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Coordination vs. information in multi-agent decision
processes

Maike Kaufman and Stephen Roberts
Department of Engineering Science

University of Oxford
Oxford, OX1 3PJ, UK

{maike, sjrob}@robots.ox.ac.uk

ABSTRACT
Agent coordination and communication are important issues
in designing decentralised agent systems, which are often
modelled as flavours of Markov Decision Processes (MDPs).
Because communication incurs an overhead, various scenar-
ios for sparse agent communication have been developed. In
these treatments, coordination is usually considered more
important than making use of local information. We argue
that this is not always the best thing to do and provide alter-
native approximate algorithms based on local inference. We
show that such algorithms can outperform the guaranteed
coordinated approach in a benchmark scenario.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence—Multiagent systems

General Terms
Algorithms

Keywords
Multiagent communication, Multiagent coordination, local
decision-making

1. INTRODUCTION
Various flavours of fully and partially observable Markov

Decision Processes (MDPs) have gained increasing popu-
larity for modelling and designing cooperative decentralised
multi-agent systems [11, 18, 23]. In such systems there is
a trade-off to be made between the extent of decentrali-
sation and the tractability and overall performance of the
optimal solution. Communication plays a key role in this as
it increases the amount of information available to agents
but creates an overhead and potentially incurs a cost. At
the two ends of the spectrum lie fully centralised multi-
agent (PO)MDPs and completely decentralised (PO)MDPs.
Decentralized (PO)MDPs have been proven to be NEXP-
complete [5, 18] and a considerable amount of work has gone
into finding approximate solutions, e.g. [1, 2, 4, 7, 8, 10, 12,
15, 16, 14, 21, 22, 25]
Most realistic scenarios arguably lie somewhere in between
full and no communication and some work has focused on
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Uncertain Domains, May 11, 2010, Toronto, Canada.

scenarios with more flexible amounts of communication. Here,
the system usually alternates between full communication
among all agents and episodes of zero communication, ei-
ther to facilitate policy computation for decentralised sce-
narios [9, 13], to reduce communication overhead by avoid-
ing redundant communications [19, 20] and/or to determine
a (near-)optimal communication policy in scenarios where
communication comes at a cost [3, 26]. Some of these ap-
proaches require additional assumptions, such as transition
independence. The focus in most of this work lies on de-
ciding when to communicate, either by pre-computing com-
munication policies or by developing algorithms for on-line
reasoning about communication. Such treatment is valuable
for scenarios in which inter-agent communication is costly
but reliably available. In many real-world systems on the
other hand, information exchange between agents will not
be possible at all times. This might, for example, be due
to faulty communication channels, security concerns or lim-
ited transmission ranges. As a consequence agents will not
be able to plan ahead about when to communicate but will
have to adapt their decision-making algorithms according
to whichever opportunities are available. We would there-
fore like to view the problem of sparse communication as
one of good decision-making under differing beliefs about
the world. Agents might have access to local observations,
which provide some information about the global state of
the system. However, these local observations will in gen-
eral lead to different beliefs about the world and making
local decision-choices based on them could potentially lead
to uncoordinated collective behaviour. Hence, there is again
a trade-off to be made: should agents make the most of their
local information, or should overall coordination be valued
more highly?
Existing work seems to suggest that coordination should in
general be favoured over more informed local beliefs, see for
example [8, 19, 20, 24], although the use of local observations
has shown some improvement of performance to an existing
algorithm for solving DEC-POMDPs [7]. We would like to
argue more fundamentally here that focusing on guaranteed
coordination will often lead to lower performance and that a
strong case can be made for using what local information is
available in the decision-making process. For simplicity we
will concentrate on jointly observable systems with uniform
transition probabilities and free communication, in which
agents must sometimes make decisions without being able
to communicate observations. Such simple 1-step scenar-
ios could be solved using a dec-POMDP or dec-MDP, but
in more complicated settings (e.g. when varying subsets of
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agents communicate or when communication between agents
is faulty) application of a dec-(PO)MDP is not straightfor-
ward and possibly not even intractable. Restricting the ar-
gument to a subset of very simple scenarios arguably limits
its direct appliccability to more complex settings, especially
those with non-uniform transition functions. However, it al-
lows us to study the effects of different uses of information
in the decision-making algorithms in a more isolated way.
Taking other influencing factors such as the approximation
of infinite-horizon policy computation into account at this
stage, would come at the cost of a less rigorous treatment
of the problem. The argument for decision-making based
on local information is in principle extendable to more gen-
eral systems and we believe that understanding the factors
which influence the trade-off between coordination and lo-
cal information gain for simple cases ultimately enable the
treatment of more complicated scenarios. In that sense this
paper is intended as a first proof of concept.
In the following we will describe exact decision-making based
on local beliefs and discuss three simple approximations by
which it can be made tractable. Application of the resulting
local decision-making algorithms to a benchmark scenario
show that they can outperform an approach based on guar-
anteed coordination for a variety of reward matrices.

2. MULTI-AGENT DECISION PROCESS
Cooperative multi-agent systems are often modelled by

a Multi-agent MDP (MMDP) [6], Multi-agent POMDP,
[18], decentralized MDP (dec-MDP) [5] or decentralized
POMDP (dec-POMDP) [5]. A summary of all these ap-
proaches can be found in [18].
Let let {N,S,A,O, pT , pO,Θ, R,B} be a tuple where:

• N is a set of n agents indexed by i

• S = {S1, S2, . . .} is a set of global states

• Ai = {a1
i , a

2
i , . . .} is a set of local actions available to

agent i

• A = {A1, A2, . . .} is a set of joint actions with A =
A1 ×A2 × . . .×An

• Oi = {ω1
i , ω

2
i , . . .} is a set of local observations avail-

able to agent i

• O = {O1, O2, . . .} is a set of joint observations with
O = O1 ×O2 × . . . On

• pT : S × S ×A→ [0, 1] is the joint transition function
where pT (Sq|Ak, Sp) is the probability of arriving in a
state Sq when taking action Ak in state Sp

• pO : S × O → [0, 1] is a mapping from states to joint
observations, where pO(Ok|Sl) is the probability of ob-
serving Ok in state Sl

• Θ : O → S is a mapping from joint observations to
global states

• R : S × A × S → R is a reward function, where
R(Sp, Ak, Sq) is the reward obtained for taking action
Ak in a state Sp and transitioning to Sq

• B = (b1, . . . , bn) is the vector of local belief states

A local policy πi is commonly defined as a mapping from lo-
cal observation histories to individual actions, πi : w̄i → Ai.
For the purpose of this work, let a local policy more gen-
erally be a mapping from local belief states to local ac-
tions, πi : bi → Ai, and let a joint policy π be a mapping
from global (belief-)states to joint actions, π : S → A and
π : B → A respectively. Depending on the information ex-
change between agents, this model can be assigned to one
of the following limit cases:

Multi-Agent MDP If agents have guaranteed and free
communication among each other and Θ is a surjec-
tive mapping, the system is collectively observable.
The problem simplifies to finding a joint policy π from
global states to joint actions.

Multi-Agent POMDP If agents have guaranteed and free
communication but Θ is not a surjective mapping, the
system is collectively partially observable. Here the op-
timal policy is defined as a mapping from belief states
to actions.

DEC-MDP If agents do not exchange their observations
and Θ is a surjective mapping, the process is jointly
observable but locally only partially observable. The
aim is to find the optimal joint policy consisting of
local policies π = (π1, . . . , πn).

DEC-POMDP If agents do not exchange their observa-
tions and Θ is not a surjective mapping, the process is
both jointly and locally partially observable. As with
the DEC-MDP the problem lies in finding the optimal
joint policy comprising local policies.

In all cases the measure for optimality is the discounted
sum of expected future rewards. For systems with uniform
transition probabilities in which successive states are equally
likely and independent of the actions taken, finding the op-
timal policy simplifies to maximising the immediate reward:

Vπ(S) = R(S, π(S)) (1)

3. EXACT DECISION-MAKING
Assume that agents are operating in a system in which

they rely on regular communication, e.g. a MMDP, and
that at a certain point in time they are unable to fully syn-
chronise their respective observations. This need not mean
that no communication at all takes place, only that not all
agents can communicate with all others. In such a situa-
tion their usual means of decision-making ( the centralised
policy) will not be of use, as they do not hold sufficient infor-
mation about the global state. As a result they must resort
to an alternative way of choosing a (local) action. Here, two
general possibilities exist: agents can make local decisions in
a way that conserves overall coordination or by using some
or all of the information which is only locally available to
them.

3.1 Guaranteed coordinated
Agents will be guaranteed to act coordinatedly if they

ignore their local observations and use the commonly known
prior distribution over states to calculate the optimal joint
policy by maximising the expected reward:

Vπ =
X
S

p(S)R(S, π(S)) (2)
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However, this guaranteed coordination comes at the cost of
discarding potentially valuable information, thus making a
decision which is overall less informed.

3.2 Local
Consider instead calculating a local solution πi to Vπi(bi),

the local expected reward given agent i’s belief over the
global state:

Vπi(bi) =
X
S

X
B−i

p(B−i|bi)p(S|B)
X
π−i

R(S, π(B)) (3)

where B = (b1, . . . , bn) is the vector comprising local beliefs
and π(B) = (π1(b1), . . . , πn(bn)) is the joint policy vector
and we have implicityly assumed that without prior knowl-
edge all other agents’ policies are equally likely. With this
the total reward under policy πi as expected by agent i is
given by

Vπi =
X
S

X
bi

p(S)p(bi|S)Vπi(bi) (4)

Calculating the value function in equation 3 requires marginal-
ising over all possible belief states and policies of other agents
and will in general be intractable. However, if it were possi-
ble to solve this equation exactly, the resulting local policies
should never perform worse than an approach which guar-
antees overall coordination by discarding local observations.
This is because the coordinated policies are a subset of all
policies considered here and should emerge as the optimal
policies in cases where coordination is absolutely crucial. As
a result the overall reward Vπi expected by any agent i will
always be greater or equal to the expected reward under
a guaranteed coordinated approach as given by equation 2.
The degree to which this still holds and hence to which a
guaranteed coordinated approach is to be favoured over lo-
cal decision-making therefore depends on the quality of any
approximate solution to equation 3 and the extent to which
overall coordination is rewarded.

4. APPROXIMATE DECISION-MAKING
The optimal local one-step policy of an individual agent

is simply the best response to the possible local actions the
others could be choosing at that point in time. The full
marginalisation over others’ local beliefs and possible poli-
cies therefore amounts to a marginalisation over all others’
actions. Calculating this requires knowing the probability
distribution over the current state and remaining agents’
action choices, given agent i’s local belief bi, p(S,A−i|bi).
Together with equation 3 the value of a local action given
the current local belief over global state then becomes

Vi(ai, bi) =
X
S

X
A−i

p(S,A−i|bi)R(S, ai, A−i) (5)

This re-formulation in terms of p(S,A−i|bi) significantly re-
duces the computational complexity compared to iterating
over all local beliefs and policies. However, its exact form
will in general not be known without performing the costly
iteration over others actions and policies. To solve equa-
tion 5 we therefore need to find a suitable approximation to
p(S,A−i|bi).
Agent i’s joint belief over the current state and other agents’
choice of actions can be expanded as

p(S,A−i|bi) = p(A−i|S)p(S|bi) = p(A−i|S)bi(S) (6)

Finding the local belief state bi(S) is a matter of straight-
forward Bayesian inference based on the knowledge of the
system’s dynamics. One convenient way of solving this cal-
culation is by casting the scenario as a graphical model and
using standard solution algorithms to obtain the marginal
distribution bi(S). For the systems considered in this work,
where observations only depend on the current state we can
use the sum-product algorithm [17], which makes the calcu-
lation of local beliefs particularly easy.
Obtaining an expression for the local belief over all other
agents’ actions is less simple: Assuming p(A−i|S) were known
agent i could calculate it’s local expectation of future re-
wards according to equation 6 and choose the local action
which maximises this value. All remaining agents will be
executing the same calculation simultaneously. This means
that agent i’s distribution over the remaining agents’ ac-
tions is influenced by the simultaneous decision-making of
the other agents, which in turn depends on agent i’s action
choice. Finding a solution to these interdependent distri-
butions is not straightforward. In particular, an iterative
solution based on reasoning over others’ choices will lead to
an infinite regress of one agent trying to choose its best lo-
cal policy based on what it believes another agent’s policy
to be even though that action is being decided on at the
same time. Below we describe three heuristic approaches by
which the belief over others actions could be approximated
in a quick, simple way.

4.1 Optimistic approximation
From the point of agent i an optimistic approximation to

p(A−i|S) is to assume that all other agents choose the local
action given by the joint centralised policy for a global state,
that is

p(A−i|S) =


1 if A−i = π(S)−i
0 otherwise.

(7)

This is similar to the approximation used in [7].

4.2 Uniform approximation
Alternatively, agents could assume no prior knowledge

about the actions others might choose at any point in time
by putting a uniform distribution over all possible local ac-
tions:

p(aj = akj |S) =
1

|Aj |
(8)

and

p(A−i|S) =
Y
j 6=i

p(akj |S) | akj ∈ A (9)

4.3 Pessimistic approximation
Finally, a pessimistic agent could assume that the local

decision-making will lead to sub-optimal behaviour and that
the other agents can be expected to choose the worst possible
action in a given state.

p(A−i|S) =


1 if A−i = (arg minA Vcentralised(S))−i
0 otherwise.

(10)
Each of these approximations can be used to implement lo-
cal decision-making by calculating the expected value of a
local action according to equation 5. Ideally we would like
to compare the overall expected reward (see equation 4) un-
der each of the approximate local algorithms and compare
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Actions Rewards
both choose tiger −50

both choose reward 100
both choose nil 0

both wait −2
one tiger, one nil −100

one tiger, one reward −50
one tiger, one waits −101
one nil, one waits −1
one nil, one reward 50

one reward, one waits 49

(a) Reward setting 1: some reward for
uncoordinated actions

Actions Rewards
both choose tiger −20

both choose reward 100
both choose nil 0

both wait −2
one tiger, one nil −100

one tiger, one reward −100
one tiger, one waits −101
one nil, one waits −1
one nil, one reward 20

one reward, one waits 19

(b) Reward setting 2: small reward for
uncoordinated actions

Actions Rewards
both choose tiger −20

both choose reward 100
both choose nil 0

both wait −2
one tiger, one nil −100

one tiger, one reward −100
one tiger, one waits −101
one nil, one waits −1
one nil, one reward 0

one reward, one waits −1

(c) Reward setting 3: no reward for un-
coordinated actions

Table 1: Reward matrices for the Tiger Scenario with varying degrees by which uncoordinated actions are rewarded. Joint
actions for which the rewards were varied are shaded.
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(a) Optimistic algorithm
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(b) Uniform algorithm
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(c) Pessimistic algorithm

Figure 1: Average obtained reward (red diamonds) compared to expected reward (green squares) for different approximate
decision-making algorithms. Data points were obtained by averaging over 500 time-steps. The uniform algorithm consistently
under-estimates the expected reward, while the pessimistic algorithm both under- and over-estimates, depending on the
setting of the reward matrix. The optimistic algorithm tends to over-estimate the reward but has the smallest deviation and
in particular approximates it well for the setting which is most favourable to uncoordinated actions.

it to the overall reward expected under a guaranteed co-
ordinated approach, as given by equation 2. This is not
possible because the expectation values calculated from the
approximate beliefs will in turn only be approximate. For
example the optimistic algorithm might be expected to make
over-confident approximations to the overall reward, while
the pessimistic approximation might underestimate it. In
general it will therefore not be possible to tell from the re-
spective expected rewards which algorithm will perform best
on average for a given decision process. We can, however,
obtain a first measure for the quality of an approximate algo-
rithm by comparing its expected performance to the actual
performance for a benchmark scenario.

5. EXAMPLE SIMULATION
We have applied the different decision-making algorithms

to a modified version of the Tiger Problem, which was first
introduced by Kaelbling et. al. [11] in the context of single-
agent POMDPs and has since been used in modified forms as
a benchmark problem for dec-POMDP solution techniques
[2, 12, 13, 16, 19, 20, 22, 25]. For a comprehensive descrip-
tion of the initial multi-agent formulation of the problem see

[12]. To adapt the scenario to be an example of a dec-MDP
with uniform transition probabilities as discussed above, we
have modified this scenario in the following way: Two agents
are faced with three doors, behind which sit a tiger, a reward
or nothing. At each time step both agents can choose to open
one of the doors or to do nothing and wait. These actions are
carried out deterministically and after both agents have cho-
sen their actions, an identical reward is received (according
to the commonly known reward matrix) and the configu-
ration behind the doors is randomly re-set to a new state.
Prior to choosing their actions the agents are both informed
about the contents behind one of the doors, but never both
about the same door. If agents can exchange their observa-
tions prior to making their decisions, the problem becomes
fully observable and the optimal choice of action is straight-
forward. If, on the other hand, they cannot exchange their
observations, they will both hold differing, incomplete infor-
mation about the global state which will lead to differing
beliefs over where the tiger and the reward are located.

5.1 Results
We have implemented the Tiger Scenario as described
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above for different reward matrices and have compared the
performance of the various approximate algorithms to a guar-
anteed coordinated approach in which agents discard their
local observations and use their common joint belief over
the global state of the system to determine the best joint
action. Each scenario run consisted of 500 time-steps. In all
cases the highest reward (lowest penalty) was given to coor-
dinated joint actions. The degree by which agents received
partial awards for uncoordinated actions varied for the dif-
ferent settings. For a detailed listing of the reward matrices
used see table 1.
Figure 4 shows the expected and average obtained rewards
for the different reward settings and approximate algorithms
described above. As expected the average reward gained
during the simulation differs from the expected reward as
predicted by an individual agent. While this difference is
quite substantial in some cases, it is consistently smallest
for the optimistic algorithm.

Figure 2 shows the performance of the approximate algo-
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Figure 2: Average obtained reward under approximate local
decision-making compared to guaranteed coordinated algo-
rithm for different reward matrices. Data points were ob-
tained by averaging over 500 time-steps

rithms compared to the performance of the guaranteed co-
ordinated approach. The pessimistic approach consistently
performs worse than any of the other algorithms, while the
optimistic and the uniform approach achieve similar perfor-
mance. Interestingly, the difference between the expected
and actual rewards under the different approximate algo-
rithms (figure 4) does not provide a clear indicator for the
performance of an algorithm. Compared to the guaran-
teed coordinated algorithm the performance of the opti-
mistic/uniform algorithms depends on the setting of the re-
ward matrix. They clearly outperform it for setting 1, while
achieving less average reward for setting 3. In the interme-
diate region all three algorithms obtain similar rewards. It
is important to remember here that even for setting 1 the
highest reward is awarded to coordinated actions and that
setting 3 is the absolute limit case in which no reward is
gained by acting uncoordinatedly. We would argue that the
latter is a somewhat artificial scenario and that many in-
teresting applications are likely to have less extreme reward

matrices. The results in figure 2 suggest that for such in-
termediate ranges even a simple approximate algorithm for
decision-making based on local inference might outperform
an approach which guarantees agent coordination.

6. CONCLUSIONS
We have argued that coordination should not automat-

ically be favoured over making use of local information in
multi-agent decision processes with sparse communication
and have described three simple approximate approaches
that allow local decision-making based on individual beliefs.
We have compared the performance of these approximate lo-
cal algorithms to that of a guaranteed coordinated approach
on a modified version of the Tiger Problem. Some of the
approximate algorithms showed comparable or better per-
formance than the coordinated algorithm for some settings
of the reward matrix. Our results can thus be understood
as first evidence that strictly favouring agent coordination
over the use of local information can lead to lower collective
performance than using an algorithm for seemingly uncoor-
dinated local decision making. More work is needed to fully
understand the influence of the reward matrix, system dy-
namics and belief approximations on the performance of the
respective decision-making algorithms. Future work will also
include the extension of the treatement to truly sequential
decision processes where the transition function is no longer
uniform and independent of the actions taken.
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ABSTRACT
Decentralized POMDPs are powerful theoretical models for
coordinating agents’ decisions in uncertain environments,
but the generally-intractable complexity of optimal joint pol-
icy construction presents a significant obstacle in applying
Dec-POMDPs to problems where many agents face many
policy choices. Here, we argue that when most agent choices
are independent of other agents’ choices, much of this com-
plexity can be avoided: instead of coordinating full poli-
cies, agents need only coordinate policy abstractions that
explicitly convey the essential interaction influences. To
this end, we develop a novel framework for influence-based
policy abstraction for weakly-coupled transition-dependent
Dec-POMDP problems that subsumes several existing ap-
proaches. In addition to formally characterizing the space
of transition-dependent influences, we provide a method for
computing optimal and approximately-optimal joint policies.
We present an initial empirical analysis, over problems with
commonly-studied flavors of transition-dependent influences,
that demonstrates the potential computational benefits of
influence-based abstraction over state-of-the-art optimal pol-
icy search methods.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems

General Terms
Theory, Algorithms, Performance

Keywords
Coordination, Structured Interaction, Agent Influence

1. INTRODUCTION
Agent team coordination in partially-observable, uncer-

tain environments is a problem of increasing interest to the
research community. The decentralized partially-observable
Markov decision process (Dec-POMDP) provides an elegant
theoretical model for representing a rich space of agent be-
haviors, observability restrictions, interaction capabilities,
and team objectives. Unfortunately, its applicability and
effectiveness in solving problems of significant size has been

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

substantially limited by its generally-intractable complexity
[6]. This is largely due to the policy space explosion that
comes with each agent having to consider the possible obser-
vations and actions of its peers, on top of its own observations
and actions.

To combat this complexity, researchers have sought tract-
able Dec-POMDP subclasses wherein agents are limited in
their interactions. For instance, there has been significant
effort in developing efficient, scalable solution methods for
Transition-Independent DEC-MDPs [2] and Network-Distri-
buted POMDPs [10, 13], where agents can only influence
one another through their reward functions. Because the
agents’ transitions and observations remain independent,
the complexity of this subclass is immune to the growth
of the general Dec-POMDP class. Some work has been
done in exploring subclasses where agents can influence each
others’ transitions [2, 4, 7, 8, 11, 12, 16]. However, these
either introduce additional restrictions on individual agent
behavior [4, 7, 16], yield no guarantees of optimality [12],
or have only been shown effective for teams of two or three
agents executing for a handful of time steps [2, 8, 11].

This paper presents an alternative approach to planning
for teams of agents with transition-dependent influences. To
address the issue of policy space complexity head-on, we
contribute a formal framework for policy abstraction that
subsumes several existing methods [2, 15, 16]. The primary
intuition of our work is that by planning joint behavior using
abstractions of policies rather than the policies themselves,
weakly-coupled agents can form a compact influence space
over which to reason more efficiently. In contrast to Allen
and Zilberstein’s work on quantifying the amount of influence
agents have on the problem (for predicting efficiency and
effectiveness of solution methods) [1], we instead focus on
characterizing efficient representations of interagent influence
(for design of efficient, exploitative solution methods).

We begin by framing the problem as a class of Transition-
Decoupled POMDPs (TD-POMDPs) with an expressive, yet
natural, representation of agents with rich behaviors whose
interactions are limited. Moreover, TD-POMDPs lead us
to a systematic analysis of the influences agents can exert
on one another, culminating in a succinct model that ac-
commodates both exact and approximate representations of
interagent influence. To take advantage of these beneficial
traits, we contribute a general-purpose influence-space search
algorithm that, based on initial empirical evidence, demon-
strably advances the state-of-the-art in exploiting weakly-
coupled structure and scaling transition-dependent problems
to larger teams of agents without sacrificing optimality.
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2. COORDINATION OF WEAKLY-
COUPLED AGENTS

We focus on the problem of planning for agents who are
nearly independent of one another, but whose limited, struc-
tured dependencies require coordination to maximize their
collective rewards. Domains for which such systems have
been proposed include the coordination of military field units
[14], disaster response systems [12], and Mars rover explo-
ration [8]. Here, we introduce a class of Dec-POMDPs called
Transition-Decoupled POMDPs (TD-POMDPs) that, while
still remaining quite general, provides a natural representa-
tion of the weakly-coupled structure present in these kinds
of domains.

2.1 Autonomous Planetary Exploration
As a concrete example, consider the team of agents pic-

tured in Figure 1A whose purpose is to explore the surface of
a distant planet. There are rovers that move on the ground
collecting and analyzing soil samples, and orbiting satellites
that (through the use of cameras and specialized hardware)
perform various imaging, topography, and atmospheric anal-
ysis activities. In representing agents’ activities, we borrow
from the TAEMS language specification [5], assigning to each
abstract task a window of feasible execution times and a set
of possible outcomes, each with an associated duration and
quality value. For example, the satellite agent in Figure 1A
has a path-planning task that may take 2 hours and succeed
with probability 0.8 or may fail (achieving quality 0) with
probability 0.2 (such as when its images are too blurry to
plan a rover path). Surface conditions limit the rover’s visit
to site A to occur between the hours of 2 and 8. Additional
constraints and dependencies exist among each individual
agent’s tasks (denoted by lines and arrows).

