2� sj+1�
being nonzero during the echo phase. �
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