Although each agent has a different view of the environ-
ment and different capabilities (as indicated by their local
model bubbles), it is through their limited, structured inter-
actions that they are able to successfully explore the planet.
For instance, the outcome of the satellite’s path-planning
task influences the probabilistic outcome of the rover’s site-
visiting task. Navigating on its own, the rover’s trip will
take 6 hours, but with the help of the satellite agent, its trip
will take only 3 hours (with 0.9 probability). In order to
maximize productivity (quantified as the sum of outcome
qualities achieved over the course of execution), agents should
carefully plan (in advance) policies that coordinate their ex-
ecution of interdependent activities. Though simplistic, this
example gives a flavor of the sorts of planning problems that
fit into our TD-POMDP framework.

2.2 Transition-Decoupled POMDP Model
The problem from Figure 1 can be modeled using the

finite-horizon Dec-POMDP, which we now briefly review.
Formally, this decision-theoretic model is described by the
tuple 〈S,A, P,R,Ω, O〉, where S is a finite set of world states
(which model all features relevant to all agents’ decisions),
with distinguished initial state s0. A = ×1≤i≤nAi is the
joint action space, each component of which refers to the
set of actions of an agent in the system. The transition
function P (s′|s, a) specifies the probability distribution over
next states given that joint action a = 〈a1, a2, . . . , an〉 ∈ A
is taken in state s ∈ S. The reward function R (s, a, s′)
expresses the immediate value of taking joint action a ∈ A
in state s ∈ S and arriving in state s′ ∈ S; the aim is to

maximize the expected cumulative reward from time steps 1
to T (the horizon). The observation function O (o|a, s′) maps
joint actions and resulting states to probabilities of joint ob-
servations, drawn from finite set Ω = ×1≤i≤nΩi. We denote
the observation history for agent i as ~o ti = 〈o1

i , . . . , o
t
i〉 ∈ Ωti,

the set of observations i experienced from time step 1 to
t ≤ T . A solution to the Dec-POMDP comes in the form
of a joint policy π̄ = 〈π1, . . . , πn〉, where each component πi
(agent i’s local policy) maps agent i’s observation history
~o ti to an action ai, thereby providing a decision rule for any
sequence of observations that each agent might encounter.

Though the general class of Dec-POMDPs accommodates
arbitrary interactions between agents through the transi-
tion and reward functions, our example problem contains
structure that translates to the following useful proper-
ties. First, the world state is factored into state features
s = 〈a, b, c, d, . . .〉, each of which represent a different aspect
of the environment. In particular, different features are rel-
evant to different agents. Whereas a rover agent may be
concerned with the composition of the soil sample it has just
collected, this is not relevant to the satellite agent. As with
other related models (e.g. those discussed in Section 2.3),
we assume a particular grouping of world state features into
local features that make up an agent’s local state si. We in-
troduce a further decomposition of local state (that is unique
to the TD-POMDP class) whereby agent i’s local state si
is comprised of three disjoint feature sets: si =

〈
ūi, l̄i, n̄i

〉
,

whose contents are as follows.

• uncontrollable features ūi = 〈ui1, ui2, ...〉 are those features
that are not controllable [6] by any agent, but may be
observable by multiple agents. Examples include time-of-
day or temperature.

• locally-controlled features l̄i = 〈li1, li2, ...〉 are those features
whose values may be altered through the actions of agent
i, but are not (directly) altered through the actions of any
other agent; a rover’s position, for instance.

• nonlocal(ly-controlled) features n̄i = 〈ni1, ...〉 are those
features that are each controlled by some other agent but
whose values directly impact i’s local transitions (Eq. 1).

With this factoring, division of world state features into
agents’ local states is not strict. Uncontrollable features may
be part of more than one agent’s state. And each nonlocal
feature in agent i’s local state appears as a locally-controlled
feature in the local state of exactly one other agent. In the
example (Figure 1), the rover models whether or not the
satellite agent has planned a path for it, so path-A-planned
would be a nonlocal feature in the rover’s local state.

The reward function R is decomposed into into local reward
functions, each dependent on local state and local action:
R (s, a, s′) = F (R1(s1, a1, s

′
1) , ..., Rn(sn, an, s

′
n)). The joint

reward composition function F () has the property that in-
creases in component values do not correspond to decreases
in joint value: ri > r′i → F (r1, ..., ri−1 , ri, ri+1, ..., rn) ≥
F (r1, ..., ri−1 , r

′
i, ri+1, ..., rn) ∀r1, ..., ri−1, ri+1, ..., rn. In

the example problem, local rewards are the qualities attained
from the tasks that the agents execute, which combine by
summation to yield the joint reward by which joint policies
are evaluated.

The observation function is similarly factored O (o|a, s′) =∏
1≤i≤nOi (oi|ai, s′i), allowing agents direct (partial) obser-

vations of their local state features but not of features outside
their local states. Note, however, that this does not imply
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Figure 1: Autonomous Exploration Example.

observation independence (whereas other models [3, 10] do)
because of the shared uncontrollable and nonlocal state fea-
tures. Likewise, this model is transition-dependent, as the
values of nonlocal features controlled by agent j may influ-
ence the probabilistic outcomes of agent i’s actions. Formally,
agent i’s local transition function, describing probability of
next local state st+1

i =
〈
ūt+1
i , l̄t+1

i , n̄t+1
i

〉
given that joint

action a is taken in world state st, is the product of three
independent terms:

Pr
(
st+1
i |s

t, a
)

= Pr
(
ūt+1
i |ū

t
i

)
· Pr

(
l̄t+1
i |l̄

t
i , n̄

t
i, ū

t
i, ai

)
· Pr

(
n̄t+1
i |s

t − l̄ti , a 6=i
)

(1)

The result of this factorization is a structured transition
dependence whereby agents alter the effects of each others’
actions sequentially but not concurrently. Agent i may set
the value of one of agent j’s nonlocal state features and agent
j’s subsequent transitions are influenced by the new value.

The structure we have identified is significant because
it decouples the Dec-POMDP model into a set of weakly-
coupled local POMDP models that are tied to one another by
their transition influences. Without the existence of nonlocal
features, an agent cannot influence another’s observations,
transitions, or rewards, and the agents’ POMDPs become
completely independent decision problems. With an increas-
ing presence of nonlocal features, the agents subproblems
become more and more strongly coupled. We can concisely
describe the coupling and locality of interaction in a TD-
POMDP problem with an interaction digraph (Figure 1B),
which represents each instance of a nonlocal feature with
an arc between agent nodes. As pictured, the interaction
digraph for our example problem contains an arc from agent
1 (the satellite) to agent 7 (the rover) labeled n7a that refers
to the nonlocal feature path-A-planned.

2.3 Relationships to Other Classes
Although the TD-POMDP is less general than the Dec-

POMDP (and the factored Dec-POMDP [11]), it is more
general than prior transition-dependent Dec-POMDP sub-
classes [2, 4]. The OC-DEC-MDP [4] assumes fixed execution
ordering over agent tasks and dependencies in the form of

task precedence relationships. The Event-Driven DEC-MDP
[2] is more closely related, but it assumes local full observ-
ability, and restricts transition dependencies to take the form
of mutually exclusive events which could trivially be mapped
to nonlocal features in the TD-POMDP model. The TD-
POMDP is also more general than the DPCL model [12]
in its representation of observation (since local observations
can depend on other agents’ actions), but less general in its
representation of interaction (since agents cannot affect each
others’ local transitions concurrently). Generality aside, we
contend that the factorization that we have defined provides
a very natural representation of agent influences, making
it straightforward to model problems with TD-POMDPs.
Furthermore, as we shall see in Section 3, the structure made
explicit by the TD-POMDP leads us to a broad characteri-
zation of transition-dependent influences and a systematic
methodology for abstracting those influences that subsumes
several other approaches [2, 14, 16].

2.4 Decoupled Solution Methodology
To take advantage of the TD-POMDP’s weakly-coupled in-

teraction structure, we build upon a general solution method-
ology that decouples the joint policy formulation. Central to
this approach is the use of local models, whereby each agent
can separately compute its individual policy. As derived by
Nair et al. [9], any Dec-POMDP can be transformed into a
single-agent POMDP for agent i once the policies of i’s peers
have been fixed. This best-response model is prohibitive to
solve in the general case (given that the agent must reason
about the possible observations of the other agents), but in
various restricted contexts, iterative best-response algorithms
have been devised which provide substantial computational
leverage [3, 10]. As we describe later on, the TD-POMDP
(which is composed of weakly-coupled local POMDPs) can be
decoupled into fully-independent POMDPs that have been
augmented with compact models of influence.

Given this decoupling scheme, planning the joint policy be-
comes a search through the space of combinations of optimal
local policies (each found by solving a local best-response
model). This approach is taken in much of the literature to
solve transition-independent reward-dependent models (e.g
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TI-DEC-MDPs [3], ND-POMDPs [10, 13]). And while some
approaches [2, 12, 14, 15] have solved transition-dependent
models in this way, the results have been either limited to
just two agents [2], or to approximately-optimal solutions
without formal guarantees [12, 14, 15]. In the remainder
of this paper, we present and evaluate a formal framework
that subsumes previous transition-dependent methods and
produces provably optimal solutions, focusing on abstraction
to make the search tractable and scalable.

3. INFLUENCE-BASED POLICY
ABSTRACTION

The Dec-POMDP joint policy space (which is exponential
in the number of observations and doubly exponential in the
number of agents and the time horizon) grows intractably
large very quickly. The primary intuition behind how our
approach confronts this intractability is that, by abstracting
weakly-coupled interaction influences from local policies, an
influence space emerges that is more efficient to explore
than the joint policy space. We begin by discussing policy
abstraction in the context of a simple, concrete example with
some very restrictive assumptions. Over the course of this
section, we gradually build up a less restrictive language
through which agents can convey their abstract influences,
culminating in a formal characterization of the general space
of interaction influences for the class of TD-POMDPs.

Figure 2 portrays an interaction wherein one rover (R5)
must prepare a site before another rover (R6) can benefit from
visiting the site. Assume that apart from this interaction, the
two agents’ problems are completely independent. Neither
of them interact with any other agents, nor do they share
any observations except for the occurrence of site C’s prepa-
ration and the current time. In a TD-POMDP, this simple
interaction corresponds to the assignment of a single boolean
nonlocal feature site-C-prepared that is locally-controlled
by R5, but that influences (and is nonlocal to) R6. Thus,
in planning its own actions, R6 needs to be able to make
predictions about site-C-prepared ’s value (influenced by R5)
over the course of execution.

Visit Site DVisit Site A
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outcome: 
win-
dow: 
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Prepare Site C
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(R5)
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Figure 2: Example of highly-constrained influence.

Definition 1. For a TD-POMDP interaction x represented
by agent j as nonlocal feature njx, which is controllable by
agent i and affects the transitions of agent j, we define
the influence of i’s policy πi on njx, denoted Γπi(njx) =
Pr (njx| . . .), to be a sufficient summary of πi for agent j to
model expected changes to njx and to plan optimal decisions
given that agent i adopts πi.

By representing the influence of R5’s policy with a dis-
tribution Pr(site-C-prepared|...) as in Definition 1, R6 can
construct a transition model for nonlocal feature site-C-
prepared. The last multiplicand of Equation 1 suggests that

this construction requires computing a transition probability
for every value of the (nonlocal subsection of) world state
(st − l̄ti), nonlocal action (a 6=i), and next nonlocal feature
value. However, in this particular problem, R6 does not need
a complete distribution that is conditioned on all features.
In fact, the only features that R6 can use to predict the
value of site-C-prepared are time and site-C-prepared itself.
Although site-C-prepared is dependent on other features from
R5’s local state, R6 cannot observe any evidence of these
features except through its (perhaps partial) observations of
site-C-prepared and time. Thus, all other features can be
marginalized out of the distribution Pr(site-C-prepared|...).

In this particular example, the only influence information
that is relevant to R6 is the probability with which site-
C-prepared will become true conditioned on time = 4. At
the start of execution, site-C-prepared will take on value
false and remain false until R5 completes its “Prepare
Site C” task (constrained to finish only at time 4, if at
all, given the task window in Figure 2). After the site is
prepared, the feature will remain true thereafter until the
end of execution. With these constraints, there is no un-
certainty about when site-C-prepared will become true, but
only if it will become true. Hence, the influence of R5’s
policy can be summarized with just a single probability
value, Pr(site-C-prepared = true|time = 4), from which R6
can infer all transition probabilities of site-C-prepared.

Reasoning about concise influence distributions instead
of full policies can be advantageous in the search for opti-
mal joint policies. The influence space is the domain of
possible assignments of the influence distribution, each of
which is achieved by some feasible policy. This corresponds
to the feasible values of Pr(site-C-prepared = true|time = 4)
in our simple example. As shown in Figure 2, R5 has several
sites it can visit, each with uncertain durations. In gen-
eral, different policies that it adopts may achieve different
interaction probabilities. However, due to the constraints in
Figure 2, many of R5’s policies will map to the same influ-
ence value. For instance, any two policies that differ only
in the decisions made after time 3 will yield the same value
for Pr(site-C-prepared = true|time = 4). For this example,
the influence space is strictly smaller than the policy space.
Thus, by considering only the feasible influence values, agents
avoid joint reasoning about the multitude of local policies
with equivalent influences.

3.1 A Categorization of Influences
The influence in the example from Figure 2 has a very

simple structure due to the highly-constrained transitions
of the nonlocal feature. By removing constraints, we can
more generally categorize the influence between R5 and R6.
Let the window of execution of “Prepare Site C” be uncon-
strained: [0, 8]. With this change, there is the possibility
of R5 preparing site C at any time during execution. The
consequence is that a single probability is no longer sufficient
to characterize R5’s influence. Instead of representing a sin-
gle probability value, R6 needs to represent a probability
for each time site-C-prepared could be set to true. In other
words, this influence is dependent on a feature of the agents’
state: time.

Definition 2. An influence Γπi(njx) is state-dependent
w.r.t. feature f if its summarizing distribution must be
conditioned on the value of f : Pr (njx|f, ...).
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As we have seen in prior work [16], the set of probabilities
Pr(site-C-prepared|time) is an abstraction of R5’s policy that
accommodates temporal uncertainty of the interaction.

Generalizing further, the probability of an interaction may
differ based on both present and past values of state features.
For instance, in the example from Figure 1A, if it is cloudy
in the morning, this might prohibit the satellite from taking
pictures, and consequently lower the probability that it plans
a path for the rover in the afternoon. So by monitoring the
history of the weather, the rover could anticipate the lower
likelihood of help from the satellite, and might change some
decisions accordingly. Becker employs this sort of abstraction
in his Event-driven DEC-MDP solution algorithm, where he
relates probabilities of events to dependency histories [2].

Definition 3. Influence Γπi(njx) is history-dependent
w.r.t. feature f if its summarizing distribution must be

conditioned on the history of f : Pr
(
nt+1
jx |~f

t, ...
)

.

Moreover, there may also be dependence between influ-
ences. For instance, agent 4 has two arcs coming in from
agent 3 (in Figure 1B), indicating that agent 3 is exerting
two influences, such as if agent 3 could plan two different
paths for agent 4. In the case that agent 3’s time spent
planning one path leaves too little time to plan the other
path, the nonlocal features n4a and n4b are highly correlated,
requiring that their joint distribution be represented.

Definition 4. Influence Γπi(nx) and influence Γπi(ny) are
influence-dependent (on each other) if their summarizing
distributions are correlated, requiring Pr (nx, ny|...).

3.2 A Comprehensive Influence Model
With the preceding terminology, we have systematically

though informally introduced an increasingly comprehen-
sive characterization of transition influences. A given TD-
POMDP influence might be state-dependent and history-
dependent on multiple features, or even dependent on the
history of another influence. Furthermore, there may be
chains of influence-dependent influences. In Figure 1B, for
example, agent 7 models two nonlocal features, one (n7a)
influenced by agent 1 and the other (n7b) influenced by agent
6. The additional arc between agents 1 and 6 forms an undi-
rected cycle that implies a possible dependence between n7a

and n7b by way of n6b. The only way to ensure a complete
influence model is to incorporate all three influences into a
joint distribution.

In general, for any team of TD-POMDP agents, their in-
fluences altogether constitute a Dynamic Bayesian Network
(DBN) whose variables consist of the nonlocal features as well
as their respective dependent state features and dependent
history features with links corresponding to the dependence
relationships. This influence DBN encodes the probability
distributions of all of the outside influences affecting each
agent. Once all of an agent’s incoming influences (exerted
by its peers) have been decided, the agent can incorporate
this probability information into a local POMDP model1

with which to compute optimal decisions. The agent con-
structs the local POMDP by combining the TD-POMDP
local transition function (terms 1 and 2 of Equation 1) with
the probabilities of nonlocally-controlled feature transitions

1This POMDP is an extension and generalization of the local
model that we have described in detail in past work [15].

Pr
(
n̄t+1
j |...

)
encoded (as conditional probabilities) by the

influence DBN.2 Rewards and observations for this local
POMDP are dictated by the TD-POMDP local reward func-
tion Ri and local observation function Oi, respectively.

As agents’ interactions become more complicated, more
variables are needed to encode their effects. However, due
to TD-POMDP structure, the DBN need contain only those
critical variables that link the agents’ POMDPs together.

Proposition 1. For any given TD-POMDP, the influ-
ence Γπi(njx) of agent i’s fixed policy πi on agent j’s nonlocal
feature njx need only be conditioned on histories (denoted

~mj) of mutually-modeled features m̄j =
⋃
k 6=j

(sj ∩ sk).

Proof Sketch. The proof of this proposition emerges
from the derivation of a belief-state (as in [9]) representation
for TD-POMDP agent j’s best-response POMDP:

btj =
〈
Pr
(
stj , ~m

t−1
j |~a t−1

j , ~o tj
)
, ∀stj , ~mt−1

j

〉
(2)

We can derive an equation for the components (each indexed
by one value of

〈
st+1
j , ~mt

j

〉
) of j’s belief-state bt+1

j at time t+1
by applications of Bayes’ rule, conditional probability, and
the factored TD-POMDP local observation function Oi():

bt+1
j

(
st+1
j , ~mt

j

)
= Pr

(
st+1
j , ~mt

j |~a tj , ~o t+1
j

)
=

Oj(ot+1
j |atj ,s

t+1
j )

∑
st
j
Pr(st+1

j |stj ,~m
t−1
j ,~a t

j ,~o
t
j )btj(s

t
j ,~m

t−1
j )

Pr(ot+1
j |~a t−1

j ,~o t
j ,a

t
j) : a normalizing constant

(3)
Next, from conditional independence relationships implied
by the factored transitions (Equation 1) of the TD-POMDP:

=
Oj(...)

∑
st
j
−m̄t

j
Pr(l̄t+1

j |stj ,a
t
j)Pr(ū

t+1
j |stj)Pr(n̄

t+1
j |~mt

j)b
t
j(...)

Pr(ot+1
j |~a t−1

j ,~o t
j ,a

t
j) : a normalizing constant

(4)
The DBN in Figure 3 provides a graphical depiction of

the dependencies between various groupings of j’s mutually-
modeled (m̄j), exclusively-modeled (s⊆j), and unmodeled
(s6=j) world state features. (In contrast to the influence DBN,
this DBN includes all features of the world state.) The

sµj=sj ¡ ¹mj
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s 6=j=s ¡ sj

¼j

Figure 3: Independence of n̄t+1
j given evidence ~mt

j.

existence of an arrow from node a to node b indicates that b’s

2In the case of history-dependent influences, the POMDP’s
belief-state space is augmented to capture the necessary
history as detailed in the proof sketch of Proposition 1 (a
small compromise for avoiding modeling the full multiagent
belief state as in [9]).
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value directly depends on a’s value; the absence of said arrow
indicates conditional independence. The features ~mt

j appear
in a shaded region to illustrate the d-separation of agent
j’s own action and observation history from future nonlocal
feature values given belief-state evidence ~mt

j , which justifies

the reduction Pr
(
n̄t+1
j |s

t
j , ~m

t−1
j ,~a tj , ~o

t
j

)
=Pr

(
n̄t+1
j |~m

t
j

)
. All

paths originating from features which j can observe (given
the TD-POMDP factored local observations) and ending at
n̄t+1
j must pass through the shaded region. Consequently,

~mt
j is a sufficient summary of j’s observations for making

predictions about n̄t+1
j .

Equation 4 has three important consequences. First, agent
j can compute its next belief state using only its peers’
policies, the TD-POMDP model, its previous belief state,
and its latest action-observation pair (without having to
remember the entire history of observations). Second, the
denominator of Equation 4 (which is simply a summation
of the numerators across all belief-state components) allows
the agent to compute the probability of its next observation
(given its current action) using only its peers’ policies, the
TD-POMDP model, and its previous belief state. These two
consequences by themselves prove sufficiency of the belief
state representation for optimal decision-making. Third, the
only term in the numerator of Equation 4 that depends
upon peers’ fixed policies is Pr

(
n̄t+1
j |~m

t
j

)
, and hence this

distribution is a sufficient summary of all peers’ policies.

Corollary 1. The influence DBN grows with the number
of shared state features irrespective of the number of local
state features and irrespective of the number of agents.

The implication of Proposition 1 is that the local POMDP
can be compactly augmented with histories of only those
state features that are shared among agents. Moreover, the
complexity with which an agent models a peer is controlled
by its tightness of coupling and not by the complexity of the
peer’s behavior. Efficiency and compactness of local models
is significant because they will be solved repeatedly over the
course of a distributed policy-space search.

Another way to interpret this result is to relate it to
the relative complexity of the influence space, which is the
number of possible influence DBNs. Each DBN is effectively
a HMM whose state is made up of shared features (and
histories of shared features) of the TD-POMDP world state.
Given Proposition 1’s restrictions on feature inclusion, the
space of DBNs should scale more gracefully than the joint
policy space with the number of world features and number
of agents (under the assumption that agents remain weakly-
coupled), a claim that is supported by our empirical results.

4. SEARCHING THE INFLUENCE SPACE
Given the compact representations of influence that we

have developed, agents can generate the optimal joint policy
by searching through the space of influences and computing
optimal local policies with respect to each. Drawing inspira-
tion from Nair et al ’s GOA method [10] for searching through
the policy space, here we describe a general algorithm for
searching the (TD-POMDP) influence space.

Algorithm 1 outlines the skeleton of a depth-first search
that enumerates all feasible values, one influence at a time, as
it descends from root to leaf. At the root of the search tree,
influences are considered that are independent of all of other
influences. And at lower depths, feasible influence values are

Algorithm 1 Optimal Influence-Space Search

OIS(i, ordering,DBN, vals)

1: POMDPi ← BuildBestResponseModel(DBN)
2: if i = LastAgent(ordering) then
3: 〈vals[i], πi〉 ←Evaluate(POMDPi)
4: return 〈vals,DBN〉
5: end if
6: j ← NextAgent(i, ordering)
7: I ← GenerateFeasibleInfluences(POMDPi)
8: bestV al← −∞
9: bestDBN ← nil
10: for each influencei ∈ I do
11: thisV als← Copy(vals)
12: 〈thisV als[i], πi〉 ← Evaluate(POMDPi, influencei)
13: DBNi ← Combine(DBN, influencei)
14: 〈thisV als,DBNchild〉 ← OIS(j, ordering,DBNi, thisV als)
15: jointV al← ComposeJointReward(thisV als)
16: if jointV al > bestV al then
17: vals← thisV al
18: bestDBN ← DBNchild

19: end if
20: end for
21: return 〈vals, bestDBN〉

determined by incorporating any higher-up influence values
on which they depend. This property is ensured given any
total ordering of agents (denoted ordering in Algorithm 1)
that maintains the partial order of the acyclic interaction
digraph.3 At each node of the depth-first search, procedure
OIS() is called on agent i, who invokes the next agent’s
OIS() procedure execution and later returns its result to the
previous agent. Thus, the algorithm is decentralized, but is
initiated by a root agent whose influence does not depend
on its peers.

The search begins with the call OIS(root, ordering, ∅,∞),
prompting the first agent to build its (independent) local
POMDP (line 1) and to generate all of the feasible com-
binations of its outgoing influence values (line 7), each in
the form of a DBN (as described in Section 3.2). A näıve
implementation of GenerateFeasibleInfluences() would
simply enumerate all local policies, and for each, compute
the requisite conditional probabilities that the policy implies
and incorporate them into a DBN model. In Section 4.2, we
suggest a more sophisticated generation scheme. The root
creates a branch for each feasible influence DBN, passing
down the influence along with the value of the best local
policy that achieves the DBN’s influences (computed using
Evaluate()). Each such call to OIS() prompts the next
agent to construct a local POMDP in response to the root’s
influence (as described in Section 3.2), compute its feasible
influences and values, and pass those on to the next agent.

At the root of the tree, the DBN starts out as empty and
gradually grows as it travels down the tree, each iteration
accumulating another agent’s fixed influences. The agent at
the leaf level of the tree does not influence others, so simply
computes a best response to all of the fixed influences and

3In the event of a cyclic interaction digraph, we can still
ensure this property, but with modifications to Algorithm
1. Note that although the digraph may contain cycles, the
influence DBN itself cannot contain cycles (due to the non-
concurrency of agent influences described following equation
1). We can therefore separate an agent’s time-indexed influ-
ence variables into those {dependent upon, independent of }
another influence, and reason about those sets at separate
levels of the search tree. If we separate influence variables
sufficiently, cyclic dependence can be avoided as we progress
down the search tree.
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passes up its policy value (lines 1-4). Local utility values get
passed down and washed back up so that intermediate agents
can evaluate them via Combine() (which composes expected
local utilities into expected joint utilities). In this manner,
the best outgoing influence values get chosen at each level
of the tree and returned to the root. When the search com-
pletes, the result is an optimal influence-space point: a DBN
that encodes the feasible influence settings that optimally
coordinate the team of agents. As a post-processing step,
the optimal joint policy is formed by computing all agents’
best-response policies (via BuildBestResponseModel()
and Evaluate()) in response to the optimal influence point
returned by the search.

4.1 Approximation Techniques
An attractive trait of this framework is the natural ac-

commodation of approximation methods that comes with
representing influences as probability distributions. One
straightforward technique is to discretize the DBN space,
grouping probability values that are within ε of each other so
as to guarantee that a distribution is found whose influences
are close to that of the optimal influence. A second technique
is to approximate the structure of the influence DBN. For
a given influence, feature selection methods could be used
to remove all but the most valuable dependencies of each
influence, thereby sacrificing completeness of the abstraction
for a reduction in search space.

4.2 Efficient Generation and Evaluation of
Feasible State-Dependent Influences

One commonly-studied subclass of TD-POMDPs involves
state-dependent, history-independent influences whereby (in
particular) agents coordinate the timings of interdependent
task executions [2, 4, 16]. To reason about these influences,
agents can utilize a constrained policy formulation technique
(that we have introduced more formally in past work [14])
based upon the dual-form Linear Program (LP) for solving
Markov decision processes. Under the assumption of a non-
recurrent state space, the dual form represents the probabili-
ties of reaching states as occupancy measure variables, which
are exactly what we need to represent the influences that
an agent exerts. For instance, Pr (site-C-prepared|time = 4)
corresponds to the probability of R5 (in Figure 2) entering
any state for which time = 4 and site-C-prepared = true,
which is the summation of LP occupancy measures associ-
ated with these states (or belief-states, for POMDPs). The
agent can use this LP method to (1) calculate its outgoing
influence given any policy, (2) determine whether a given
influence is feasible, and if so (3) compute the optimal local
policy that is constrained to exert that influence [14].

We devise a useful extension: an LP that finds relevant
influence points. For a given influence parameter p, we would
like the agent to find all feasible values for that parameter
(achievable by any deterministic policy). This can be accom-
plished by solving a series of (MI)LPs, each of which looks
for a (pure) policy that constrains the parameter value to
lie within some interval: pmin < p < pmax (starting with
interval [0, 1]). If the LP returns a solution, the agent has
simultaneously found a new influence (p = p0) and computed
a policy that exerts that influence, subsequently uncovering
two new intervals {(pmin, p0), (p0, pmax)} to explore. If the
LP returns “no solution” for a particular interval, there is no
feasible influence within that range. By divide and conquer,

the agent can find all influences or stop the search once a
desired resolution has been reached (by discarding intervals
smaller than ε). In general, this method allows agents to
generate all of their feasible influences without exhaustively
enumerating and evaluating all of their policies.

5. EMPIRICAL RESULTS
We present an initial empirical study analyzing the com-

putational efficiency of our framework. Results marked “OIS”
correspond to our implementation of Algorithm 1 that fol-
lows the LP-based influence generation approach (discussed
previously). We compare influence-space search to two state-
of-the-art optimal policy search methods: (1) a Separable
Bilinear Programming (“SBP”) algorithm [8] for problems of
the same nature as ED-DEC-MDPs [2] and (2) an implemen-
tation of “SPIDER” [13] designed to find optimal policies for
two-agent problems with transition dependencies [7]. Both
implementations were graciously supplied by their respective
authors to improve the fairness of comparison.

Plots 4A and 4B evaluate the claim that influence-space
search can exploit weak coupling to find optimal solutions
more efficiently than policy-space search. These two plots
compare OIS with SBP and SPIDER, respectively, on sets
of 25 randomly-generated 2-agent problems from the plan-
etary exploration domain, each of which contains a single
interaction whereby a task of a satellite agent influences the
outcome of a task of a rover agent.4 For each problem, the
influence constrainedness was varied by systematically de-
creasing the window size (from T to 1) of the influencing task.
While the computation time5 (plotted on a logarithmic scale)
taken by SBP and SPIDER to generate optimal solutions
remains relatively flat, OIS becomes significantly faster as
influences are increasingly constrained. This result, although
preliminary, demonstrates that influence-based abstraction
can take great advantage of weak agent coupling but might
prove less valuable in tightly-coupled problems.

The third experiment (shown in Figure 4C-D) evaluates
OIS on a set of 10 larger problems (where SBP and SPIDER
were infeasible), each with 4 agents connected by a chain
of influences. One of agent 1’s tasks (chosen at random)
influences one of agent 2’s tasks, and one of agent 2’s tasks
influences one of agent 3’s tasks, etc. We compare optimal
OIS with “ε-OIS”, which discretizes probabilities with a step
size of ε in the probability space. The quality and runtime
figures indicate that, for this space of problems, influence-
space approximation can achieve substantial computational
savings at the expense of very little solution quality. Addi-
tionally, this result is notable for demonstrating tractability
of optimal joint policy formulation on a size of problems (4
agents, 6 time units) that has been beyond the reach of the
prior approaches to solving transition-dependent problems
(with relatively unrestricted local POMDP structure).

4As denoted in Figure 4, the agents each have k tasks, each
with d randomly-selected durations (with duration probabili-
ties generated uniformly at random) and randomly-selected
outcome qualities executed for a horizon of T time units.
Because the implementations of SBP and SPIDER were tai-
lored to specific domains, we could not run them on the same
problems. For instance, the SBP implementation assumes
that agents are not able to wait between task executions.
Both domains assume partial observability such that agents
can directly observe all of their individually-controlled tasks,
but not the outcomes of the tasks that influence them.
5All computation was performed on a single shared CPU.
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Figure 4: Empirical Evaluation of Influence-space Search.

6. CONCLUSIONS
This paper contributes a formal framework that character-

izes a broad array of weakly-coupled agents’ influences and
abstracts them from the agents’ policies. Although previous
methods have abstracted specialized flavors of transition in-
fluence [2, 16] or used abstraction to guide heuristic search
[14], the comprehensive model we have devised places these
conceptually-related approaches into a unified perspective.
As a foundation for our framework, we have introduced a
TD-POMDP class whose factored transition structure en-
genders a decoupling of agents’ subproblems and a compact
model of nonlocal influence. Inspired by the successful scal-
ing of the (transition-independent, reward-dependent) ND-
POMDP model [10, 13] to teams of many agents, we have
cast the TD-POMDP joint policy formulation problem as
one of local best-response search.

Prior to this work, there have been few results shown in
scaling transition-dependent problems to teams of several
agents whilst maintaining optimality. Our compactness re-
sult suggests that, for weakly-coupled transition-dependent
problems, agents can gain traction by reasoning in an ab-
stract influence space instead of a joint policy space. We
give evidence supporting this claim in our initial empirical
results, where we have demonstrated superior efficiency of
optimal joint policy generation through an influence-space
search method on random instances of a class of commonly-
studied weakly-coupled problems. But more importantly,
our general influence-based framework offers the building
blocks for more advanced algorithms, and a promising direc-
tion for researchers seeking to apply Dec-POMDPs to teams
of many weakly-coupled transition-dependent agents. Fu-
ture work includes a more comprehensive investigation into
problem characteristics (e.g. digraph topology and influence
type) that impact the performance of influence-space search,
and further development and comparison of approximate
flavors of OIS with other approximate approaches (such as
TREMOR [12]).
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ABSTRACT
Multiagent planning has numerous real life applications, but it

has not been widely applied because controlling selfish agents who
have conflicting interests is non-trivial, especially in information-
ally decentralized environments where agents have their own pri-
vate information. Agents can strategically misrepresent their pri-
vate information, aiming for a more biased global plan toward their
own interests. In such settings, mechanism design is considered a
useful tool for defining the rules that will govern the agents’ inter-
actions and their reporting strategies, while guaranteeing some de-
sirable outcome for the whole system. Classical mechanism design
normally assumes only a declaration phase, where the main focus is
on extracting the agents’ private information truthfully. However,
multiagent planning settings have an additional execution phase,
where the agents will execute their plans, and thus, mechanisms
controlling such settings must take both phases into consideration.
In this paper, we introduce a truthful Coordination-VCG mecha-
nism which prevents agents from lying about their private informa-
tion in multiagent planning settings. The mechanism establishes
truthfulness by mapping the agents’ payments back to their local
planning problem in the form of reward functions to influence their
behavior during execution, in order to implement the optimal de-
termined global plan. We discuss budget balance in relation to the
proposed mechanism, showing that it can achieve pareto-optimality
in special case where pairwise interactions between agents within
the planning setting are independent. Finally, we provide one possi-
ble implementation for the proposed mechanism based on Markov
decision processes.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—

Economics; I.2.11 [Distributed Artificial Intelligence]: Multia-
gent Systems

General Terms
Economics, Theory, Algorithms

Keywords
Multiagent Planning, Mechanism design, VCG mechanism

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

1. INTRODUCTION
Most multiagent planning studies focus on finding a computa-

tionally efficient solution by exploiting the problem structure - whe-
ther this solution is computed in a centralized or decentralized way.
And usually assuming cooperative or altruistic agents operating un-
der complete information, who can be viewed as acting on behalf of
one individual aiming to maximize his overall utility while know-
ing everything about other agents. For such setups, several ap-
proaches have been proposed, including a single planner creating
plans for several agents [14, 6], a local coordination procedure for
each agent [7], and plan modification and merging [1]. However, in
more realistic situations, rational and selfish agents may represent
companies or independent entities competing for common opportu-
nities. The agents will be maximizing their own utility, and usually
will have conflicting interests. In such situations, the coordination
mechanism will rely on game-theoretic concepts as a powerful tool
for capturing the complex interactions among these agents, while
the informational assumptions will still play considerable role.

In this study, we are not concerned with finding a computation-
ally efficient solution for the multiagent planning problem. We as-
sume that the problem can be solved efficiently in a centralized
way by some unbiased central authority, which in turn will guide
the agents through their courses of action. However, we are more
concerned with multiagent planning settings where selfish agents
are involved in informationally decentralized environments, mean-
ing, the information required to solve the multiagent planning prob-
lem is distributed among selfish agents. Such settings require dif-
ferent treatment than those adopted with selfish planning agents
operating under complete information. Each agent has its own
private information which express its planning problem (e.g. its
initial state, possible actions, actions’ associated costs, goals and
the goals’ associated rewards), while knowing nothing about other
agents. Knowing that the central authority - which knows nothing
in advance about the agents - will determine a global plan based on
the agents’ reported information, the selfish agents may be engaged
in a strategic misrepresentation of their private information, aiming
for a global plan biased toward their own interests.

For such contexts, mechanism design is the fundamental tool
used in designing the appropriate rules that regulate the agents’ in-
teractions to guarantee some overall desirable outcome. Classical
mechanism design mainly focuses on the declaration phase, where
the aim is to extract the agents’ private information truthfully, by
eliminating any incentives for them to lie. However, while design-
ing mechanisms for controlling multiagent planning and other sim-
ilar applications (e.g. task scheduling), after the declaration phase
there is an execution phase where the agents will execute their
agreed upon plans, and which provides an additional dimension for
the agents’ misrepresented information. Although mechanism de-
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sign is widely investigated and applied to multiagent systems (e.g.
auctions and resource allocation), there are very few studies [15,
17] that address the use of mechanism design in controlling multia-
gent planning. Previous efforts investigated the applicability of the
well-known VCG mechanism for controlling multiagent planning
settings, showing its failure in handling over-reporting actions (i.e.
reporting actions that an agent doesn’t possess), and suggested de-
posits and compensating schemas to avoid over-reporting and han-
dle the execution phase.

In this study, we present a novel mechanism - which belongs to
the VCG family of mechanisms - for controlling multiagent plan-
ning. The idea behind our mechanism is intuitive and stems from
the consideration of common characteristics of the multiagent plan-
ning problem, where the mechanism will reformulate the agents’
payments as reward functions - mapped to their planning state space
- that will influence the agents’ planning decisions. The optimal
plans decided by agents using these reward functions will be opti-
mal from the global view point. We illustrate the truthfulness of the
proposed mechanism, and show that it achieves pareto-optimality
in multiagent planning settings where pairwise interactions between
agents are independent. Moreover, we illustrate a possible imple-
mentation for our mechanism for practical use-cases.

In the next section, we cover the relevant definitions and con-
cepts of mechanism design applied to multiagent planning, fol-
lowed by related work and suggested modification for previous
mechanism [15]. Then, we outline our proposed mechanism, demon-
strating its conceptual and technical details. We then verify the use-
ful properties attained by our mechanism, and illustrate a possible
implementation for it using Markov decision processes as the local
(global) planner used by the agents (mechanism), while showing
how the agents’ reward functions are designed. Finally, we con-
clude our work, and propose future directions.

2. MECHANISM DESIGN AND MULTIAGENT
PLANNING

Mechanism design is a general methodology for designing mech-
anisms that help an arbitrator (i.e. some central authority) in resolv-
ing the conflict in hand - here, the multiagent planning setting. A
mechanism simply dictates the rules that will be proposed to the
agents. These rules will define the agents’ strategies, and gener-
ally accommodate: 1) The communication system (i.e. who com-
municates with whom, the language of communication, and what
to communicate); 2) The payment procedures (i.e. rewards and
penalties from the system or between agents on top of those re-
lated to the agents’ internal structure); and 3) The characteristics of
the desirable outcome (e.g. maximizing revenue or social welfare,
achieving equity and/or preserving a good environment) and how
to reach there (e.g. coordination among agents). Assuming selfish
agents 1, the mechanism’s chosen outcome (global plan) is imple-
mented (i.e. will be reached) under some game-theoretic solution
concept. Different mechanisms then can be ranked according to the
arbitrator’s goal(s) (e.g. social welfare or revenue).

Mechanism design has passed some main stages in its develop-
ment, with initial steps taken by Leonid Hurwicz [9] by introducing
a communication system among agents for commodity exchange
that laid down the crucial concepts and definitions of the process.
Hurwicz [10] emphasized that incentive compatibility is an im-
portant characteristic that needs to be possessed by mechanisms,
meaning, agents must not have any incentive to misrepresent their

1Mechanism design can also be considered for cooperative agents,
where the main concern will be designing informationally efficient
communication systems.

private information while communicating with the arbitrator. This
can be achieved if the agent’s utility when reporting truthfully is
equal or higher than the utility when reporting untruthfully, thus
there will be no point of misrepresenting its private information.
Defining the revelation principle - by several discoverers including
Roger Myerson [11] - was an important milestone in the mech-
anism design development, where the principle states that the per-
formance of any mechanism can be replicated by a direct revelation
mechanism, in which the agents’ reporting strategies will be sim-
ply reporting their types. Thus, we will focus our attention here on
developing a direct revelation mechanism. Formally, we can define
a mechanism design setting for multiagent planning as follows:

Definition 1: A mechanism design setting for multiagent plan-
ning consists of:

• A set of m agents, denoted by α, and a central authority that
knows nothing in advance about the private information of
the agents;

• Each agent i has its own private information regarding its
planning problem. Information concerning the agent’s initial
state, actions and goal(s) imply the space of possible plans of
the agent i, denoted by Πi. While information concerning the
actions’ costs and goals’ rewards imply the agent’s value for
any plan πi ∈ Πi, which can be expressed by the difference
between the agent’s reward from its achieved goal(s) and the
cost of its actions, denoted by the valuation function vi(πi).
Both kinds of information represent the agent’s type θi ∈ Θi,
where Θi is the set of all the agent’s possible types;

• An agent can lie in three ways [15] while reporting its type:
1) Lie about its value function, i.e. actions’ costs and/or
goals’ rewards; 2) Under-report its available actions - by
declaring an infinite cost for an action, this can be similarly
viewed as the first type of lying, this implies unreported pos-
sible plans; and 3) Over-report its available actions, which
implies reporting some imaginary plans. We will call the first
two types of lying traditional lying;

• Based on the agents’ reported types, the central authority
will choose a global plan πg , which can be viewed as m local
plans for the participating agents (i.e. πg = (π1

g , . . . , πm
g )),

where these local plans are desirable from the system’s view
point. The global plan πg is chosen from the space of all
“possible" global plans for the multiagent setting, denoted
by ΠG ⊆ Π1 × . . .×Πm, where πg ∈ ΠG;

• Agent i valuation function will map the chosen πg together
with the agent’s true type θi to a real number quantifying
the agent’s value under the selected global plan, denoted by
vi(πg, θi), which is equivalent to vi(π

i
g);

• The selected global plan maximizes a social welfare (i.e. util-
itarian) function f , defined by the summation of all the agents’
values under the selected global plan πg and the agents’
reported types θ = (θ1, . . . , θm), i.e. the selected πg =
argmaxπg∈Πg

∑
i∈α vi(πg, θi).

A direct revelation mechanism usually uses payments as an ex-
ternal factor on top of the agents’ valuations - which depend on
their internal structure and capabilities - for the selected global plan
πg to align the agents’ incentives with those of the system while
reporting their private information in the declaration phase. How-
ever, this will not provide the full picture for a successful execution
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in a multiagent planning setting. The mechanism still needs to con-
trol the agents while executing their agreed upon plans in the ex-
ecution phase. This implies that payments in multiagent planning
are needed to control the agents in both phases. Using payments
may raise some concerns about the applicability of such mecha-
nisms for controlling multiagent planning in practise, for instance,
in Robotics domains where monetary payments are not possible.
In spite of the validity of these concerns regarding some appli-
cation domains, there remain numerous domains where payments
are meaningful, such as supply chains, logistics, road and air traf-
fic control, among others. We will use a deterministic mechanism
which determines a single global plan rather than a randomized one
- ordinarily used for theoretical purposes, which defines a prob-
ability distribution over the possible global plans’ space ΠG. A
deterministic mechanism with payments that maximizes the social
welfare is defined as follows:

Definition 2: A deterministic direct revelation mechanism
with payments has a social welfare function f that, given any
reported vector of types θ = (θ1, . . . , θm) ∈ Θ1 × . . . × Θm ,
produces a single global plan πg that maximizes f , and a payment
function pi : Θ1 × . . . × Θm → R for each agent i, where pi(θ)
denotes the payment made by agent i. Thus, the overall utility of
agent i will be expressed by ui(πg, θi) = vi(πg, θi)− pi(θ).

Allocative efficiency and budget balance are two desirable prop-
erties that our proposed mechanism possesses. The allocative effi-
ciency property is attained by choosing f as a function that maxi-
mizes the social welfare (definition 1). On the other hand, a mech-
anism is said to be budget balanced if no net payments transfer
out of the system or into the system (i.e. for all agents’ types
θ = (θ1, . . . , θm),

∑
i∈α pi(θ) = 0). These two properties to-

gether imply pareto optimality, which means that under the mech-
anism’s chosen global plan πg , no agent can be better off without
making other agents worse. The mechanism normally assumes that
the chosen outcome πg will be reached in an equilibrium based
on some game-theoretic solution concept such as the Nash equi-
librium, the Bayesian-Nash equilibrium or the Dominant Strategy
equilibrium. The incentive compatibility can be defined for the
Nash equilibrium as follows:

Definition 3: Given a deterministic mechanism with payments,
the mechanism implements a Nash equilibrium if reporting truth-
fully is always the optimal strategy for an agent given that other
agents’ are reporting truthfully. Meaning, for any involved agent
i, if its true type is θi, its utility when reporting θi is greater than
or equal to its utility when reporting any other type θ̂i (other than
its true type θi), for any chosen global plan πg , given that other
agents are truthfully reporting their types.

Of the known and most used family of mechanisms are the Vickrey-
Clarke-Groves (VCG) mechanisms [16, 5, 8] defined as follows:

Definition 4: A direct revelation mechanism is called a VCG
mechanism if: 1) f maximizes social welfare (i.e. utilitarian func-
tion); and 2) Agent i payment to the mechanism is determined by
pi(θ) = hi(θ−i)−

∑
j∈α,j 6=i vj(πg, θj), where hi(θ−i) is an ar-

bitrary function based on the declared types of all the agents except
agent i, i.e. θ−i = (θ1, . . . , θi−1, θi+1, . . . , θm).

VCG mechanisms assume that the agents have quasi-linear pref-
erences, where the agent’s utility can be represented in terms of its
valuation of the selected outcome and its payment, which make
it straightforward to transfer utilities across agents. VCG mech-
anisms are allocative-efficient as they maximize a social welfare
function. The selection of the function hi(θ−i) leads to the de-
scription of the family of mechanisms. According to the VCG
mechanism payment function - with hi(θ−i) = 0, the mechanism
will pay each agent an equivalent amount to all the other agents’

valuations of the selected outcome. The effect of the VCG pay-
ment function pi is to internalize the externalities placed on the
other agents due to the reported information of agent i. This aligns
the agents’ incentives with the system’s goal of achieving efficient
allocation, where an agent wants the mechanism to select the sys-
tem’s best outcome based on all the reported information in order
to maximize its received payment.

3. RELATED WORK AND MODIFIED DEPOSIT-
VCG

In informationally decentralized multiagent planning settings, where
agents are selfish, hold their private information and usually have
conflicting interests, the central authority aims to propose a mech-
anism for the agents that leaves no incentives for them to lie about
their private information in the declaration phase, and makes sure
that the determined global plan is implemented in the execution
phase. In what follows, we will discuss previous efforts in control-
ling multiagent planning using mechanism design, the considered
assumptions and concerns. Then, we will propose our Coordination-
VCG mechanism, illustrating the conceptual and technical proper-
ties that the mechanism possesses.

van der Krogt et al. [15] investigated the usage of a VCG mech-
anism where a central authority (using an optimal global planner)
will plan for all the involved agents, aiming to maximize the sum of
all the agents’ valuations, while the payments will be determined
according to the VCG mechanism with hi(θ−i) = 0 (Definition
5). It was shown [15] that the VCG mechanism is incentive com-
patible for traditional lying but not for over-reporting. Obviously,
for traditional lying (which may affect the selected global plan, and
thus, decreases other agents’ valuations), the agent will have a cor-
responding decrease in its received payment from the mechanism,
as its payment is equivalent to other agents’ valuations.

The over-reporting type of lying opens debate on the suitable
modeling assumptions to be considered for the execution phase.
If an agent over-reports its actions, and these over-reported actions
were included in the global plan which will be infeasible, then some
agents will fail in executing their plans. This opens the question of
whether the payments will be calculated and paid before or after the
execution phase. If the payments are made before the global plan
execution, then an agent may have some incentive to over-report,
as this may increase other agents’ valuations of the resultant "in-
feasible" global plan, and thus, an increase in the payment received
by the agent from the mechanism. However, if the mechanism de-
termines the global plan based on the agents’ reported information,
under the assumptions that the agents are guaranteed to make their
payments after the execution, and any failure that may occur dur-
ing the execution phase can be detected (i.e. the agents’ reported
information are verified), then calculating the payments and han-
dling them after the execution is sufficient to prevent agents from
over-reporting. Similar assumptions were used in a task scheduling
context [13].

It was assumed in [15, 17] that the agents’ payments are calcu-
lated and paid before the execution phase, and thus, a VCG mecha-
nism cannot prevent over-reporting. To avoid over-reporting, van
der Krogt et al. [15] proposed the Deposit-VCG mechanism in
which each agent will pay a deposit equivalent to all the rewards
gained by all agents (including itself) from achieving their goals,
determined by r(G) =

∑
i∈α

∑
gi∈Gi

ri(gi), where ri(gi) is the
reward that agent i will get from achieving one goal gi that be-
longs to its set of goals Gi. The amount of this deposit is the min-
imum [15] when considering the worst case scenario where none
of the agents succeed in achieving any goals due to the untruthful
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reported information. If the execution of the global plan fails due
to some agent’s untruthful information, this agent will not get its
deposit back, assuming that lying can be detected during the exe-
cution. It was stated that: "Since the separate deposit stage does
not enlarge the strategy space of the agents, it is straightforward to
see that if the agents are truthful under the VCG mechanism, they
will not be better off by lying under the Deposit-VCG mechanism"
... [15]. This would entail that the deposit-VCG is truthful when-
ever the VCG mechanism is truthful, and is truthful for multiagent
planning settings as it can prevent over-reporting (Proposition 7 and
Theorem 8 [15]).

Although that the idea of using deposits has its merits, the way
of computing the deposits is contradicting to the VCG definition,
as any additional part of the VCG payment function must follow
the hi(θ−i) function definition, in which, it must depend on the de-
clared types of all the agents except agent i. But, it is clear that the
deposit depends on the declared type of agent i, as it depends on
the declared goals and their associated reward functions of agent
i. Thus, when an agent considers the deposit while maximizing
its utility function, this additional deposit term (whether these de-
posits are made in a separate stage or not) will alter the declaration
strategy space of the agent, and violates the VCG payments’ def-
inition, and thus, the VCG truthfulness property. This leads us to
the following proposition:

Proposition 1: The Deposit-VCG mechanism [15] is not truth-
ful when the VCG mechanism is truthful.

However, to still make use of the deposits idea, the deposits can
be assumed to be huge (as in [17]) enough to overcome any harm
caused to the system due to over-reporting. Or alternatively, we can
(re)-define the deposit differently as r(G) =

∑
j∈α,j 6=i

∑
gj∈Gj

rj(gj),
which satisfies the VCG payments’ definition as it will not depend
on the declaration of agent i. This modified Deposit-VCG is truth-
ful at the Nash equilibrium, i.e., reporting truthfully is always the
optimal strategy for an agent assuming that other agents will report
truthfully as well.

Theorem 1: A modified Deposit-VCG mechanism prevents tra-
ditional and over-reporting types of lying, and thus, truthful for
multiagent planning settings.

Proof. The utility of agent i under a VCG mechanism is

ui(πg, θi) = vi(πg, θi)− pi(θ) (1)

where pi(θ) = hi(θ−i) −
∑

j∈α,j 6=i vj(πg, θj) according to the
VCG definition. By substituting pi(θ) in the agent’s utility func-
tion, setting hi(θ−i) = 0 and adding the modified deposit term, it
becomes

ui(πg, θi) = vi(πg, θi) (2)
+

∑
j∈α,j 6=i vj(πg, θj)−

∑
j∈α,j 6=i

∑
gj∈Gj

rj(gj)

Recalling that the mechanism will choose a global plan that max-
imizes all the agents’ valuations based on their reported types, agent
i has control only over its declared type θi, and wants to maximize
its utility function (eq.2). This can be done by maximizing the sec-
ond term (i.e. its payments from the mechanism equivalent to other
agents’ valuations), and getting back (eliminating) the third one
(i.e. the deposit term). The agent will have no incentive to prac-
tise traditional lying, as this may minimize other agents’ valuations
of the selected global plan, and thus, minimizes the potential pay-
ment received by the agent from the mechanism. This is obvious
as the modified Deposit-VCG will be truthful whenever the VCG
mechanism (which prevents traditional lying) is truthful.

For over-reporting, agent i knows that if it decided not to over-
report, it will eliminate the deposit term (i.e. it will get deposit
amount back after the execution phase). Note that agent i knows
that its over-reported actions (if considered in the global plan) will
be used (from the global plan perspective) in either helping other
agents (case 1), or helping itself (case 2), or both. The agent simply
needs to consider these cases in order to decide whether to over-
report or not. For case 1, if agent i over-reports its actions, it will
lose the deposit amount, but in the same time, it may increase the
second term (i.e. other agents’ valuation of the infeasible global
plan). Any increase in the second term (i.e. the received payment)
will be less than the deposit amount. This is obvious as the mecha-
nism is maximizing the agents’ valuations, and the deposit amount
serves as an upper bound for the agents’ valuations (i.e. the goals’
reward of all other agents). While for case 2, over-reporting will not
increase the received payments (the second term), and the agent
still loses the deposit amount as it failed in executing its part in
the global plan, even if this part is related to the agent itself. The
only thing that over-reporting will cause in this case is to increase
the agent’s value of the selected global plan from the mechanism
perspective (as the agent will be achieving more goals from the
mechanism view), which will increase the mechanism payments
(those depend on the value of agent i) for other agents. Thus, over-
reporting in case 2 will not increase the agent utility. ¤

4. COORDINATION-VCG MECHANISM
A mechanism that uses deposits is still hard to implement for

the two following reasons: 1) it assumes implicitly that the agents’
reported information can be verified (i.e. lying agents can be de-
tected) during the execution phase in order to determine whether
the agents will get their deposits back or not, which is a difficult as-
sumption to hold especially for large number of agents; and 2- the
deposit amount may be too large to be afforded by the participating
agents. By assuming that the payments will be determined after
the execution phase - similar to [13] in task scheduling - handles
over-reporting, but again we are assuming the verifiability of the
reported information, and moreover, the agents’ payments after the
execution must be guaranteed. In this section, we will introduce a
new mechanism for controlling multiagent planning, which differs
from the previously discussed efforts conceptually and technically.

For illustrating the intuition behind our proposed mechanism, we
will consider the following general view for the multiagent plan-
ning problem [4]. Each involved agent has its own set of actions,
which can be classified into local actions (i.e. those affect only
the agent) and global actions (i.e. those affect other agents). Any
global plan for a certain multiagent planning setting actually boils
down to the coordinate points between the global actions of the
involved agents, which encapsulate exploited positive interactions
and/or resolved conflicts. However, it is worth mentioning that
agents’ local actions remain an influential factor in determining
an overall optimal global plan. The coordination points between
agents (when determined) can be expressed at the agent level by
some commitment points in its local plan, in which this agent will
be executing its global actions (those affect other agents) accord-
ing to the agreed upon coordination scheme. Generally speaking,
different approaches for solving the multiagent planning problem
are in way or another related to how the coordination points be-
tween the involved agents are to be determined. Recalling that
we assume that the global plan can be determined efficiently in
a centralized manner, this is the only suitable approach to consider
here while investigating direct revelation mechanisms (which as-
sume that agents are only allowed to communicate with the central
authority) for controlling multiagent planning.
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Keeping this general view in mind, there are two possible sce-
narios, either the central authority - based on the agents’ reported
information - will determine a complete global plan which dictates
a complete plan for each agent (scenario 1), or ideally 2, will de-
termine only the coordination points (i.e. the commitment points
for each agent) - if possible! (scenario 2). In the first scenario, and
for the central authority to guarantee a successful execution of the
determined global plan, it actually wants to assure that each agent
will execute a certain complete local plan (on the agent’s level),
which conveys its role in the global plan. However, for the second
scenario, the central authority only cares that the agents’ global ac-
tions are executed according to the coordination points those rep-
resent the determined optimal global plan (i.e. each agent will ex-
ecute the agreed upon actions at the commitment points of its lo-
cal plan). Knowing that any actions that will be executed between
these commitment points will only affect the agent, and that the
agent is selfish (i.e. will maximize its value from its local plan), the
central authority shouldn’t care about what the agent will execute
between these commitment points.

Our proposed mechanism belongs to the VCG family of mech-
anisms, where its essence idea is to map the agents’ received pay-
ments (in form of some reward functions) to their local state space,
and then, let the agents determine their own local plans consid-
ering these reward functions. Mechanism design - by definition
- aims to define the rules that governs the agents’ interactions by
reshaping their strategy spaces, and under the rationality assump-
tion, agents - while maximizing their own utilities - will behave in
a desirable way from the system’s point of view. By using a direct
revelation mechanism, the agents’ strategy space for the declara-
tion phase is narrowed down to report their types. While for the
execution phase, the reward functions can be viewed as the mech-
anism’s influential tool that will control the agents during execu-
tion, and will guide them to local plans which are optimal from the
global view point. For the second scenario, the agent’s received
payment will be mapped to its commitment points, then the agent
can plan between these commitment points by filling up his local
actions, which reduces the computational burden over the central
authority. However, and up to our knowledge, such sophisticated
procedures for determining the coordination points within a multi-
agent planning setting without generating the complete global plan
are still under investigation [4]. Thus, we will consider the first sce-
nario for our study 3, assuming that the mechanism will guide the
agents through their complete local plans, which are optimal from
the system view point based on the complete global plan. For this
scenario, the agent re-calculation for its local plan is considered re-
dundant, however, determining this plan is a single agent planning
problem that will be solved on the agent level.

For budget balance issues (to be discussed later), we use the
Clarke pivot rule [5] for defining hi(θ−i) as

∑
j∈α,j 6=i vj(π

−i
g , θj),

where π−i
g is the global plan computed without the reported infor-

mation of agent i, and maximizes the valuations of all other agents
(i.e. π−i

g = argmax
π−i

g ∈Π−i
G

∑
j∈α,j 6=i vj(π

−i
g , θj)). This hi(θ−i)

value will be paid by agent i to the mechanism. We can define
our proposed mechanism, denoted by a Coordination-VCG mech-
anism, as follows:

Definition 5: A Coordination-VCG mechanism is defined by
the following steps:

1. The mechanism asks the agents to report their types θ =
(θ1, . . . , θm).

2From the computational view point.
3Without loss of generality that our mechanism can be applied in
the second case as well.

2. The mechanism computes the global plan πg that maximizes
all agents’ valuations based on θ, where πg = argmaxπg∈ΠG∑

i∈α vi(πg, θi).

3. The mechanism computes the payment for each agent i using
pi(θ) = hi(θ−i) −

∑
j∈α,j 6=i vj(πg, θj), where hi(θ−i) =∑

j∈α,j 6=i vj(π
−i
g , θj) and π−i

g = argmax
π−i

g ∈Π−i
G∑

j∈α,j 6=i vj(π
−i
g , θj).

4. The mechanism computes a reward function ri for each agent
i - defined on the state space of the local planning problem of
the agent, where its cumulative amount (over the state space)
is equivalent to the received payment (i.e.

∑
j∈α,j 6=i vj(πg, θj))

by the agent.

5. The mechanism reports back the computed reward functions
to the agents.

In the next section, we will discuss the truthfulness property
of the proposed Coordination-VCG mechanism, and related bud-
get balance issues. Then, we will provide a detailed possible im-
plementation of our mechanism for multiagent planning, focusing
mainly on how the agents’ payments will be expressed by the re-
ward function ri (step 4) that will be used by the Coordination-
VCG mechanism to influence the local plan of each agent i. Gen-
erally speaking, this function will distribute the amount of the pay-
ment received by an agent over its local state space, in a way that
the agent’s local optimal plan will be optimal from the system’s
view point.

5. COORDINATION-VCG TRUTHFULNESS
AND BUDGET BALANCE

We will show that the Coordination-VCG is truthful at nash equi-
librium for multiagent planning settings where traditional lying or
over-reporting may occur.

Theorem 2: A Coordination-VCG mechanism is truthful for tra-
ditional lying and/or over-reporting in multiagent planning.

Proof. The utility of agent i under a Coordination-VCG mecha-
nism is given by equation 1, where pi(θ) =

∑
j∈α,j 6=i vj(π

−i
g , θj)−∑

j∈α,j 6=i vj(πg, θj). By substituting pi(θ) in equation 1, the util-
ity function becomes

ui(θi, πg) = vi(θi, πg) (3)
−∑

j∈α,j 6=i vj(π
−i
g , θj) +

∑
j∈α,j 6=i vj(πg, θj).

Agent i wants to maximize its utility, and thus, wants to max-
imize the third term (eq.3) that represents the payment portion it
will be receiving from the mechanism. Obviously - and as a VCG
mechanism, the mechanism prevents traditional lying, as it may de-
crease the third term. For over-reporting - where agent i will claim
actions that it doesn’t possess, this may increase the agent’s re-
ceived payments if these over-reported actions were included in the
global plan. However, the agent knows that its received payments
will be mapped to (i.e. distributed over) its local state space, which
implies that some portion of its payment will be linked to some
imaginary states that it will never reach, simply as it doesn’t have
the actions to reach there. Given that agent i doesn’t know how its
reward function will be designed (i.e. what amount will be linked
to each state), then the Coordination-VCG prevents over-reporting
and any combination of both types of lying. ¤

We found it convenient - for budget balance issues - to define the
hi(θ−i) following Clarke pivot rule [5] for the following reasons.
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First, it reduces the mechanism’s required budget for operating the
system, as the mechanism will be receiving the value of hi(θ−i)
from each participating agent i. Second, the payment term pi(θ) is
more expressive, as it corresponds to the difference between other
agents’ valuation without and with agent i, and thus, agent i is pay-
ing an amount equivalent to its effect on the system. An agent may
end up by paying the mechanism, which will be the case if the agent
existence harms the system more than benefiting it, for instance, by
introducing conflicts that require more costly actions from other
agents which in turn will decrease their values. Or on the other
hand, an agent may end up by receiving payments from the mech-
anism, if its benefits to system are more than its harm, for instance,
by helping other agents to achieve their goals and/or resolve con-
flicts on its expense. Finally, it allows us shedding the light on the
budget balance property of the proposed Coordination-VCG mech-
anism. Budget balance is a desirable property that indicates that
there is no net transfer of payments out of the system or into the
system. Whether the Coordination-VCG mechanism is budget bal-
anced or not, this will depend mainly on the characteristics pos-
sessed by the multiagent planning setting in hand. Considering a
multiagent planning setting with three agents (A, B and C), their
payments can be expressed as follows:

pA = vB(πB,C) + vC(πB,C)− vB(πA,B,C)− vC(πA,B,C)(4)
pB = vA(πA,C) + vC(πA,C)− vA(πA,B,C)− vC(πA,B,C)(5)
pC = vA(πA,B) + vB(πA,B)− vA(πA,B,C)− vB(πA,B,C)(6)

For the first payment equation (eq.4), agent A will pay an amount
equivalent to the values of agents B and C from the global plan
that only considers both of them, and will receive an amount equiv-
alent to the values of agents B and C from the global plan that
include the three agents. The first and third terms capture the ef-
fect of agent A on agent B due to its existence in the system (i.e.
EffA→B = vB(πB,C)−vB(πA,B,C)), while the second and fourth
terms capture its effect on agent C (i.e. EffA→C = vC(πB,C) −
vC(πA,B,C)). Note that the effect of agent A on agent B (i.e.
EffA→B) is considered while agent C dually influences and is af-
fected by this relation. Similar interpretation holds for agent B
and agent C equations. The system’s payments then can be ex-
pressed by the agents’ effects on one another as follows EffA→B +
EffA→C + EffB→A + EffB→C + EffC→A + EffC→B . By assuming
that the effect of one agent on another has nothing to do with other
agents in the system, the system will be budget balanced as the ef-
fect of any two agents on one another (e.g. EffA→B and EffB→A)
will offset each other. Thus, if the multiagent planning setting in
hand possesses the characteristic that the effect of one agent on an-
other has nothing to do with other agents in the system, meaning,
the interactions within the system can be described by independent
pairwise interactions between the agents, then the budget balance
property will be attained under the Coordination-VCG mechanism.
Achieving budget balance along with the allocative efficiency prop-
erty (which is already attained in the Coordination-VCG) implies
pareto-optimality. Such settings can describe, for instance, a ser-
vice provider that has sufficient resources to serve all his potential
clients, his relation with one client is not affected by his relation
with others.

Proposition 2: The Coordination-VCG mechanism is budget
balanced and pareto-optimal for multiagent planning settings where
pairwise interactions between agents are independent.

In the following section, we will illustrate an implementation
of the proposed Coordination-VCG, assuming that both the agents
and mechanism are using Markov decision process as their plan-

ning model. We want to emphasize that this is not the only pos-
sible implementation for the proposed mechanism, and that this is
not a general purpose implementation which may not be suitable
for some planning problems because of the assumed planning sce-
nario. However, this detailed implementation narrows down the
gap between the theoretical contribution of this study and its prac-
tical purposes.

6. MARKOV DECISION PROCESS FOR PLAN-
NING UNDER A COORDINATION-VCG

Decision-theoretic planning (DTP) is an extension of the clas-
sical AI planning paradigm that allows modeling of problems with
incomplete information, in which uncertainty is associated with the
actions’ effects. The main aim in this context is to determine a
plan/policy that has the highest expected utility. Most of the se-
quential decision problems can be viewed as a Markov decision
processes (MDPs) [3], and thus, many studies are carried out on
DTP while adopting MDPs as their underlying model.

MDPs are normally used for modeling stochastic dynamical sys-
tems, where at any given point of time, the system will be in one
of its distinct states. A state provides a description of the system at
some point of time, and it is commonly assumed (Markov assump-
tion) that it captures all the agent’s required information to carry
out its decision-making process (i.e. Pr(st+1|st, st−1, . . . , s0) =
Pr(st+1|st)). MDPs assume extensional representation of the sys-
tem, where the whole system’s state space is provided with each
state explicitly named. However, in AI research, intensional rep-
resentation is often used, where the system’s states are described
using sets of multi-valued features.

The system state evolves over time in response to the occurring
events, these events can be viewed as the agent’s own actions - to-
tally controlled by the agent (what actions are taken and when),
or/and some partially predictable exogenous events that may oc-
cur beyond the agent’s control (e.g. evolution of a natural process
or other agents’ actions). Both kinds of events may - but not nec-
essarily - stochastically cause state transitions. Putting exogenous
events aside for now, given the current state of the system and the
agent’s action, the influence is determined according to a probabil-
ity distribution over the system’s possible next states. Assuming a
stationary system, this probability distribution is independent from
the MDP stage - concerning time steps.

Both the state space and the probability distribution governing
possible state transitions describe the discrete-time stochastic pro-
cess, which determines how the system will evolve in response to
the events which may not be perfectly predictable. Starting from
some initial state, the agent’s goal(s) can be expressed by some
system state(s) which the agent wants to find its way to by deciding
on its policy, while avoiding undesirable states along the way. The
agent can assess its plan according to whether the goal state(s) can
be reached with sufficient probability, while optimizing some ob-
jective function associated by the plan execution (e.g. maximizing
value). The above description can capture classical planning prob-
lems (goal-oriented, deterministic and complete knowledge), and
extensions such as conditional and probabilistic planning problems.

6.1 Single Agent MDP
The fully-observable MDP planning problem of single agent i

can be described as follows: i) A finite set Si = {s1, . . . , sni} de-
scribing the possible ni states of the planning problem of agent i;
ii) A finite set Ai = {a1, . . . , aki} describing the ki possible ac-
tions of agent i; iii) A probability distribution Pri

a associated with
each of the agent’s actions, describing the transition probabilities
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upon taking action a in state s; iv) A discount factor γ ∈ [0, 1]
used for discounting the value of future transitions; v) The agent’s
initial state denoted by Ii ∈ Si; vi) The agent’s goal state Gi ∈ Si;
vii) A cost function ci : Ai → R that assigns a cost for each action;
viii) A goal reward function rgi : Gi → R that assigns a reward
for achieving the goal, the reward function can be defined over the
whole state space while assigning the reward 0 for other states than
the goal state. Thus, the planning MDP of agent i can be described
by the tuple θi = 〈Si, Ai, P ri

a, γ, Ii, Gi, ci, rgi〉, where θi deter-
mines the type of agent i.

The plan/policy of agent i is denoted by πi : S → A, that defines
which action to be taken in each state. Starting from the initial state
Ii, the agent simply wants to reach its goal Gi with the minimum
cost for its undertaken actions. In other words, the agent wants
to maximize its value function, expressed by vi(πi) = rgi(πi) −
ci(πi), where vi(πi) denotes its value given that the agent adopts
the plan πi, while rgi(πi) and ci(πi) denote its reward and cost
according to policy πi, respectively.

Normally for MDPs, we can define the value 4 of agent i in a
state s with an action a as Vi(s, a) = RGi(s) − Ci(s, a). How-
ever, under a Coordination-VCG mechanism, agent i will receive a
payment from the mechanism (the third term in eq.3) expressed by
a reward function ri that maps the payment amount to the agent’s
state-space. The reward function ri is denoted at the state level by
Ri, and this changes the value of agent i in state s with an action a
to be

Vi(s, a) = RGi(s) + Ri(s)− Ci(s, a) (7)

The above equation captures the utility of agent i under the Coordination-
VCG mechanism at the state level, while ignoring the payment that
the agent will pay to the mechanism (i.e. the second term in eq.3
which the agent can’t influence). For simplicity, we will denote this
utility as the agent’s valuation that considers the received payment
from the mechanism. This equation can easily be generalized to
histories, let h = [s0, s1, . . .] be one arbitrary history sequence,
then the agent’s valuation for h induced by policy πi is defined
as: vi(h|πi) =

∑
t≥0 γt(RGi(st) + Ri(st) − Ci(st, πi(st))),

where t indicates the time step. The expected value of policy πi is
computed over the space of all possible histories H , according to
the probability of their possible occurrence, defined as: E(πi) =∑

h∈H Pr(h|πi)vi(h|πi). The agent’s optimal policy/plan π∗i is
the one that has the maximal expected value, i.e. E(π∗i ) ≥ E(πi)
for any other policy πi. Let E(s) be the expected value at state
s, and thus, the expected value at state s when taking action a

is defined by: Qi(s, a) = Vi(s, a) + γ
∑

s
′∈Si Pri

a(s
′ |s)E(s

′
).

The optimal (maximum) value E(π∗i ) must satisfy Bellman’s fixed
point equation: E(s) = argmaxa∈AiQi(s, a),∀s ∈ Si where
a is the action to be taken in state s according to policy π∗i (i.e.
a ≡ π∗i (s)).

6.2 Multiagent MDP and Local Rewards Im-
plementing Global Plan

In the previous section, we described an agent’s private plan-
ning problem. The mechanism will ask the m agents - in the α
set of agents - to report their types, where an agent i will report its

4We are using capital variables (i.e. Vi, C
i, RGi) to express the

value, cost and reward of agent i at the state level, while bold cap-
ital variables (i.e. Vi,C

i,RGi) to express vectors over the whole
state space (i.e. each value in the vector is mapped to some state).
Small variables i.e.vi, c

i, rgi are used to express the value, cost
and reward of agent i for trajectories (i.e. sequence of states).

type θi = 〈Si, Ai, P ri
a, γ, Ii, Gi, Ci, RGi〉. Using the agents’ re-

ported information, the mechanism can start formulating the mul-
tiagent planning problem as a multiagent MDP (MMDP) [2] de-
scribed by the tuple 〈α, S, {Ai}i∈α, P r, γ, {Ii}i∈α, {Gi}i∈α, {ci}i∈α,
{rgi}i∈α〉, where {Ai}i∈α, {Ii}i∈α, {Gi}i∈α, {ci}i∈α and {rgi}i∈α

are the sets of the agents’ reported actions, initial states, goal states,
cost functions and goal reward functions, respectively. The mech-
anism needs to create a global state space S, and a probability dis-
tribution Pr over the joint action spaces of all the agents which
will describe the transition probabilities upon taking a joint action
〈a1, . . . , am〉 in state s ∈ S. We will not discuss here the relation
between the global state space S and the agents’ state space Si, as
this relation is problem dependent and will vary from one problem
to another.

After constructing the MMDP, the global optimal policy/plan πg

can be determined in a similar way as discussed in the previous
subsection for a MDP. This global plan will maximize the summa-
tion of all the agents’ valuations using their reported cost and goal
reward functions. Till here, we have shown the implementation of
the first two steps in the Coordination-VCG mechanism. For cal-
culating the agents’ payments (step 3), the previously constructed
MMDP can be used in computing the third term in the payment
function (eq.3) for each agent. However, for computing the second
term (eq.3) for each agent i, the mechanism needs to remove agent
i from the system and construct a new MMDP - in a similar way -
using the information reported by all the other agents.

The global optimal plan πg is actually m local optimal plans, πi
g

for each agent i, those that will yield to the best (optimal) global
performance when executed. In some cases, there may be several
optimal plans πi

g for each agent i from the system’s view point,
meaning, there are several optimal global plans that correspond to
different local optimal plans for agent i. In such cases, the mech-
anism needs to decide exactly on which optimal global plan to be
considered, and thus, an exact plan πi

g to be followed by agent i.
The mechanism wants the optimal plan π∗i decided by agent i to
be equivalent to its optimal plan πi

g from the system’s perspective.
To do this, the mechanism will design the reward function ri in a
way that the local plan πi

g - which is optimal from the global view
- will become the unique optimal plan (i.e. π∗i ) that agent i will
determine while maximizing its expected value, and undertake it in
execution. Ng and Russell (theorem 3 in [12]) stated that for πi

g to
be the unique optimal policy for a finite state space MDP, the value
vector Vi of agent i over its state space must satisfy the following
constraint (without much details)

(Pri
a1 − Pri

a)(I − γPri
a1)

−1Vi > 0 (8)

where a1 ≡ πi
g (the action corresponding to πi

g at some state), I is
an identity matrix, and a represents any possible action other than
a1. Recalling that Vi = RGi + Ri −Ci (which is eq.7 expressed
by vectors over the state space), and that the cumulative rewards
mapped to the state space ‖Ri‖ must be equivalent to the payment
amount received by agent i from the mechanism, then this second
constraint must hold:

‖Vi + Ci −RGi‖ =
∑

j∈α,j 6=i

vj(πg, θj) (9)

where Ci and RGi are considered constants known by the mecha-
nism from the declared information by agent i, and

∑
j∈α,j 6=i vj(πg, θj)

is the payment amount received by agent i. The mechanism simply
wants to find the Vi vector that satisfies both constraints simultane-
ously, which guarantees that πi

g will be the unique optimal policy,

21



and that the mapped rewards are equivalent to the agent’s received
payment. After determining Vi, the vector Ri = Vi + Ci −RGi

shows the exact map of the agent’s received payment to its state
space, which express the reward function ri that the mechanism
will report back to agent i. When agent i starts determining its
own plan in order to maximize its valuation (using eq.7), taking
into consideration the reward function ri reported by the mecha-
nism, the determined optimal plan will also be optimal from the
system’s perspective. And thus, the mechanism succeeded in con-
trolling agent i during the execution phase using its received pay-
ment.

7. CONCLUDING SUMMARY AND FUTURE
WORK

In informationally decentralized multiagent planning, rational
agents usually have conflicting interests, and thus, they may strate-
gically misrepresent their private information in order to maximize
their own utility. Mechanism design can aid in extracting the agents’
private information truthfully. However, multiagent planning dif-
fers from the classical applications of mechanism design by hav-
ing an additional execution phase. In this study, we discussed
previous efforts for designing mechanisms for controlling multi-
agent planning, and provided a modified Deposit-VCG. We con-
tributed a novel Coordination-VCG mechanism which is truthful
in both phases for all types of lies, and proved its correctness.
We showed that the proposed mechanism is budget balanced and
pareto-optimal for planning settings where the agents’ pairwise in-
teractions are independent. We provided a possible implementation
for the proposed Coordination-VCG, where we assumed MDPs
to be the planning model used by the agents and the mechanism.
And we showed how the agents’ payments can be projected back
to their local planning problems. More efficient ways of handling
the global planning process, and investigating the computation and
communication aspects appear fruitful avenue of pursuit. As well
as investigating how individual rationality can be achieved under
the suitable MAP models.
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1973.

[9] L. Hurwicz. Optimality and informational efficiency in
resource allocation processes. In K. J. Arrow, S. Karlin, and
P. Suppes, editors, Proceedings of the First Stanford
Symosium on Mathematical Methods in the Social Sciences,
1959, volume IV of Stanford Mathematical Studies in the
Social Sciences, pages 27–46. Stanford University Press,
1960.

[10] L. Hurwicz. On informationally decentralized systems. In
C. B. McGuire and R. Randner, editors, Decision and
Organization, A Volume in Honor of Jacob Marschak,
volume 12 of Studies in Mathematical and Managerial
Economics, chapter 14, pages 297–336. North-Holland
Publishing Company, Amsterdam, 1972.

[11] R. B. Myerson. Incentive compatibility and the bargaining
problem. Econometrica, 47(1):61–73, January 1979.

[12] A. Y. Ng and S. Russell. Algorithms for inverse
reinforcement learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 663 –
670. Morgan Kaufmann Publishers Inc., 2000.

[13] N. Nisan and A. Ronen. Algorithmic mechanism design.
Games and Economic Behavior, 35:166–196, 2001.

[14] F. Pecora and A. Cesta. Planning and scheduling ingredients
for a multi-agent system. In Proceedings of UK PLANSIG,
pages 135–148, Delft (The Netherlands), November 2002.

[15] R. P. van der Krogt, M. M. de Weerdt, and Y. Zhang. Of
mechanism design and multiagent planning. In M. Ghallab,
C. D. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI-08), pages 423–427. IOS Press, 2008.

[16] W. Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. The Journal of Finance, 16:8Ű37, 1961.
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ABSTRACT
Memory-bounded techniques have shown great promise in
solving complex multi-agent planning problems modeled as
DEC-POMDPs. Much of the performance gains can be at-
tributed to pruning techniques that alleviate the complexity
of the exhaustive backup step of the original MBDP algo-
rithm. Despite these improvements, state-of-the-art algo-
rithms can still handle a relative small pool of candidate
policies, which limits the quality of the solution in some
benchmark problems. We present a new algorithm, Point-
Based Policy Generation, which avoids altogether searching
the entire joint policy space. The key observation is that
the best joint policy for each reachable belief state can be
constructed directly, instead of producing first a large set
of candidates. We also provide an efficient approximate im-
plementation of this operation. The experimental results
show that our solution technique improves the performance
significantly in terms of both runtime and solution quality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence and coordination, Multi-agent systems

General Terms
Algorithms, Experimentation, Performance

Keywords
Teamwork, Coordination, Multi-Agent Planning, Decision-
Theoretic Planning, Decentralized POMDPs

1. INTRODUCTION
Cooperative multi-agent decision making arises naturally

in many real-world applications such as cooperative robots,
planetary exploration, distributed sensor networks, and dis-
aster response. These problems are difficult or impossible
to solve using centralized decision making frameworks. In
the RoboCup domain, for example, a group of robots with
noisy sensors and inaccurate actuators must cooperate with
each other to play soccer and win the game. With only
partial view of the environment, each robot must reason
about the choices of the others and how they may affect
the environment. There are many sources of uncertainty in

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

this problem and the state space is very large. Developing
decision-theoretic techniques that can cope with this com-
plexity is thus an important challenge.

The Markov decision process (MDP) and its partially ob-
servable counterpart (POMDP) have proved useful in plan-
ning and learning under uncertainty. A natural extension of
these models to cooperative multi-agent settings is provided
by the decentralized POMDP (DEC-POMDP) framework,
in which agents have different partial knowledge of the en-
vironment and other agents. The DEC-POMDP framework
is very expressive and can model many practical problems
including the ones mentioned above. Unfortunately, solv-
ing it optimally has been shown to be NEXP-complete [9].
Thus, optimal algorithms [5,14,18,19,26,27] can only solve
very small problems. In recent years, researches proposed
several approaches to improve the ability to solve larger
problems. Examples include algorithms that exploit the
structure of interaction in subclasses of DEC-POMDPs such
as Transition Independent DEC-MDPs (TI-DEC-MDPs) [6]
and Network Distributed POMDPs (ND-POMDPs) [17]. In
other efforts researchers managed to address the complexity
of the general model by considering communication explic-
itly [13, 15, 21]. However, not all real-world problems ex-
hibit the necessary independence conditions, and communi-
cation is often costly and sometimes unavailable in the case
of robots that operate underground or on other planets.

More general algorithms that compute approximate solu-
tions have shown great promise using either offline meth-
ods [2, 3, 10, 11, 16, 23, 24] or online techniques [12, 22, 29].
Online algorithms must often meet tight time-constraints
and the solution quality highly depends on the heuristics
they use. There has also been substantial work on solving
approximately DEC-POMDPs with infinite horizons [1,7,8].
In this paper, we focus on approximate offline algorithms for
finite-horizon DEC-POMDPs. Currently, the state-of-the-
art solution techniques still suffer from limited scalability.

The approach that is closest to our work is called Memory-
Bounded Dynamic Programming (MBDP) [24]. It combines
top-down and bottom-up components to build and optimize
policies. The top-down component is used to generate a set
of reachable belief states, usually guided by some heuristics.
The bottom-up dynamic programming component is then
used to build a set of possible policies based on the policies of
the previous step. At the end of each step, only the best poli-
cies for the reachable belief states are kept as the building
blocks for the next step. Since the number of policies kept
at each step is bounded by a parameter called maxTrees,
MBDP has a linear time and space complexity with respect
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to the horizon. However, the exhaustive backup that MBDP
uses to build a set of possible policies is very inefficient. Sev-
eral successor algorithms have been developed to alleviate
this problem by performing a partial backup with respect
to the observations, by focusing on the most likely observa-
tions in IMBDP [23] or compressing the set of observations
in MBDP-OC [10]. More recently, there have been several
moderately successful attempts to further improve the ex-
haustive backup. One example is PBIP [11] that replaces the
backup step with a branch-and-bound search in the space of
joint policies. Another example is IPG [3] that can prune
useless policies before actually generating them. While these
ideas have produced very significant computational savings,
the resulting algorithms can still handle a relative small pool
of candidate policies (measured by maxTrees). A small pool
of policies is sometimes sufficient to obtain near optimal re-
sults, but in other cases it leads to a significant loss of value.
Our goal in this paper is to introduce an algorithm that can
operate more efficiently with a significantly larger pool of
candidate policies. The objective is to produce better qual-
ity solutions much faster and to improve the overall scala-
bility of approximate DEC-POMDP algorithms in order to
solve large problems.

We present a new algorithm called Point-Based Policy
Generation for DEC-POMDPs, which combines more ef-
ficiently the top-down and bottom-up components of the
MBDP family of algorithms. MBDP produces a bounded
pool of policies that are optimized with respect to a set of
reachable belief states. The key observation behind the de-
velopment of the new algorithm is that the best policy for
each reachable belief state can be constructed directly, in-
stead of producing first a large set of candidates. Thus, we
first construct the joint policies based on a given belief state
and each joint action, then select the best one for the given
belief point. Consequently, we avoid altogether performing
backup for all possible policies or searching over the entire
joint policy space. We prove that when performed optimally,
our procedure is equivalent to what MBDP does, resulting
in the same policy value. We also provide an approximate
implementation of this procedure that can solve the problem
efficiently–much faster than the optimal version. The exper-
imental results show that our solution technique works well.
It significantly improves the performance of existing algo-
rithms in terms of both runtime and solution quality over
several DEC-POMDP benchmark problems.

The rest of the paper is organized as follows. We first in-
troduce the DEC-POMDP model and the MBDP family of
algorithms. Then we describe the main algorithm and ana-
lyze its properties. We then present and discuss the approx-
imation technique. Finally, we examine the performance of
the algorithm on several benchmark problems and demon-
strate its efficiency. We conclude with a summary of the
contributions and future work.

2. DECENTRALIZED POMDPS
We adopt here the DEC-POMDP framework and nota-

tion [9], however our approach and results apply to equiva-
lent models such as MTDP [21] and POIPSG [20].

Definition 1. A finite-horizon Decentralized Partially Ob-
servable Markov Decision Process (DEC-POMDP) is defined
as a tuple 〈I, S, {Ai}, {Ωi}, P, O, R, b0〉 where

• I is a finite set of agents indexed 1, · · · , n.

Agent 1 Agent 2

a1

a2

a1

a1

a2

a1

a2

a1

a2

a1

a2

a1 a2 a2

o1

o1

o1 o1

o1

o1o2

o2

o2

o2

o2 o2

Figure 1: Example of a joint policy for 2 agents.

• S is a finite set of system states.

• Ai is a finite set of actions available to agent i and
~A = ×i∈IAi is the set of joint actions, where
~a = 〈a1, · · · , an〉 denotes a joint action.

• Ωi is a finite set of observations available to agent i
and ~Ω = ×i∈IΩi is the set of joint observations, where
~o = 〈o1, · · · , on〉 denotes a joint observation.

• P is a Markovian state transition table. P (s′|s,~a) de-
notes the probability that taking joint action ~a in state
s results in a transition to state s′.

• O is a table of observation probabilities. O(~o|s′,~a)
denotes the probability of observing joint observation
~o after taking joint action ~a and reaching state s′.

• R : S × ~A → < is a reward function. R(s,~a) denotes
the reward value obtained from taking a joint action ~a
in state s.

• b0 ∈ ∆(S) is the initial belief state distribution.

In this paper we focus on the general DEC-POMDP prob-
lem with a finite horizon T and start state distribution b0.
Solving this problem can be seen as finding policies that
maximize the expected joint reward for b0 over T . While
execution is inherently distributed, planning is performed
offline and can be centralized.

In DEC-POMDPs, the policy of an agent is represented
as a tree and a joint policy as a vector of trees, one for each
agent. As shown in Figure 1, each node of the policy tree
is labeled by an action to take and each edge is labeled by
an observation that may occur. This continues until the
horizon T is reached at the leaf nodes. When executing a
policy tree at runtime, the agent follows a path from the
root to a leaf depending on the observations it receives as it
performs the actions at the nodes. The value function of a
joint policy ~q t+1 is defined recursively as follows:

V t+1(~q t+1, s) = R(s,~a)+
∑
s′,~o

P (s′|s,~a)O(~o|s′,~a)V t(~q t
~o , s′) (1)

where ~a is the joint action at the root nodes of ~q t+1 and ~q t
~o

is the joint subtree of ~q t+1 after ~o is observed. The belief
state used in this paper is a probability distribution over
states b ∈ ∆(S). The value of a joint policy ~q for a belief
state b is defined as V (~q, b) =

∑
s∈S b(s)V (~q, s). A survey of

the DEC-POMDP model and algorithms is available in [25].

3. MBDP AND ITS SUCCESSORS
Memory-Bounded Dynamic Programming (MBDP) [24]

was the first algorithm to combine top-down and bottom-up
solution techniques for DEC-POMDPs. In this section we
describe previous work on MBDP and its successors, which
are the best existing solution techniques for finite-horizon
DEC-POMDPs. In MBDP, policies are constructed incre-
mentally using bottom-up dynamic programming. A param-
eter, maxTrees, is chosen to ensure that a full backup with
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Algorithm 1: The MBDP Algorithm

~Q1 ← initialize all 1-step policy trees

for t = 1 to T − 1 do

~Q′t+1 ← perform full backup on ~Qt

~Q′t+1 ← prune dominated policies in ~Q′t+1

~Qt+1 ← {}
for k = 1 to maxTrees do

b← generate a belief using a heuristic portfolio

~q ← select the best joint policy in ~Q′t+1
for b

~Qt+1 ← ~Qt+1 ∪ { ~q }

return the best joint policy in ~QT for b0

this number of policies for the current step does not exceed
the available memory. At each iteration, a full backup of
the policies from the last iteration is performed. Then, top-
down heuristics are selected from the portfolio to compute a
set of reachable belief states. Finally, the best joint policies
for these belief states are added to the new sets of policies.
After the T th backup, the best joint policy for the initial be-
lief state is returned. The best joint policy is a joint policy
with the highest value for a certain belief point. The main
procedure is shown in Algorithm 1.

3.1 Backup Operations
The original MBDP uses exhaustive backups (or full back-

ups) to construct policy trees. This operation generates ev-
ery possible depth-t+1 policy tree for each action and each
possible observation to the root node of some depth-t policy
tree. If an agent has |Qi| depth-t policy trees, |Ai| actions,

and |Ωi| observations, there will be |Ai||Qi||Ωi| depth-t+1
policy trees. This is inefficient because the number of possi-
ble depth-t+1 policy trees is still exponential in the size of
the observation space. Thus, an improved version of MBDP
(IMBDP) [23] was introduced to use partial backups. It first
identifies the set of most likely observations for every agent
bounded by a predefined number of observations maxObs,
and then performs a backup with only these observations
for each agent. The missing observation branches are filled
up by using local search. Another approach to this prob-
lem is implemented in MBDP with observation compression
(MBDP-OC) [10]. Instead of ignoring observations that are
less probable, MBDP-OC merges certain sets of observations
guided by the value lost. It seeks to reduce the exponential
generation of new policies by forcing different branches of
the new root policies to contain the same subtrees. The ob-
servation branches are merged so as to minimize the loss of
value. Although the methods above can alleviate the com-
plexity of the one-step backup operation, they are still time-
consuming. We show in this paper that there is much to be
gained if the bottom-up policy construction considers the
reachable belief states generated by the top-down heuristics
from the very beginning. The reason is that only the best
policy trees for the reachable belief states are kept at the
end of each iteration and most of them are useless.

3.2 Pruning Techniques
In order to reduce the the number of policy trees, the

MBDP algorithm does pruning by using iterated elimina-
tion of dominated policies after each backup. A policy tree
is dominated if for every possible belief state there is at
least one other policy tree which is as good as or better
than it. This test for dominance is performed using a lin-
ear program. Removing a dominated policy tree does not
reduce the value of the optimal joint policy. Unfortunately,
even with this pruning technique, the number of policy trees
still grows quickly. To alleviate this problem, a new ap-
proach called point-based incremental pruning (PBIP) [11]
was proposed, which uses branch-and-bound search in the
space of joint policy trees instead. PBIP computes upper
and lower bounds on the partial depth-t+1 joint policy trees
using heuristics, and prunes dominated trees at earlier con-
struction stages. The bounds are calculated by considering
the belief states and the depth-t policy trees. PBIP prunes
depth-t+1 policy trees that are outside the upper and lower
bounds, but it does not exploit the reachability of policies.

3.3 Reachability Analysis
Recently, a new method called incremental policy gener-

ation (IPG) [3] was proposed to generate policies based on
a state space reachability analysis. Intuitively, the action
taken and observation seen may limit the possible next states
no matter what actions the other agents perform. This al-
lows only policies that are useful for some possible states to
be retained. This approach may generate a smaller num-
ber of policies without losing value. It first generates all
possible sets of depth-t trees for each observation with a
fixed action, one for each agent. Then, it creates all possible
depth-t+1 trees that begin with the fixed action followed by
choosing any trees from the depth-t set after an observation
is obtained. Once all depth-t+1 trees for each action are
generated, it takes the union of the sets and produces the
set of depth-t+1 trees. This approach can be incorporated
with any DEC-POMDP algorithm that performs dynamic
programming backups. While it exploits the state space
reachability, this approach does not consider the reachable
belief states generated by the top-down heuristics.

4. POINT-BASED POLICY GENERATION
As mentioned above, a better way to perform the bottom-

up dynamic programming step is to construct the best joint
policy for each belief state only–avoiding either full or partial
backups. In this section, we propose a new method which
generates directly the best joint policy for each belief state,
namely Point-Based Policy Generation (PBPG).

4.1 Problem Formulation
Given a belief state b, the basic idea is as follow: for every

joint action ~a, we first find the best sub-policy trees for every
possible observation branch after taking action ~a; then, we
choose the best joint action for b and build the best joint
policy. Formally, this problem can be defined as follow:

Definition 2. Given a belief state b, a joint action ~a, depth-
t policy tree sets ~Qt = 〈Qt

1, Q
t
2, · · · , Qt

n〉 and a value function

V t : ~Qt × S → <, find mappings δi : Ωi → Qt
i,∀i ∈ I which

maximize the depth-t+1 value function

V t+1(~a, b) = R(~a, b) +
∑
s′,~o

Pr(~o, s′|~a, b)V t(~δ(~o), s′) (2)
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Figure 2: Example of the policy-tree construction process for two agents with two observations: (1) shows
the input, which includes a belief state b, a joint action 〈a1, a2〉, and sets of depth-t policy trees represented
by the triangles; (2) shows the best mappings for the given belief state and joint action from each observation
to a depth-t policy tree; (3) shows a joint policy tree built using the mappings.

where ~δ(~o) = 〈δ1(o1), δ2(o2), · · · , δn(on)〉 = 〈qt
1, q

t
2, · · · , qt

n〉,
the probability Pr(~o, s′|~a, b) = O(~o|s′,~a)

∑
s P (s′|s,~a)b(s),

and the reward function R(~a, b) =
∑

s b(s)R(s,~a).

This problem is essentially a subtree selection problem,
where the goal is to choose depth-t subtrees in response
to observations to maximize the depth-t+1 value function
(Equation 2). However, the subtrees must be chosen in a de-
centralized manner. That is, subtree qt

i is chosen based only
on an observation of oi for agent i. Our goal is to choose
mappings or selection rules δi : Ωi → Qt

i,∀i ∈ I to maximize
the depth-t+1 value function and build the best depth-t+1
policy trees given the belief b and the joint action ~a.

With the joint action ~a and the best mappings δi,∀i ∈ I,
it is quite straightforward to construct the depth-t+1 policy
trees. For agent i, the depth-t+1 policy tree can be built
by using ai as the root node and assigning the sub-policies
for each observation branch based on δi. Figure 2 shows
an example of the construction process with the resulting
mappings δ1 : o1 → q3, o2 → q1 for agent 1 and δ2 : o1 →
q2, o2 → q3 for agent 2. After the joint policy trees for b
and every joint action are generated, we can find the best
joint policy for the belief state b by choosing the one with
the root nodes of ~a * = 〈a∗1, · · · , a∗n〉 computed as follows:

~a * = arg max~a∈ ~A V t+1(~a, b) (3)

Proposition 1. For a given belief state b, the joint policy
chosen by the method mentioned above yields the same value
as the one selected by the MBDP algorithm.

Proof. Note that the depth-1 policy trees for both meth-
ods are the same with a single node of every possible action.
Assume that the depth-t policy trees for both methods are
also the same. For a belief state b, the MBDP algorithm
first generates all possible depth-t+1 policy trees by exhaus-
tive backup of the depth-t policies and then selects the joint
policy ~q *t+1 which maximizes the value function

V t+1(~q *t+1, b) =
∑

s∈S
b(s)V t+1(~q *t+1, s) (4)

where V t+1(~q *t+1, s) is computed by Equation 1. The method
described above first constructs a set of joint policy trees
which maximize Equation 2 for every possible joint action
and then chooses the joint policy with the joint action com-

puted by Equation 3. Generally, we have

V t+1(~q *t+1, b)=
∑
s

b(s)[R(s,~a) +
∑
s′,~o

P (s′|s,~a) ·

O(~o|s′,~a)V t(~q t
~o , s′)] Eq.4

=
∑
s

b(s)R(s,~a) +
∑
s′,~o

[O(~o|s′,~a) ·∑
s

P (s′|s,~a)b(s)]V t(~q t
~o , s′)

=R(~a, b) +
∑
s′,~o

Pr(~o, s′|~a, b)V t(~q t
~o , s′) Eq.2

=V t+1(~a, b)

where ~a is the root nodes of ~q *t+1 and ~q t
~o is the sub-policy

trees of ~q *t+1 for observation branches ~o.
Thus, the joint policies selected by both methods yield the

same value for belief state b at depth-t+1. Therefore, the
proposition holds for every depth by induction.

4.2 Approximate Solution
The key question is how to compute the best mappings

δi,∀i ∈ I. Note that the number of possible mappings
is (|Qt

i||Ωi|)|I| for a fixed joint action ~a. Therefore, the
straightforward way to enumerate all possible mappings is
very inefficient. Actually, this problem is equivalent to the
decentralized decision making problem studied by Tsitsiklis
and Athans, which has been proved to be NP-hard even for
two agents [28]. In this paper, we propose an efficient ap-
proximate method which solves the problem using a linear
program and produces suboptimal solutions.

The approximation technique uses stochastic mappings in-
stead of deterministic ones. They are defined as follows:

πi : Ωi ×Qt
i → <,∀i ∈ I.

That is, πi(q
t
i |oi) is a probability distribution of subtrees qi,

given observation oi for agent i. Similar to ~δ, we denote the
joint stochastic mapping ~π = 〈π1, π2, · · · , πn〉. Note that
given b and ~a, R(~a, b) is a constant in Equation 2. There-
fore, maximizing Equation 2 is equivalent to maximizing the
following function:

V t+1(~δ, b) =
∑
s′,~o

Pr(~o, s′|~a, b)V t(~δ(~o), s′) (5)

With the stochastic mappings, Equation 5 can be rewritten
as follows:

V t+1(~π, b) =
∑
s′,~o

Pr(~o, s′|~a, b)
∑
~q t

∏
i

πi(q
t
i |oi)V

t(~q t, s′) (6)
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Table 1: The linear program for optimizing πi

Variables: ε, π′
i(q

t
i |oi)

Objective: maximize ε
Subject to:

Improvement constraint:
V t+1(~π, b) + ε ≤

∑
s′,~o Pr(~o, s′|~a, b)

∑
~q π′

i(q
t
i |oi) ·

π-i(q
t
-i|o-i)V t(~q t, s′)

Probability constraints:
∀oi ∈ Ωi,

∑
qt

i∈Qt
i
π′

i(q
t
i |oi) = 1;

∀oi ∈ Ωi, q
t
i ∈ Qt

i, π
′
i(q

t
i |oi) ≥ 0.

There are multiple ways to solve Equation 6 and calculate
the solution πi,∀i ∈ I. Our approximate method com-
putes a suboptimal solution by choosing initial parameters
for πi,∀i ∈ I and iteratively optimizing the parameters of
one agent while leaving the parameters of the other agents
fixed, until no improvement is obtained. This process always
terminates after a finite number of iterations if a threshold
of minimum improvement is set. The suboptimal solution
computed in this way can be considered analogous to a Nash
equilibrium where no agent can benefit unilaterally.

To start, each local stochastic mapping πi, i ∈ I is initial-
ized to be deterministic, by selecting a random qt

i ∈ Qt
i with

a uniform distribution. Then, each agent is selected in turn
and its policy is improved while keeping the other agents’
policies fixed. This is done for agent i by finding the best
parameters π′

i(q
t
i |oi) satisfying the following inequality:

V t+1(~π, b) ≤
∑

s′,~o,~q t

Pr(~o, s′|~a, b)π′
i(q

t
i |oi)π-i(q

t
-i|o-i)V

t(~q t, s′)

where π-i(q
t
-i|o-i) =

∏
k 6=i πk(qt

k|ok).
The linear program shown in Table 1 is used to find the

new parameters. The procedure terminates and returns ~π
when ε becomes sufficiently small for all agents. Random
restarts are used to avoid local maxima.

4.3 The PBPG Algorithm
Once the stochastic mapping πi is computed for agent i,

qt
i is selected for observation branch oi according to the dis-

tribution πi(q
t
i |oi). The main steps of PBPG are shown in

Algorithm 2. The number of joint policy trees generated
at each iteration is bounded by (| ~A|maxTrees), much less

than (|Ai|maxTrees|Ωi|)|I| produced by the full backup in
the original MBDP. It is worth pointing out that the pol-
icy evaluation is very time-consuming and can easily run
out of memory, especially for large problems. It computes
the value for every joint policy at every state as shown in
Equation 1. Note that the number of joint policies actually
evaluated here is (| ~A|maxTrees+maxTrees|I|), not the to-

tal enumeration (|Ai|maxTrees)|I|. We evaluate the joint
policy for each joint action and prune the dominated ones
at an early stage. This makes the algorithm more efficient.
Efficiency can also be improved by exploiting the sparsity of
the transition matrix, observation matrix and belief vector,
which often have many zero elements. This property can be
used to solve the necessary equations more quickly.

We also use a heuristic portfolio to generate the belief b
at the beginning of each iteration, just as MBDP does. A
heuristic portfolio is a set of heuristics which can be used
to compute a set of belief states. Each heuristic is used to
select a subset of the policy trees. In our implementation,
we use two types of heuristics: the MDP heuristic and the

Algorithm 2: Point-Based Policy Generation

T ← horizon of the DEC-POMDP model

maxTrees← max number of trees at each step
~Q1 ← initialize and evaluate all 1-step policy trees

for t = 1 to T − 1 do
~Qt+1 ← {}
for k = 1 to maxTrees do

b← generate a belief using a heuristic portfolio

ν∗ ← −∞
for ~a ∈ ~A do

~π*← compute the best mappings with b,~a

~q ← build a joint policy tree based on ~a, ~π*

ν ← evaluate ~q by given the belief state b

if ν > ν∗ then ~q *← ~q, ν∗ ← ν

~Qt+1 ← ~Qt+1 ∪ {~q *}
evaluate every joint policy in ~Qt+1 with Equation 1

~q *T ← select the best joint policy from ~QT for b0

return ~q* T

random heuristic. The MDP heuristic is based on solving
the underlying MDP in a centralized manner and executing
the resulting policy to create sample belief states. The ran-
dom heuristic produces random reachable belief points using
random policies. Sometimes, several belief points select the
same policy tree because the sampled beliefs are quite close
to each other. When that happens, we re-sample to generate
different belief points. Unlike MBDP, it is not necessary to
run our algorithm recursively to obtain good results. The
experimental results show significant improvement over all
the existing algorithms simply by using a portfolio contain-
ing the above two simple heuristics in our algorithm.

4.4 Summary and Discussion
To summarize, MBDP does an exhaustive backup for all

depth-t policy trees before selecting a joint policy for each
belief state. IMBDP ignores less-likely observation branches
and MBDP-OC merges observations while minimizing the
loss of value. PBIP prunes depth-t+1 policy trees using
upper and lower bounds at the early stage, and IPG limits
the number of depth-t policies using state reachability.

Unlike these existing algorithms, which try to improve the
performance of the backup operation by limiting the num-
ber of observations or policies, we completely replace the
backup step with an efficient policy generation method. In-
stead of generating a large set of policy trees, our approach
constructs only a small set of possible candidates for each
belief state using an efficient linear program. The number
of policy trees generated for each belief state is bounded by
the number of joint actions.

It is possible to incorporate previously developed meth-
ods with our algorithm, particularly observation compres-
sion and incremental policy generation, to further improve
its performance. Merging equivalent observations and limit-
ing the size of possible subtrees can immediately reduce the
number of variables in the linear program and improve its
scalability. Implementing these improvements, however, is
beyond the scope of the paper and is left for future work.

5. EXPERIMENTAL EVALUATION
We tested our algorithm on the hardest existing bench-

mark problems. PBPG shares the same linear time and
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space properties of MBDP with respect to the horizon. There-
fore, our experiments focus mainly on scalability with re-
spect to maxTrees, and the value gains that result from
increasing maxTrees. We compared our results mainly to
PBIP-IPG [3] – the latest algorithm, which has outper-
formed the other existing algorithms such as MBDP, IMBDP,
MBDP-OC and PBIP. The purpose of these experiments is
to show that our algorithm can solve problems with a much
larger number of maxTrees with good runtime and solution
quality. Actually, the maxTrees parameter presents a good
way to tradeoff between runtime and solution quality, and it
makes it possible to design a contract anytime algorithm for
DEC-POMDPs [30]. The experiments with different values
of maxTrees illustrate the advantage of our algorithm as a
contract algorithm.

5.1 Experimental Setting
In the experiments, we use two types of heuristics – the

random policy heuristic and the MDP policy heuristic. With
the random policy heuristic, the agents act randomly top-
down to the current step and sample a set of belief states.
With the MDP policy heuristic, the agents act according to
a pre-computed MDP policy of the model. For the fairness
of comparison, we used the same heuristic portfolio as the
first recursion of other MBDP-based algorithms (MDP: 45%,
Random: 55%). They run recursively using the complete so-
lution of the previous recursion as a new part of the heuristic
portfolio for the next run. However, as we demonstrate be-
low, the quality of results produced by our algorithm could
be further improved by using a better heuristic portfolio.

We performed re-sampling up to 10 times if the sizes of
both agents’ policies were less than maxTrees. Due to the
randomness of the sampling, we ran the algorithm 10 times
per problem and reported the average runtime and value.
All timing results are CPU times with a resolution of 0.01
second. Many of the parameter settings we used are too
large for PBIP-IPG to be able to produce an answer with a
reasonable amount of time. An “x” in Table 2 means that
the algorithm cannot solve the problem within 12 hours.
As a reference, we also provide for each test problem an
upper bound on the value based on solving the underlying
full-observable MDP (VMDP ). Notice that this is a loose
bound [18]. When the results we obtain are close to this
value, we can be sure that they are near optimal. But when
there is a big difference, it is not possible to know how close
to optimal we are. PBPG was implemented in Java 1.5
and ran on a Mac OSX machine with 2.8GHz Quad-Core
Intel Xeon CPU and 2GB of RAM available for JVM. Linear
programs were solved using lp solve 5.5 1.

5.2 Test Problems and Results
The Meeting in a 3×3 Grid domain [8] is a classical bench-

mark for DEC-POMDP algorithms. In this domain, two
robots navigate on a grid world and try to stay as much
time as possible in the same grid location. We adopted the
version of the problem used by Amato et al. [3], which has 81
states, 5 actions and 9 observations per robot. As shown in
Table 2, our algorithm took much less time than PBIP-IPG
with the same number of maxTrees and got competitive val-
ues. Even with a relatively large number of maxTrees, e.g.
maxTrees=20, our algorithm still ran faster than PBIP-IPG
with maxTrees=3 and produced better value as expected.

1http://lpsolve.sourceforge.net/5.5/

Table 2: Experimental Results (10 trials)

maxT rees
PBIP-IPG PBPG

Time Value Time Value

Meeting in a 3×3 Grid, |S| = 81, |O| = 9, T = 100

3 3084s 92.12 27.21s 87.01

10 x x 201.50s 93.46

20 x x 799.90s 93.90

50 x x 8345.13s 94.79

100 x x 52231.85s 95.42

VMDP = 96.08

Cooperative Box Pushing, |S| = 100, |O| = 5, T = 100

3 181s 598.40 11.34s 552.79

10 x x 69.12s 715.95

20 x x 287.42s 815.72

50 x x 2935.24s 931.43

100 x x 19945.56s 995.50

VMDP = 1658.25

Stochastic Mars Rover, |S| = 256, |O| = 8, T = 20

3 14947s 37.81 12.47s 41.28

10 x x 59.97s 44.30

20 x x 199.45s 45.48

50 x x 987.13s 47.15

100 x x 5830.07s 48.41

VMDP = 65.11

Grid Soccer 2×3, |S| = 3843, |O| = 11, T = 20

3 x x 10986.79s 386.53

VMDP = 388.65

PBPG could solve this problem with maxTrees=100 while
PBIP-IPG ran out of time with maxTrees ≥ 10. Note that
this problem has 9 observations, which makes it more diffi-
cult to solve than the following two benchmark problems.
The result for maxTrees=100 was actually near-optimal
considering the loose upper bound VMDP .

The Cooperative Box Pushing problem [23] is another
common benchmark problem for DEC-POMDPs. In this
domain, two agents are pushing three boxes (1 large and
2 small) in a 3×4 grid. The agents will get a very high
reward if they cooperatively push the large box into the
goal area together. This domain has 100 states and each
agent has 4 actions and 5 observations. The results have
been shown in Table 2. With maxTrees=3, our algorithm
ran ten times faster than PBIP-IPG but got competitive
value. As the number of maxTrees increases, the solution
became better as expected. In the experiments, we observed
that with maxTrees=100, 99% of the iterations would do
re-sampling about 10 times. It means that the heuristic
portfolio has reached its limit to construct different policy
trees when maxTrees=100. The frequent re-sampling in
this case contributed to an increase in the runtime of PBPG.
It is quite likely that 999.53, the highest value we got with
maxTrees=100 in these experiments, is quite close to the
optimal value for this problem with horizon 100.

The Stochastic Mars Rover problem [4] is a larger domain
with 256 states, 6 actions and 8 observations for each agent.
The runtime of PBIP-IPG is substantially larger than in the
previous benchmarks due to the larger state space. We used
in these experiments T=20 because it takes too much time
for PBIP-IPG to solve problems with T=100. The horizon
we used is the same as in the original PBIP-IPG paper [4]. In
contrast, our algorithm scales better over the state space as
well as the action and observation spaces. Surprisingly, our
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Figure 3: Value vs. Runtime for Cooperative Box
Pushing with T=10. In these experiments, different
algorithms used different numbers of maxTrees.

algorithm can solve this problem rather quickly. Compared
with the results in the Cooperative Box Pushing domain,
runtime did not grow up substantially despite the fact that
there are twice as many states. The main reason is that
the transition and observation matrixes of this problem are
quite sparse. Our algorithm with maxTrees=100 is still
faster than PBIP-IPG with maxTrees=3. Again, the larger
number of maxTrees helps produce better solutions.

To test scalability, we also tried a more challenging prob-
lem introduced in [29], namely Grid Soccer 2×3. This prob-
lem has 3843 states, 6 actions and 11 observations. Cur-
rently, this problem can only be solved approximately by
online algorithms. This is the first time that a problem of
this size is solved successfully by an offline algorithm. Al-
though online algorithms are generally very fast, offline al-
gorithms can often provide higher solution quality. Besides,
online algorithms often require the ability to communicate
at runtime, which may be very costly or impossible in some
domains. Offline algorithms have the added advantage of
producing a coordinated joint policy prior to execution, re-
ducing the need to communicate. In fact, our algorithm
could get a value of 386.53 without any communication,
which is near optimal. In comparison, the leading online al-
gorithm called MAOP-COMM can only produce a value of
290.6 (without considering the cost of communication) while
using communication 14.8% of the time on average [29].

The parameter maxTrees does not only limit the usage
of memory but also provides a tradeoff between the solu-
tion quality and runtime. Intuitively, an algorithm with
larger maxTrees will produce better value but also take
longer time to execute. In our experiments, we tried differ-
ent maxTrees and recoded the runtime and value of each
algorithm for the Cooperative Box Pushing domain with
T=10. As shown in Figure 3, our algorithm got better value
by given the same amount of time. Notice that the MDP up-
per bound [18] (VMDP ) of this problem with T=10 is 175.13.
Thus, our algorithm performs quite well with respect to the
value of the solutions. It is worth pointing out that all the
algorithms we compared have linear time and space com-
plexity with respect to the horizon. We chose a short hori-
zon (T=10) here to make it possible for the other algorithms
to solve the problem with different maxTrees (1 to 8 as we
tested, runtime >200s is not shown) in a reasonable amount
of time; otherwise, they would run out of time very quickly.

In Figure 4 we show the results for the Cooperative Box
Pushing problem with different heuristic portfolios. The
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Figure 4: Values with different heuristic portfo-
lios for the Cooperative Box Pushing problem with
T=100, maxTrees=3. The composition of the port-
folio changes gradually from the MDP heuristic only
(left) to the random heuristic only (right).

x-coordinate indicates the frequency in which the random
heuristic is used. The leftmost point (0) indicates that the
random heuristic is not used at all and the MDP heuristic is
used all the time. The rightmost point (1) indicates that the
random heuristic is used all the time and the MDP heuristic
is not used at all. We can see that the best heuristic port-
folio for this domain is obtained at x=0.3. That is, the best
results are obtained when 30% of the policies are selected us-
ing the random heuristic, and 70% using the MDP heuristic.
The default portfolio used in the main experiments is (MDP:
45%, Random: 55%), which is also the portfolio used by the
first recursion of other MBDP-based algorithms. Therefore,
we could actually further improve the performance in Ta-
ble 2 by using a better heuristic portfolio.

6. CONCLUSIONS
We present the point-based policy generation algorithm

for finite-horizon DEC-POMDPs. Similar to previous MBDP-
based algorithms, it also combines top-down heuristics and
bottom-up dynamic programming to construct joint policy
trees for an initial belief state. Our approach also uses the
parameter maxTrees to limit the usage of memory, thus
it shares the same linear time and space complexity with
respect to the horizon. The main contribution is a new
point-based policy generation technique that builds the joint
policies directly at each iteration, instead of performing a
complex backup operation. By using this technique, many
more policy trees can be kept as building blocks for the next
iteration compared to the state-of-the-art algorithms. With
a larger number of candidate subtrees, the solution quality
can be further improved. Even when used with the same
number of maxTrees, our algorithm runs orders of magni-
tude faster and produces competitive values in all the do-
mains we tested. One important characteristic of the new
algorithm is that it scales better over the state space and it
can solve larger problems than currently possible with exist-
ing offline techniques. The experimental results show that
the new PBPG algorithm significantly outperforms all the
state-of-the-art algorithms in all the domains we tested.

In future work, we plan to incorporate other general meth-
ods such as observation compression and state reachabil-
ity analysis into our algorithm to solve even larger prob-
lems. Currently, one limitation of our algorithm is that ev-

29



ery joint observation must be considered in order to model
the problem as several linear programs. For some prob-
lems with large observation sets, additional techniques will
have to be employed to further improve scalability. We are
also investigating ways to learn the best heuristic portfo-
lio automatically for different domains. The algorithm pro-
posed in this paper eliminates much of the time- and space-
consuming backup operation and opens up new research di-
rections for developing effective approximation algorithms
for multi-agent planning under uncertainty.
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ABSTRACT
In this paper, we study a particular subclass of partially observable
models, called quasi-deterministic partially observable Markov de-
cision processes (QDET-POMDPs), characterized by deterministic
transitions and stochastic observations. While this framework does
not model the same general problems as POMDPs, they still cap-
ture a number of interesting and challenging problems and have, in
some cases, interesting properties. By studying the observability
available in this subclass, we suggest that QDET-POMDPs may fall
many steps in the complexity hierarchy. An extension of this frame-
work to the decentralized case also reveals a subclass of numerous
problems that can be approximated in polynomial space. Finally,
a sketch of ε-optimal algorithms for these classes of problems is
given and empirically evaluated.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI—Multiagent sys-
tems; G.3 [Mathematics of Computing]: Probability and statis-
tics—Markov processes

General Terms
Design, Experimentation

Keywords
partial observability, determinism, coordination

1. INTRODUCTION
AI planning was initially conceived as a deterministic problem

where a sequence of actions has to be decided in order to achieve a
goal state with desirable values from an original state. This problem
was thoroughly studied in AI with important contributions as A?,
GRAPHPLAN, and others [13].

However, this deterministic model has strong limitations on the
type of problem that can be represented. Thus, one cannot represent
situations where actions have non-deterministic outcomes or where
states are not completely observable. In such cases, one must resort
to Markov Decisions Processes (MDPs [15]) when the state is fully
observable and Partially Observable Markov Decisions Processes
(POMDPs [6]) otherwise. However, with this expressiveness comes
an increase of complexity, specially for POMDPs, and thus this gain
in generality involves a cost in the ability to solve the final problem.
For instance, POMDPs offer one of the most expressive frameworks

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

and are thus widely used for sequential decision making under par-
tial observability [11], but the current known algorithms scale very
poorly as the planning horizon grows. This reality is even more
true in a decentralized setting where each agent has to anticipate
every possible past and future of other agents.

Indeed, a major difficulty of decision-theoretic domains mainly
depends on the definition of observability of agents in the prob-
lem. For example, considering the different markovian models
(MDPs, POMDPs) and their various cooperative multiagent exten-
sions (MMDPs [5], MTDP [17], DEC-POMDPs [3]), the difference
between fully and partially observable models truly shows the ex-
ponential increase in worst-case complexity.

Nevertheless, numbers of problems that involve partial observ-
ability have a common characteristic: they have actions with de-
terministic outcomes and the observation generated is also deter-
ministic. Indeed, these problems have recently been used in many
proposals for planning with incomplete information, e.g. [14], and
are used for learning partially observable models [1].

These models were briefly discussed in [12], under the name
of deterministic POMDPs (DET-POMDPs) for which some impor-
tant theoretical results were obtained. Littman first showed that
a DET-POMDP can be mapped into an MDP with an exponential
number of states and then be solved with standard algorithms for
MDPs. Second, he showed that optimal non-stationary policies of
polynomial size can be computed in non-deterministic polynomial
time and finally that optimal stationary policies can be computed
in polynomial space. Since then, up to our knowledge, no paper
was published on this subject except [4] that extends these results
by defining a specific subclass of DET-POMDPs, that have the so-
called polynomial diameter property, that can be solved in non-
deterministic polynomial time. Bonet also linked the DET-POMDP
framework to the AND/OR tree search algorithms, arguing that
this type of algorithm is more efficient than standard POMDP algo-
rithms for this subclass of POMDPs.

Given this role of DET-POMDPs in recent research and moti-
vated by the quest of amenable models for decision making un-
der partial observability, we extend the work of Littman and Bonet
in order to bridge a part of the gap between DET-POMDPs and
POMDPs, by studying the subclass of POMDPs with deterministic
transitions by actions and particular stochastic observations. We
thus present a specific subclass of widely used POMDPs, called
quasi-DET-POMDPs (QDET-POMDPs) and two particular subclasses
of partial observability. A theoretical analysis suggests that ε-ap-
proximating these subclasses falls many steps in complexity in the
polynomial hierarchy. We also extend these results to the multia-
gent case revealing a drastic improvement of the complexity in case
of decentralized decisions.

This paper is organized as follows. First, examples of challeng-
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ing problems are given (in the next section) that motivate our re-
search, as mono or multiagent problems. In Sect. 3, a formal defi-
nition of the models and the variants of observability are given. In
Sect. 4, main theoretical results are described and the complexity of
the subclass is presented for both mono and multiagent models in
Sect. 5. Finally, some experimental results are presented in Sect. 6
before discussing the significance of this work in Sect. 7.

2. EXAMPLES
Many problems have been modeled as POMDPs and DET-POMDPs

and had been used for developing and evaluating various algorithms
for planning under uncertainty and partial information. For space
reasons, we present only few examples of some problems that may
be modeled as a QDET-POMDP:

Diagnosis: The aim of diagnosis is to identify one of the m states
of a system (e.g. a patient) using n noisy binary tests. An
instance consists of a m× n stochastic matrix T where each
Tij represent the probability that test j is positive in the state
i. The goal is to find the sequence of tests that will identify
almost surely the state of the studied system [16]. In this
example, the model is quasi-deterministic since the transition
is deterministic (only one state) and observations are results
of each test and are thus stochastic.

Indoor Robot: Consider an indoor arm robot working on a supply
chain that moves boxes from one conveyor to another. Even
if its actuators are nearly deterministic, its captors of sur-
rounding activity may be noisy and may provide stochastic
observations. In this domain we may also want to coordinate
several robots and humans on complexe assembling tasks.

Fault Detection Consider a synthetic deterministic system that evol-
ves through the interaction of an agent (e.g. a coffee ma-
chine). The aim of the problem is to identify the sequence
of interactions that leads the system to fail while only receiv-
ing noisy or partial observations of its internal state. This
problem is also extendable at the case where multiple agents
interact at the same time with the system. Here again, transi-
tions are deterministic while observations are stochastic.

All of these problems can be modeled as QDET-POMDPs or QDET-
DEC-POMDPs. Let us now see the formal definition of the determin-
istic POMDP and its variants.

3. MODEL AND VARIANTS
Deterministic POMDPs were initially defined as follows [12]:

DEFINITION 1. A Deterministic Partially Observable Markov
Decision Process (DET-POMDP) is a tuple 〈S, A, Ω, T , O, R, γ,
b0〉, where:

• S is a finite set of states s ∈ S;

• A is the finite set of actions of the agent and a ∈ A, denotes
an action;

• Ω is the finite set of observations of the agent and z ∈ Ω,
denotes an observation;

• O(z, a, s′) : Ω×A×S 7→ {0, 1} is the deterministic obser-
vation function indicating wether or not the agent gets ob-
servation z when the world falls in state s′ after executing
action a;

• T (s, a, s′) : S × A × S 7→ {0, 1} is the deterministic tran-
sition function indicating wether or not making action a in
state s results in state s′;

• R(s, a) : S × A 7→ R is the reward perceived by the agent
when the world falls into state s after executing action a;

• γ is the discount factor;

• b0 is the a priori knowledge about the state, namely the ini-
tial belief state, assumed non-deterministic, i.e. where no
state has probability one.

Note that the initial belief state b0, which describes the different
possibilities for the initial state, is crucial. Indeed, if the initial state
were known, and since the transition function is deterministic, then
all the future states will also be known, and the DET-POMDP is
then reduced to the well studied problem of deterministic planning
in AI [13].

Compared to deterministic POMDPs, our proposed extended model
presents changes on the observability function, it is called Quasi-
deterministic Partially Observable Markov Decision Process and it
is defined as follows:

DEFINITION 2. A Quasi-deterministic Partially Observable Markov
Decision Process (QDET-POMDP) is a tuple 〈S, A, Ω, T , O, R,
γ, b0〉, where:

• S,A,Ω, T ,R, γ, b0 are the same as in Definition 1;

• O(z, a, s′) : Ω×A×S 7→ [0, 1] is the observation function
indicating the probability of getting observation z when the
world falls in s′ after executing a;
Moreover, ∀ s′ ∈ S, a ∈ A, ∃ z ∈ Ω, s.t. O(z, a, s′) >
θ > 1

2
, i.e. the probability of getting one of the observations

is lower bounded in each state by at least one half;

First, let us notice that θ is just a lower bound on the probability
of observing each state and thus can be eventually greater in some
states. Notice also that the planning horizon is not set a priori. This
is due – as we will see in Section 4 – to an interesting convergence
property of this model with some other assumptions to a very low
entropy belief state after a fixed number of steps.

Second, to handle the multiagent case in both definitions, simply
consider a set of agents where each agent i has its own action set
Ai and where the joint action set A is the product of all the agents’
action sets. The transition and the observation functions are then
just defined over the joint action set, and the condition on minimal
observability is defined for all joint action a in A.

However, assuming that all agents have the same observability
capacity (and hence the same observation space), and considering
that in a QDET-DEC-POMDP there exist a most likely observation
of the state whatever the chosen joint action is, in the same way
as in the monoagent case, only the study of the QDET-POMDP is
necessary from which we will extend to the multiagent case. For
the ease of explanations, we will thus restrain the theoretical study
to the monoagent case and then later in the paper, extend the results
to the multiagent case.

Let us now see the optimality criteria and the variants of these
models.

Optimality Criteria and Variants
As our goal is to compute a policy that permits an agent to perform
optimally, we consider the maxexp optimality criteria that maxi-
mizes the expected discounted reward of a policy. The value of a
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policy π is thus computed using:

Vπ(b0) = E
s∼b0

[
∞∑
t=0

γtR(st, π(st))
∣∣s0 = s, π

]
The considered variants of this model are related to the observa-

tion model as follows:

Unobservable models in which |Ω| = 1 and thus no information
is retrieved about the state. This class is a subclass of the
so-called conformant problem in planning [9].

Fully Observable models in which Ω = S and O(z, a, s′) =
1 iff z = s′. This class is exactly the classic fully ob-
servable MDPs where only the initial state is unknown (e.g.
qMDP [11]).

Non-unobservable models in which |Ω| > 1. This class is ex-
actly the complement of unobservable problems. Among this
class of problems, we distinguish:

Enough-observable models in which Ω = S. This class
regroups all the linear but noisy observation problems
where the state itself is perceived but with an additive
noise. This class regroups for example all control prob-
lems where the state is perceived through noisy sensors.

Factored-observable models in which |Ω| = |X | × |DX|.
Where X is the set of state variables and DX is the do-
main of variable X. The state space is then given by
S = ×X∈X DX. This class is similar to the previ-
ous one using additive noise but restricting the num-
ber of observations along the “dimensions” of the state
space. Indeed, as the state space is assumed structured,
the agent can use this structure to learn about at least
one dimension at each time step. The previous class is
equivalent to this class but with only one dimension.

General models which include previous cases, do not assume any-
thing on the observation function.

As the fully observable, the unobservable and the general cases
were extensively studied in the literature [13, 11], we will not con-
sider them in the remaining of the paper. However, the enough-
observable and the factored-observable cases present an interesting
avenue since many of the quasi-deterministic problems mentioned
earlier are very often factored or at least enough-observable.

We will show in the next section that these problems actually are
easier than the general problems by bounding the history needed
to identify the underlying state with high probability. Such bounds
will indeed induce a complexity reduction of the problem and we
will present this result in section 5.

4. THEORETICAL ANALYSIS
In this section, a lower bound on the number of steps to ensure

convergence to a certain belief is given.
As mentioned earlier in the paper, a way to represent compactly

the full history of observations during the planning process is the
belief state [20]. This is a probability distribution over the states
that represents the belief of the agent to be in each state through
probabilities. We denote by bt(s) = Pr(s|zt, at, bt−1) the proba-
bility of being in state s at step t given that observation zt was per-
ceived and action at was performed in the belief state bt−1. This
probability is computed using Bayes’ rule:

bt(s) =
O(zt, at, s)

∑
s′∈S T (s′, at, s)bt−1(s′)∑

s′′∈S O(zt, at, s′′)
∑
s′∈S T (s′, at, s′′)bt−1(s′)

(1)

Using a matrix representation, Equation (1) can be rewritten:

bk(s) =
DkTak · · ·D1Ta1b

0

1>DkTak · · ·D1Ta1b
0 (2)

Where b0 is the initial belief, Tat are transition matrices according
to action at, Di are diagonal matrices with the terms on the diago-
nal corresponding to the probability to observe zi given each state,
and 1 a |S|-dimensional vector of ones.

In order to show the convergence of the belief state to a single
state with high probability, let us first state that this probability de-
pends on the number n of succeeded observations among k steps
in a non-unobservable context. Nevertheless, non-unobservability
is not a sufficient condition to ensure this convergence. Let us now
study how n varies regarding to the proposed variants on the ob-
servability.

4.1 Enough-Observable models
Enough-observable models ensure that there is only one most

likely observation (MLO) in each state and that each state’s MLO is
not the MLO of any other state:

DEFINITION 3. An enough-observable QDET-POMDP is a QDET-
POMDP where following assumptions holds:

∃o1 ∈ Ω, ∀a ∈ A, ∀s ∈ So1 ,
with So1 = {s ∈ S, o1 ∈ Ω|P (o1|s, a) > P (o|s, a), ∀o 6= o1},
then |Ω| = |S| and |So1 | = 1

Here, So1 is the set of states where o1 is the MLO.
Considering this definition, one can state our first main result:

THEOREM 1. Under the enough-observability assumption,
bk(s) > 1− ε iff

n >
1

2 ln νθ
(1−θ)

ln

[
1− ε
ε

(
1 + ν1− k

2

)]
+
k

2
(3)

Where ν = maxs,a
∑
z∈Ω I(θ > O(z, a, s) > 0) < |Ω| the

maximum number of “bad” observations that can be perceived in
a state.

PROOF SKETCH. In the worst case, the probability of observing
the real underlying state is always minimal and equals to θ at each
step. Moreover, if the failed observations obtained always support
the second most likely state, it results in an increasing of the prob-
ability to potentially be in this state. According to Equation (2)
and using determinism of transitions, which induces that transition
matrices are permutation matrices, one must show that:

θn (1−θ)p
νp

θn (1−θ)p
νp

+ θp (1−θ)n
νn

+ (ν − 1) (1−θ)k
νk

> 1− ε (4)

Where n is the number of successful observations of the real under-
lying state and p = k − n the number of failures. The numerator
is obtained by obtaining n times a “good” observation and p times
a “bad” one during the execution. The denominator sum over all
states the same sequence of observation where the first term if for
the most likely state, the second term for the second most likely
state and the third term for the rest of possible states according to
the number of “bad” observations ν. We assume here that the prob-
ability to get a “bad” observation is uniform. This assumption is
justified by the maximum-entropy principle which states that ac-
cording to the current knowledge, the highest entropy distribution
– the uniform in our case – is the most appropriate one. Solving
this inequality leads to Equation (3). The extensive derivation of
the equations is given in Appendix A.
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Roughly speaking, ν represents also the way the error spreads over
the false states and Theorem 1 states that if the observation is good
enough (with a large probability θ to observe the real underlying
state) and if the error spreads over many states (with a large ν),
then it suffices to have one half of the observations plus one to be
the real underlying state to converge to a deterministic belief state.

The uniform assumption on bad observations is justified by the
maximum entropy principle but can be omitted without loss of gen-
erality. Indeed, taking ν equals to 1 induces that the agent observes
either the true underlying state or the second most likely state of
his belief which is truly the worst case for our agent. The resulting
equation would be exactly the same as equation (3) but where the
term ν1− k

2 would be also equals to one which would then slightly
loosen the bound.

4.2 Factored models
In a more general way than enough-observable models, factored-

observable models ensure that each value of each variable is suffi-
ciently often observed so that the factored state can de determined
in a finite number of steps:

DEFINITION 4. A factored-observable QDET-POMDP is a QDET-
POMDP where following assumption holds:

• The state space is factored in µ state variables: S =×X∈X DX

and observations possible are Ω =
⋃

X∈X DX.

• The sum of probabilities of observing one state’s variables’
real values is lower bounded by θ > 1

2
.

This definition implies that, in the worst case, for each state vari-
able, there is a probability θ

µ
to observe its real value and a proba-

bility 1−θ
|Ω|−µ to observe anything else. Note also that this definition

is a generalization of Definition 3 which is the case µ = 1. This
statement leads to the following theorem:

THEOREM 2. Under the factored-observability assumption,
bk(s) > 1− ε iff

n >
1

2 ln (|Ω|−µ)θ
µ(1−θ)

ln

[
1− ε
ε

(1 + |S| − µ)

]
+
k

2
(5)

PROOF SKETCH. The proof follows exactly the same arguments
as in Theorem 1.

Once the number n of most likely observations is lower bounded,
finding the probability to achieve at least this number is simply an
application of the binomial distribution to have at least n successes
on k trials:

COROLLARY 3. In any QDET-POMDP under enough-observability
or factored-observability assumptions, the probability that a belief
state bk(s) is ε-deterministic after k steps is:

∃s,Pr(bk(s) > 1− ε) =

k∑
i=n

(
k
i

)
θi(1− θ)k−i (6)

In other words, this indicates that to be certain (with a small δ)
to have a deterministic belief state (with a small ε) we may have to
explore a large horizon if θ is too small (e.g. near 0.5).

Let us now derive the worst case complexity from these bounds.

5. COMPLEXITY ANALYSIS
In this section, new complexity results induced from Theorems 1

and 2 are given.

5.1 Mono-agent case
A major implication of Theorems 1 and 2 is the reduction of the

complexity of general POMDPs problems when a QDET-POMDP is
encountered. Indeed, [15] have shown that finite-horizon POMDPs
are PSPACE-complete. This roughly speaking rests on the fact that
the agent has to choose an action that, given any observation, leads
to the choice of another action and so on, on a polynomially bounded
horizon T . However, fixing the horizon T to be constant, causes
to complexity to fall down many steps in the polynomial hierar-
chy [21]. Polynomial hierarchy consists in the generalized class of
problems that uses oracles. Stockmeyer [21] defined ΣP

2 = NPNP

as the class of decision problems that can be solved in polynomial
time by a non-deterministic Turing machine using a NP-oracle. The
“canonical” problem for this complexity class (which is SAT for NP)
is 2-QBF for ΣP

2 ; 2-QBF is the problem of deciding whether the fol-
lowing quantified boolean formula is true: ∃~a∀~b φ(~a,~b). Stepping
up in the polynomial hierarchy (e.g. ΣP

3 ) means adding another
quantifier for another set of variables of the Boolean formula (e.g.
verifying if ∃~a∀~b∃~c φ(~a,~b,~c) is true); and so on. Thus, in the case
of constant horizon POMDP, one can state:

PROPOSITION 4. Finding a policy for a finite-horizon-k POMDP,
that leads to an expected reward at least C is ΣP

2k−1.

PROOF. To show that the problem is in ΣP
2k−1, the following

algorithm using a ΣP
2k−2 oracle can be used: guess a policy for

k − 1 steps with the oracle and then verify that this policy leads to
an expected reward at least C in polynomial time by verifying the
|Ω|k possible histories, since k is a constant.

As QDET-POMDPs are a subclass of POMDPs and since fixing 1−δ,
the wanted probability to be in a ε-deterministic belief state, in-
duces a constant horizon under enough-observability or factored-
observability assumptions:

COROLLARY 5. Finding a policy for an infinite horizon QDET-
POMDP, under enough-observability or factored-observability as-
sumptions, that leads to an expected reward at least C with proba-
bility 1− δ, is ΣP

2k−1.

PROOF. To show that this problem is in ΣP
2k−1, the following

algorithm gives the ε-optimal policy in polynomial time assuming
a ΣP

2k−2 oracle: guess a policy for k − 1 steps with the oracle and
then verify that this policy leads to an expected reward at least C
by computing the belief in each leaf of the tree of observations and
by adding the optimal expected value of the underlying MDP since
the belief is deterministic in each of these leaves.

Practically, finding a probably approximatively correct ε-optimal
policy for a QDET-POMDP thus implies using a k-QMDP algorithm
that computes exactly k exact backups of a POMDP and that then
uses the policy of the underlying MDP for the remaining steps (even-
tually infinite).

To sum up, by fixing the wanted probability (1-δ) to be in a
ε-deterministic belief state, one can upper-bound the horizon on
which it is necessary to plan, from which one can ensure that fol-
lowing the optimal policy of the underlying POMDP will perform
well. Now, let us see how can this result can be extended to decen-
tralized decision making.

5.2 Multi-agent case
Concerning the DEC-POMDPs, the improvement is much greater.

Indeed, DEC-POMDPs are known to be exceptionally hard to solve
optimally in the finite horizon case (NEXP-complete [3]) and even
to approximate [18]. Moreover, these approximate solutions of
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θ ν k n >
0.6 3 75 40
0.6 10 59 31
0.6 100 50 26
0.7 3 22 13
0.7 10 19 11
0.7 100 14 8
0.8 3 9 6
0.8 10 6 4
0.8 100 6 4

Table 1: Enough-Observable bound.

θ µ |D| |S| k n >
0.6 2 10 100 84 44
0.6 3 5 125 98 52
0.6 10 6 106 112 60
0.7 2 10 100 30 17
0.7 3 5 125 33 19
0.7 10 6 106 39 23
0.8 2 10 100 13 8
0.8 3 5 125 16 10
0.8 10 6 106 20 13

Table 2: Factored-observable bound.

the infinite horizon general case, usually based on finite state con-
trollers [2], converge to local optima without any guarantee on the
solution found.

By restricting the model to be quasi-deterministic, and assuming
that all agents still have enough-observability or factored-observability,
one can also find a great complexity reduction:

COROLLARY 6. Finding a policy for an infinite horizon QDET-
DEC-POMDP, under enough-observability or factored-observability
assumptions, that leads to an expected reward at leastC with prob-
ability 1− δ, is PSPACE.

PROOF. To show that this problem is PSPACE, the following al-
gorithm gives the ε-optimal policy in polynomial space: expand all
possible action-observation history up to horizon k (done in space
O((|A||Ω|)k)), and then compute for each leaf of the constructed
tree the expected value of the reached quasi-deterministic belief us-
ing the underlying MMDP infinite horizon optimal policy. Finally,
propagate the value back to the root to verify if an expected reward
of C is obtained.

Note that the assumption of enough-observability means here
that each agent perceives the same complete state while not neces-
sarily obtaining the same observation. On one hand, this assump-
tion seems less applicable in DEC-POMDPs than in POMDPs since
many internal values of the agents are also in the joint state of the
DEC-POMDP and thus are not necessarily observable as the exam-
ple in the next Section will illustrate. On the other hand, assuming
a quasi-reliable communication system between agents is not so
restrictive and induces naturally the enough-observability assump-
tion by encompassing the communication noise into the observa-
tion noise.

In fact, the enough-observability assumption relates closely to
the work of Goldman et al. [8] on DEC-MDPs where agents, when
communicating their observations, have access to the real underly-
ing state. This nonetheless differs on one point; while in DEC-MDPs
each agent observes completely its own part of the state, granting
the set of agents the complete observability of the state through
communication, enough-observability assumption only assure that
each agent may observe the true underlying state with probability at
least θ. In other words, a DEC-MDP with complete communication
is a DEC-POMDP under the enough-observability assumption with
θ = 1.

Let us now put figures on Theorems 3 and 4 and present a new
decentralized fire fighting problem that meets our assumption re-
quirements.

6. EXPERIMENTAL ANALYSIS
In this section we first provide examples of horizon that can

be induced by the proposed bounds and then provide an example
where such bounds could be applied.

6.1 Bounds’ efficiency
To give an idea of the efficiency of the proposed bounds, we

define δ > 0 such that Pr(bK(s) > 1 − ε) > 1 − δ. Table 1
and 2 give, for ε = 10−3, δ = 10−1 and different values of θ,
the probability of observation, ν, the error spreading factor, µ, the
number of state variables, and the domains’ size of variables, the
value of the bound on the horizon k and the number of successes
needed n given that the probability of having both is above 1− δ.

As expected, horizons needed to converge are greater in the fac-
tored case than in the enough-observable case for similar state and
observation spaces since the agent, at each time step, gets less in-
formation about the current state. Actually, observations discrimi-
nate among subsets of states but not among states themselves like
in the previous case. However, as the number of observations is
much less than in the previous case, current algorithms may have
less difficulty in this type of problems. An empirical study of their
difference should be interesting as a research avenue1.

Furthermore, it is interesting to notice that, as soon as the prob-
ability θ to observe the real underlying state is above 0.8 in the
enough-observable case, it suffices to compute the optimal policy
for the first four steps to have a ε-deterministic belief state with at
least 90% probability.

6.2 Infinite Horizon QDET-DEC-POMDP
As suggested by the complexity proofs of corollary 5 and 6, an

algorithm that would solve ε-optimally the infinite horizon QDET-
DEC-POMDP problem under enough observability or factored ob-
servability consists in computing a regular policy for the finite k-
horizon problem and then use the optimal policy of the underlying
MMDP for the remaining of the task. Such an algorithm would use
for example the Dynamic Programming method [10]. However, in
practice, solving a k-horizon DEC-POMDP even quasi-deterministic
is still very hard and some other approximation should be used. We
thus present in this section some results of a specific fire fighting
problem where agents have to coordinate to make a bucket chain
from a fire hydrant to a fire (e.g. Figure 4).

Figure 4: The bucket chain problem.

1Comparing results for the fire fighting problem between factored
and enough observable models will be available in the final version
of the paper.
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Figure 3: Computational time for differ-
ent value of θ.

The general version of this problem is stated as follows: two
agents are located on a linear grid and can carry a bucket. They can
go right, left, or throw water, each action incurring a small penalty
(−0.1 per agent). As soon as they go on the rightmost place, they
automatically refill their bucket with probability ϕ. Moving actions
have also a probability ϕ to succeed, the action throw water is al-
ways successful. Agents can give a bucket one to each other when
on an adjacent place through the same throw water action. Each
time a bucket is emptied on the most left place, a reward is ob-
tained (1 per agent). Agents are initially placed at random without
any water. Agents are assumed to have a noisy observation on their
position (and have a θ probability to observe it and 1−θ

2
to observe

one of the adjacent state) as well as they receive a noisy communi-
cation of the other agent indicating its position and its bucket state.
As the problem could be an infinite horizon problem a discount
factor γ = 0.95 has been used in the experiments. A value ϕ = 1
was used to meet the deterministic transition requirements. When
ϕ = 1, the number of reachable states is 49 (7 for each agent) and
thus 49 observations can be obtained.

Concerning the algorithm, we used an adapted version of Im-
proved Memory Bounded Dynamic Programming (IMBDP) [19] so
that it used the optimal expected value of the underlying MMDP at
the leaves of the tree search. This algorithm is denoted by IMBDPi

on figures.
We ran several simulations using various parameters. Figure 1

shows the expected of IMBDPi on the bucket chain problem for var-
ious values of θ ranging from 0.6 to 0.95. Parameters of IMBDPi

were maxTree = 5 and maxObs = 1. Increasing these parame-
ters does not significantly improve the expected value while signifi-
cantly deteriorating the time and space performances. As expected,
as long as θ increases to one, the necessary planning horizon de-
creases to two and the infinite horizon expected value increases
near to the value of the underlying MMDP’s optimal policy.

Figure 2 shows the finite horizon discounted expected values for
θ = 0.8 at various horizons ranging from 3 to 101 showing that the
algorithm tends to the infinite horizon expected value. The stan-
dard IMBDP algorithm was used with the same parameters as above
(maxTree = 5 and maxObs = 1).

Finally, Figure 3 shows the computational time needed to com-
pute an approximate infinite horizon policy using the exact same
parameters for the algorithm. As expected, the time decreases as θ
grows since the needed horizon also decreases.

Let us now discuss the different assumptions of the proposed
models and their significance.

7. DISCUSSION
Quasi-deterministic models encompass numerous decision prob-

lems where the environment is well defined and controlled but just
partially observed. The presented results can then be applied in a
large number of applications ranging from web agents to fault de-
tection systems. However, the approach still has some limitations.

First of all, presented results are probabilistic. Agents are guar-
anteed to converge to an ε-deterministic belief state with probabil-
ity 1 − δ. Diminishing the probability δ induces an exponential
increase of the planning horizon k and thus an increase of the com-
putational needs.

Second, deterministic transition functions are not the mostly used
transition functions in the Markovian community since its proba-
bilistic roots. However, many real problems are in fact determinis-
tic but do not use Markovian models for the same reason.

Third, We did not talk about policies nor actions throughout the
paper, this relies on the fact that we assume that observation per-
ceived are the same whatever the action is chosen. Relaxing this
assumption leads to the problem of balancing information gather-
ing and reward gathering like the exploration-exploitation dilemma
in reinforcement learning. A concern that is beyond the scope of
this paper but that we intend to prospect in future researches.

Last, it is not clear how the assumptions on the observability of
the agents restrain the field of applications of this work although it
is clear that it may be applied in many indoor robotics applications
where each sensor is very often dedicated to one component of the
state of the robot, independently of the policy chosen.

Concerning the observability assumptions, they are the key point
of this paper. The majority of problems in the literature assume
either full observability or partial observability. This paper pro-
poses two other classes of observability that fill in the gap between
these two extremes. Indeed, many of real problems are enough-
observable or even factored-observable and one usually has to as-
sume partial observability in these cases. This proposition of a new
subclass of partial observability may stimulate the development of
specific algorithms for these subclasses based on and/or graphs for
example [4].

Moreover, in the multiagent case, the proposed work assumed
some sort of communications between agents, allowing them to
exchange their partial view of the world in order to provide each
agent a noisy but global view of the state of the system. Even if
this kind of communication is very often employed in true applica-
tions of multiagent systems, all previous works on communication
in decentralized POMDPs (e.g. [7]) focused on the act of commu-
nicating and not on the goals of doing so nor on the content of the
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exchanged messages. Indeed, a natural insight of communicating
is to inform others what they do not know. By communicating its
own observations to all other agents, the problem of decentralized
POMDP would reduce to a “simple” multiagent POMDP where ev-
ery single agent shares the same belief state and thus does not have
to plan for all over possible policies of other agents. This work thus
opens many interesting communication modeling avenues in mul-
tiagent Markovian models where multiagent does not necessarily
means NEXP-complete.

8. CONCLUSION AND FUTURE WORK
To summarize, we proposed in this paper an extension of the

DET-POMDP framework to stochastic observability, called QDET-
POMDP, that bridges a part of the gap between DET-POMDPs and
general POMDPs. A further extension to multiagent systems has
also been proposed. A study of their convergence properties leads
to a significant improvement in terms of computational complex-
ity. Empirical performances are also presented through a new de-
centralized problem of fire fighting with communication between
agents.

Concerning future work, we are currently working on extending
current bounds on the horizon to problems where transitions are
stochastic but can still be lower bounded. Model and algorithms
that take communication of agents into account are also one of our
research avenues. Finally, in our opinion, the problem of balancing
information-reward gathering should be one of the next research
areas in the community studying partially observable environments
and models.
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10. APPENDIX A
PROOF OF THEOREM 1.

θn (1−θ)p
νp

θn (1−θ)p
νp

+ θp (1−θ)n
νn

+ (ν − 1) (1−θ)k
νk

> 1− ε

⇔ νnθn(1− θ)p

νnθn(1− θ)p + νpθp(1− θ)n + (ν − 1)(1− θ)k > 1− ε

⇔ νpθp(1− θ)n

νnθn(1− θ)p +
(ν − 1)(1− θ)k

νnθn(1− θ)p 6
1

1− ε − 1

⇔ νk−2nθk−2n(1− θ)2n−k + (ν − 1)
θ−nν−n

(1− θ)−n 6
ε

1− ε

⇔ νk−2nθk−2n

(1− θ)k−2n

[
1 + (ν − 1)

ν−pθ−p

(1− θ)−p

]
6

ε

1− ε

⇔ (k − 2n) ln
νθ

(1− θ) + ln

[
1 + (ν − 1)

ν−pθ−p

(1− θ)−p

]
6 ln

ε

1− ε

⇔ (k − 2n) ln
νθ

(1− θ) 6 ln
ε

1− ε − ln

[
1 + (ν − 1)

(1− θ)p

νpθp

]
⇔ (2n− k) ln

νθ

(1− θ) > ln
1− ε
ε

+ ln

[
1 + (ν − 1)

(1− θ)p

νpθp

]
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ε

ln νθ
(1−θ)

+
1

ln νθ
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ln 1−ε
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2 ln νθ
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1

2 ln νθ
(1−θ)
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1 + (ν − 1)

(1− θ)p

νpθp
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2
(7)

but since 2 6 ν 6 |S| − 1, n > k
2

and 1−θ
θ

< 1,

ln

[
1 +
|S| − 2

νk−n
(1− θ)k−n

θk−n

]
6 ln

[
1 +
|S| − 2

ν
k
2

(
1− θ
θ

) k
2

]
6 ln

[
1 + ν1− k

2

]
From which, ensuring Eqn. (3) also ensures Eqn. (7),
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ABSTRACT
Most approaches to multiple agent decision making, or sin-
gle agent multi-action decisions, tacitly assume a station-
ary reward environment in which ε-greedy approaches can
asymptotically give valid information regarding action-value
policies. We extend this approach by taking a Bayesian
methodology to multi-armed bandits in which natural bal-
ance between exploitation and exploration takes place. Cru-
cially we do not collapse information until all unknowns can
be integrated out together. Uncertainty at all levels is auto-
matically incorporated into the decision process, occasion-
ally resulting in decisions being made which differ from the
standard maximum likelihood approach. This framework
can be extended with ease to incorporate utility functions
which combine expected future reward and penalise model
ignorance as well as offering a game theoretic framework in
which multiple agents interact.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence-
Learning

General Terms
Algorithms, Reliability, Theory

Keywords
Sequential Bayesian Decisions, Uncertainty, Bandit prob-
lems, expected reward, Greedy strategies, St. Petersburg
paradox

1. INTRODUCTION
Any agent operating in a system must make decisions in

order to select a course of action, whether that be deciding
which direction to travel or how to classify a set of infor-
mation. As such, decision making is an integral part in the
design of autonomous systems, linking information and in-
ference to outputs. Sequential decision making is simply
decision making applied over time. Typically an agent will,
at a certain time period, take an action in order to maximise
an expected utility using the information and observations

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

it has available at that point. Once an action has been exe-
cuted an expected reward is earned and the process repeats
itself. The problem of interest is to choose a decision strat-
egy that will lead to high long term rewards. As the agent
will often be faced with limited information and uncertainty
we use the tools of probability theory, specifically Bayesian
probability theory, to generate our solutions.

The multi-armed bandit, originally introduced in the statis-
tics literature under the title “the sequential design of exper-
iments” [12, 13, 10], is a sequential decision problem anal-
ogous to a traditional slot machine, or one-armed bandit,
except that there are n levers to choose from instead of one.
The agent, or player, is faced repeatedly with a choice be-
tween n different actions, A = {a1, a2, ..., an} analogous to
lever pulls. When an action is taken, a reward is drawn
from a probability distribution associated with that lever.
The problem is formally equivalent to a one-state Markov
Decision Process.

In the opaque bandit, which we consider here, the agent
receives a unique reward after each action it takes drawn
from the probability distribution associated with that ac-
tion. This is distinct from the transparent bandit [5] in which
the agent observes all rewards including those it would have
received had it taken alternative actions. We regard this
opacity as typical of the majority of real-world problems.

It is normally the task of the agent to sample sequentially
from the n hidden reward distributions in order to maximise
the expected cumulative reward; defined as:

R = E[rt + γrt+1 + γ2rt+2 + · · · ] = E

"
HX
i=0

γirt+i

#
(1)

where rt is the reward received after choosing an action ak
at time t, and γ ∈ [0, 1] is a discount factor used to weight
near term reward more heavily than distant future reward.
The horizon H is the total number of actions the agent is
able to take.

The agent begins with no knowledge about the levers but
through repeated play can make inferences about the struc-
ture and parameters of the hidden reward distributions. As
the agent has uncertainty associated with these distributions
it must at each iteration decide between exploitation of the
actions that have the highest expected rewards according
to its current knowledge and exploration of other actions
in order to reduce the associated uncertainty and perhaps
find a more lucrative reward distribution. This is known
in the decision making literature as the exploitation versus
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exploration tradeoff.
Most bandit literature uses one of two forms of reward

distribution: Bernoulli or Gaussian. In the Bernoulli Ban-
dit reward is either termed success or failure, with success
being achieved with a certain probability for each action (a
Bernoulli process). All successes have equal value, as do
failures. The expected reward is equivalent to the proba-
bility of success, rather than the expected value of reward
received. This form is analogous to flipping weighted coins
with unknown biasing with success being defined as receiving
a head (or tail). In the second form, the Gaussian Bandit,
reward is distributed according to a Gaussian distribution.
Each reward received has a value, with higher values being
favourable to lower values. It is of course possible to define
negative rewards in this framework. Gaussian distributions
are used to simplify analysis, but in reality any continuous
probability distribution could be used within a similar strat-
egy framework. Different techniques are required to solve
and generate strategies for each form of reward distribution.
We concentrate on the Bernoulli Bandit here as it allows us
to focus on how an agent manages uncertainty without the
complication of continuous reward. To our knowledge [6]
provides the only fully Bayesian strategy for the Gaussian
Bandit. That paper still only managed a two step look-
ahead implementation due to the inherent complexity of the
problem.

2. INADEQUACY OF EXPECTED REWARD
In order to design a policy an agent usually evaluates the

likely outcome of actions, assigning a value to each action
available. In sequential decision making literature a large
proportion of research makes use of expected rewards or
utilities to evaluate actions, making decisions by favouring
higher expected values.

An expected value is the integral of a random variable
with respect to its probability measure. It is important to
note that expected value is not the same as most probable
value, and in general may not be equal to a value the random
variable can in fact take.

As designers of autonomous agents we must be aware of
the difference between expected and real resources. To illus-
trate the importance of this point consider a simple problem
in which a decision maker is offered the choice of taking £10
with certainty or £1000 with probability 1/80. The expected
payout when taking the gamble is £12.50, and as such a de-
cision maker using a policy that favoured higher expected
payouts would choose this option. However, it is not possi-
ble to receive a payout of £12.50, only the payouts £0, £10
and £1000 are possible. Only if this problem is repeated
many times does the expected payoff become closer to ac-
tual payoff, so how should one make a decision in a one-shot
game?

2.1 The St. Petersburg Paradox
The St. Petersburg Paradox is a paradox introduced by

Nicolas Bernoulli in 1713 [2] in which a theoretical lottery
possesses an infinite expected payoff, but would still only
be worth a small amount of money. It has been used as a
means to demonstrate how a naive decision criterion, which
only considers expected payoff maximisation, would suggest
a course of action that a rational thinking person would
never be willing to take.

To enter the lottery a player pays a fixed entry fee, at

which point a fair coin is repeatedly tossed until a tail ap-
pears signalling the end of the game. Initially the player
starts with 1 Ducat1 in the bank which is doubled every
time a head appears. At the end of the game the player
wins whatever is in the bank. So if the coin is tossed n
times before a tail appears the player wins 2n−1 Ducats.
The problem is to decide what a fair price of entry is to
such a lottery. It could be argued that a sensible gambler
would enter the lottery if and only if the entrance fee was
less than the expected payout, however the expected payout
evaluates as follows:

E[r] =
1

2
· 1 +

1

4
· 2 +

1

8
· 4 + . . .

=
1

2
+

1

2
+

1

2
+ . . .

=

∞X
i=1

1

2
=∞ (2)

Using the expected payout criterion, the sensible gambler
would play the lottery no matter how large the entrance fee
was because the expected return would always be higher.
However, the probability of very high returns is very small.
For example a run of 10 heads would payout over 1000
Ducats but the probability of that occurring is less than
0.001. There is a 50% chance the gambler would receive
2 Ducats from the game, and a 75% chance of receiving 4
Ducats or less. Hacking suggested that “few of of us would
pay even 25 (Ducats) to enter such a game” [4].

Several approaches have been suggested as solutions to the
St. Petersburg Paradox, the most famous of which, proposed
by Nicolas Bernoulli’s cousin Daniel Bernoulli, is the princi-
ple of Expected Utility Hypothesis and the presumption that
money has a decreasing marginal utility [1]. Bernoulli sug-
gested that a realistic measure of a gambler’s utility would
be a function of the gambler’s wealth (w) and the logarithm
of money. By this approach the utility for the above lottery
would be defined as the log difference between the gambler’s
wealth before and after the event:

E[U ] =

∞X
n=1

log(w + 2n−1 − c)− log(w)

2n
<∞ (3)

where c is the cost of entry.
Unfortunately expected utility theory, like all other pro-

posed methods, does not entirely solve the St. Petersburg
Paradox. For instance, if we alter the lottery such that in-
stead of paying out 2n−1 Ducats after a run of n heads we
now payout 10 Ducats to the power 2n we find the expected
utility is no longer finite and the paradox returns. An al-
ternative argument, and in fact the only argument which
completely ‘solves’ the problem, points out that such a lot-
tery could never exist in the real-world: no casino could ever
afford to offer the high payouts possible no matter how re-
mote those possibilities are, and no human could ever flip
a coin indefinitely. Taking this pragmatic approach, the St.
Petersburg paradox becomes non-paradoxical and finds no
fault in classical decision theory [7].

Although the St. Petersburg paradox does not prove the
inadequacy of expected reward in a world limited in time
and finances, it does provide us with some important re-
sults. To understand this let us return to our first example
in which an agent must decide between a certain payoff and

1Gold coin
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a higher uncertain payoff. Using expected utility theory we
can evaluate the expected utilities of both lotteries to see
how a gambler’s wealth would affect our choice:

E[U1] =
(log(w + 10)− log(w))

1
(4)

E[U2] =
(log(w + 1000)− log(w))

80
(5)

where U1 is the utility gained when taking £10 with cer-
tainty and U2 is the utility gained when taking £1000 with
probability 1/80. Evaluating E[U1−U2] we find the following
results:

E[U1 − U2] < 0 if w . £20 (6)

E[U1 − U2] > 0 if w & £20 (7)

A person with wealth less than ∼£20 will favour taking
£10 with certainty, whilst a person with wealth greater than
∼£20 will favour the gamble. This seems a reasonable result
as we would expect a relatively poor person to gain much
more from a small payout than a wealthy person, such that
they would rather take with certainty what they may already
regard as a significant amount of money over a gamble. In
some ways this approach has incorporated risk-aversion into
the decision process.

The point we wish to make is not that expected reward is
necessarily wrong, but that an agent’s particular utility must
be carefully evaluated when making decisions. Expected
reward alone does not include the possibility that an agent
is risk averse, or that one agent’s utility may differ from
another seemingly identical agent. Additionally, expected
utility of any form does not necessarily represent rewards
that are actually possible to receive, especially in one-shot
games. These points are of particular concern if the agent
in question is human.

3. BAYESIAN DECISION MAKING
We begin this section by formulating a simple 2-armed

bandit problem to act as a testbed for the comparison of
various action selection strategies.

3.1 Definition of Bandit
There are two parts to the problem that require definition:

the action space A and the hidden reward function R∗ (here
the suffix ∗ denotes the true rather than the inferred or ex-
pected reward function). As this is a two-armed formulation
the action space contains only two actions, A = {a1, a2},
which correspond to pulling lever 1 or 2.

We assume here the reward to be discrete and to take
either the value 1 or 0, which is equivalent to the bandit
paying out either the top prize or nothing. This results
in two binary reward distributions from which the agent
playing the bandit can sample. Parameter λ∗ is defined
for each of these distributions as the probability that the
sampled reward will equal 1:

λ∗1 = Pr(rt = 1|a1,t) (8)

λ∗2 = Pr(rt = 1|a2,t) (9)

where ak,t indicates action ak taken at time t.
At each time step the agent chooses which of the two bi-

nary reward distributions to sample from (which lever to
pull) with the intention of maximising future cumulative re-
ward. As only one action can be taken at a time, informa-

tion will therefore only be received about that action. The
agent accumulates samples of reward and failure for each
action over time. Here sk,t and fk,t respectively represent
the number of successes and failures at time t the agent has
received after taking action ak. Success is defined as the
received reward equalling 1, whilst failure is defined as the
received reward equalling 0. Dt = {s1,t, f1,t, s2,t, f2,t} rep-
resents the full history of samples for both actions at time
t. (Unless needed for clarity we will from now on omit the t
index to simplify nomenclature.) The agent uses D in order
to decide which actions to take in the future. The decision
method used is a free choice of the agent, and we discuss
several different approaches here.

3.2 Maximum Likelihood
To begin the discussion on how to make decisions in the

bandit problem we first look at a very simple approach using
maximum likelihood estimates.

As stated earlier, the agent is only able to make decisions
using the past history of samples D. If we had an estimate
for the value of λ∗1 and λ∗2, we could make a decision which
would maximise the expected future reward at the next step
given these estimates. If λ̂k is the estimate of the true reward
probability for action k, the expected reward when taking
action k is:

E[r|λ̂k, ak] =

Z
r p(r|ak) dr

= λ̂k (10)

In order to maximise the expected reward under this esti-
mate, the agent simply needs to choose the action ak with
the largest value of λ̂k.

3.2.1 Estimating λ

The maximum likelihood (ML) estimate of λ̂k is the ratio
of the number of successes to the total number of samples
for action k:

λ̂k =
sk

sk + fk
(11)

Maximum likelihood in the context of the multi-armed ban-
dit (and indeed in many other cases) has particular problems
which are discussed in the next subsection.

3.2.2 Problems with Maximum Likelihood
To understand why maximum likelihood is particularly

problematic, we first consider situations in which at least one
action has not been sampled from. If action ak has not been
sampled from, λ̂k and therefore the expected reward from
taking that action E[r|λ̂k, ak], are undefined. If the expected
reward is undefined for any action how is a decision made?
One option is to artificially define a value for the estimate
when it is otherwise undefined. In this particular problem a
value of λ̂k = 0.5 might make sense indicating no preference
in the likelihood of success or failure, however this can only
be considered ad-hoc as it does not naturally arise. For
larger more complex systems, any artificial choice of value
will undoubtedly have a large effect on the decisions being
made and therefore should be avoided.

The second problem is that uncertainty is not incorpo-
rated into maximum likelihood decision making. There should
be greater uncertainty in our beliefs regarding actions which
have been sampled more infrequently. This is because as
more samples are collected for a particular action, the more
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accurate the maximum likelihood estimate becomes. As an
example consider two actions, a1 and a2: a1 has been sam-
pled once and one reward has been gained, a2 has been sam-
pled ten times and ten rewards have been gained. According
to equation (11), λ̂1 and λ̂2 are both equal to 1. We know
that the true values λ∗1 and λ∗2 cannot take the value 0, so
our belief in what values the estimates can take is bounded
0 < λ̂1, λ̂2 6 1, however it is more likely that the true value
λ∗2 is closer to 1 than λ∗1 given the samples we have taken.
We should be more uncertain about our values for λ̂1 than
λ̂2, and this uncertainty should affect the decision made.
The maximum likelihood framework in no way represents
this uncertainty.

A solution implemented in many maximum likelihood frame-
works and applicable to both the above problems is to per-
form a burn-in period, referred to as ε-first strategies in the
literature [3]. During a burn-in period the agent will at-
tempt to sample from all the reward distributions to avoid
any undefined estimates, and ideally to a point such that
the uncertainty in the estimates is marginal. The major
drawback with this method is its reliance on ad-hoc vari-
ables such as the length of burn-in or minimum estimate
uncertainty. The agent may also not gain rewards it would
otherwise have gained during this period if it was using a
less naive decision method.

3.3 Bayesian Parameter Estimation
We now discuss a method in which we infer distributions

over the parameters we are estimating using a Bayesian
framework. Decisions are made using the expected values
of the parameters which are calculated by integrating out
the uncertainty in the distributions. This method avoids the
problems associated with maximum likelihood methods by
providing a means for the natural inclusion of prior knowl-
edge and incorporation of uncertainty in the parameter es-
timations and subsequent decisions.

3.3.1 Using Bayes’ Theorem
We now wish to generate probability distributions repre-

senting our belief in the value of the true parameters λ∗1 and
λ∗2. These distributions will contain all the information we
have available to us and any prior knowledge we would like
to include. Bayes theorem is used explicitly to form the dis-
tributions. As there are two independent parameters being
estimated, we infer two independent posterior distributions.
If there are cross couplings between the levers then a joint
posterior distribution is required. The likelihood for each
distribution is calculated using the history of past samples
from the associated action and reward distribution.

To avoid confusion in the following discussion we present
Bayesian inference for a general action ak. It should be
assumed that inference is performed for both actions using
only the data relevant to that action, namely sk,t and fk,t
(the number of successes and failures from sk,t+fk,t samples
of action ak at time t) and any prior knowledge.

With regards to notation we use λk rather than λ∗k (the
true expected reward) to indicate our belief in λ∗k. As λ∗k is
a singular value the distribution over it is a delta function
at λ∗k.

3.4 Bayesian Inference

3.4.1 Likelihood

Each sample can be thought of as a random variable drawn
from a Bernoulli trial with unknown probability of success
λ ∈ [0, 1], where success is still defined as the sampled reward
equalling 1. If this random variable is sampled n times with
s successes the resulting probability distribution is binomial:

p(s|λ = x) =

 
n

s

!
xs(1− x)n−s (12)

This equation is the likelihood for action ak, p(sk|λk = x),
if the number of rewards equalling 1 (sk) equals s, and the
total number of samples of action ak’s reward distribution
(sk + fk = nk) equals n.

3.4.2 Prior
The conjugate prior to the binomial distribution is the

beta distribution which is a continuous probability distri-
bution defined on the interval [0, 1], specified by only two
parameters α and β. The beta distribution is particularly
useful as it possesses analytic solutions to (for example) ex-
pectation and variance. The probability density function of
the beta distribution is:

p(λ = x) =
1

B(α, β)
xα−1(1− x)β−1 (13)

B, the beta function, acts as a normalisation constant and
is defined as:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(14)

where Γ is the gamma function:

Γ(z) =

Z ∞
0

tz−1e−tdt (15)

so we can see the Binomial is a special case of the Beta where
α and β are integers.

3.4.3 Initial Prior
Before any samples are taken from action ak we have no

information pertaining to the value of λ∗k and should there-
fore have equal preference across all values of λk,0 at time
t = 0:

p(λk,0 = x) = 1 for all x (16)

This is a uniform prior representing maximal ignorance. To
achieve this we set αk,0 and βk,0 to 1, which can be verified
by substituting these values into equation (13).

3.4.4 Posterior
Using Bayes’ rule, equations (12) and (13), and evaluating

the evidence as a normalising constant, the posterior can be
calculated:

p(λ = x|D) =
p(D|λ = x)× p(λ = x)R 1

0
(p(D|λ = x)× p(λ = x)) dx

=
xs+α−1(1− x)n−s+β−1

B(s+ α, n− s+ β)
(17)

where D represents the total information gained from sam-
pling. As expected the posterior is another beta distribution
with updated parameters. Using equation (17) the posterior
parameters for action ak at time t are:

αk,t = αk,0 + sk,t (18)

βk,t = βk,0 + nk,t − sk,t (19)
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where αk,0 and βk,0 are the prior parameters defined earlier.
In non-sequential Bayesian inference equation (17) is eval-

uated completely at each time step. This means that for
action ak at time t, the posterior distribution is calculated
using the initial values of αk and βk indicating a uniform
prior, and sk and fk equal to the total number of successes
and failures up to that point. It is also possible to form se-
quential Bayesian inference in which the last posterior dis-
tribution to be inferred becomes the prior at the next round
of inference. We do not present this approach here, however
the result is the same as for non-sequential inference.

3.4.5 Expected λ and reward
The distributions generated in this section represent the

belief we have in the value of the underlying reward proba-
bilities. We can use these to calculate the expected reward
when taking each of the actions, conditioned on the past
history of samples and the uniform prior, by integrating the
uncertainty out in the distributions. The expected reward
for taking action ak is:

E[rt|ak,t,Dk] =

Z
r p(r|ak,Dk) dr

=

ZZ
r p(r|λk, ak) p(λk|Dk) dλk dr

=

Z
λk p(λk|Dk) dλk

= E[λk|Dk] (20)

The expected reward for taking action ak is simply equal to
the expected value of λk. The agent must choose the action
ak with the largest expected λk to maximise expected reward
at the next step. The agent will be indifferent between two
actions with the same expected reward.

Marginalising the uncertain parameter λk is the only way
to calculate expected reward. This does not mean the uncer-
tainty in the parameter is completely discarded, the Bayesian
framework naturally encodes this uncertainty in the expected
value. Consider an action ak which has never been sampled;
the expected value of λk is equal to the expected value of
our uniform prior, indicating complete ignorance. As more
samples are taken we gain information about the underly-
ing reward distributions and as such our expected value of
λk moves away from our prior expectation. As the num-
ber of samples increases greatly the expected value tends
toward the maximum likelihood estimate. In this situation
the Bayesian paradigm can be seen to moderate our esti-
mation between the uniform prior and maximum likelihood
models based on the certainty of the λk distribution.

3.5 Alternative Bayesian Decisions
It is possible for two distributions with differing uncer-

tainty to have the same expected value. That is to say that
the certainty with which we make estimations can be dif-
ferent, even if the expected values are the same. Standard
decision theory, which is equivalent to the method discussed
in the last section, finds no reason to distinguish between
expected rewards if they evaluate as the same. Clearly it
is possible to distinguish between distributions with equal
expected values if the uncertainties differ (even if this dis-
tinction later proves to be uninformative). We conjecture
that we should in fact differentiate between two such distri-
butions when making decisions. As we believe the Bayesian

parameter estimation to be correct, the question we now
ask is not ‘how should we manage uncertainty?’ but rather
‘what measure should we be maximising through decisions?’.

What follows is a discussion of how both λ distributions
can be combined onto a single distribution over a latent
variable. When the single latent variable is marginalised
non-standard decisions are made.

3.5.1 Understanding confidence
In this problem we compare two probabilities of rewards.

As the reward is either 1 or 0 we will always favour actions
which have a greater chance of reward. If we wanted the
greatest chance of reward at the next step and we knew the
underlying reward probabilities λ∗1 and λ∗2 we would always
pick the action ak with the highest probability λ∗k. If the
true reward probabilities were equal we would be indifferent
between the two actions.

Let us temporarily assume that we can define some confi-
dence or probability that one action is better than another.
Instead of always choosing the ‘best’ action (the action with
the highest estimate of reward probability) we choose actions
with probability based on the confidence probability. That
is to say we explicitly define a probability P (ak) that we
choose action ak. If later we do not want to choose actions
stochastically we can still take the action with the highest se-
lection probability (the Greedy action) with certainty; in the
results section we take this approach (MOD-EX GREEDY).

We can justify defining a confidence probability by look-
ing at what values we are comparing. λ∗1 and λ∗2 are both
probabilities of the same result occurring (reward equalling
1) from different actions. As the result for each is stochastic
a situation could arise such that if both actions were taken
at the same time, an action with a lower value of λ could
provide a reward when an action with a higher value of λ
does not. The confidence probability provides a measure
of how certain we are one action will not provide a reward
when another one would have. For example, consider two
reward probabilities: λ1 = 1 and λ2 = 0; in this case we will
be completely certain that there will never be a situation
when action a2 will give a reward and action a1 will not.
If the values are closer, for example λ1 = 0.8 and λ2 = 0.7
we become much less sure that there will not be a situation
when action a2 gives a reward and a1 does not.

3.5.2 Selection Probability
At the next step we want to receive a reward, so we con-

dition our selection probability on us actually receiving this
reward. The selection probabilities are also conditioned on
the past history of samples D, as such the selection probabil-
ity for action ak is P (ak|r = 1,D). We also want to couple
actions so that we always choose one action:

P (a1|r = 1,D) + P (a2|r = 1,D) = 1 (21)

In order to use the Bayesian framework we also need to
define the prior probabilities of choosing actions. The prior
probability of choosing action ak will be P (ak). As before:

P (a1) + P (a2) = 1 (22)

As we should have no prior preference for choosing one ac-
tion over another both prior probabilities should be equal,
and both are hence assigned as 0.5.

The total probability of receiving a reward at the next
step, conditioned on the past history of samples and an ac-
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tion being taken, is now:

P (r = 1|a,D) = P (r = 1|a1,D)P (a1)+P (r = 1|a2,D)P (a2)
(23)

which is the normalising term in the Bayesian formulation.
Using Bayes’, the selection probability of action ak is the
proportion of this probability mass that ak is responsible
for. For action a1 this is:

P (a1|r = 1,D) =
P (r = 1|a1,D)P (a1)

P (r = 1|a1,D)P (a1) + P (r = 1|a2,D)P (a2)
(24)

or more generally:

P (a1|r = 1,D) =
P (r = 1|a1,D)P (a1)P
k P (r = 1|ak,D)P (ak)

(25)

As both prior probabilities are equal this simplifies to:

P (a1|r = 1,D) =
P (r = 1|a1,D)P
k P (r = 1|ak,D)

(26)

If the true parameter values λ∗1 and λ∗2 are known equation
(26) becomes:

P (a1|r = 1, λ∗1, λ
∗
2) =

P (r = 1|a1, λ
∗
1)P

k P (r = 1|ak, λ∗k)

=
λ∗1

λ∗1 + λ∗2
(27)

Note that the probability of reward when action ak is taken
is only dependent on parameter λ∗k.

In reality parameters λ∗1 and λ∗2 are not known, the agent
only has belief in their value gained from D, which is repre-
sented by the posterior distributions over λ1 and λ2. There-
fore there is a distribution over the selection probability
which may be integrated out via a Bayesian marginal in-
tegral:

P (a1|r = 1, D) =

ZZ
p(a1|r = 1, λ1, λ2)p(λ1|D)p(λ2|D) dλ1 dλ2

=

ZZ
λ1

λ1 + λ2
p(λ1|D)p(λ2|D) dλ1 dλ2

(28)

where p(λ1|D) and p(λ2|D) are the posterior distributions
generated in section 3.3.

There is no simple analytical solution to (28), hence our
solution is to approximate the integral by drawing samples
from λ′1 and λ′2, where:

λ′1 ∼ Beta(α1, β1) (29)

λ′2 ∼ Beta(α2, β2) (30)

and then for each pair of samples calculate the ratio:

λ′1
λ′1 + λ′2

(31)

and evaluate the mean of all the sampled ratios to find (28):

P (a1|r = 1, D) ≈ 1

N

NX
i=1

λ′1,i
λ′1,i + λ′2,i

(32)

where λ′k,i is the ith sample from λ′k, and N is the total
number of samples.

3.5.3 The Log Odds
In order to see how the uncertainty in the λ posteriors

affects (28) it useful to expand the above formulation. We
explicitly define a latent variable using a log odds ratio, and
marginalise this through the logistic function. Uncertainty
in the latent variable can be seen to moderate the posterior
action belief.

We define a latent variable b as the log odds of the action
selection probability before marginalisation:

b = log

„
p(a1|r = 1, λ1, λ2)

1− p(a1|r = 1, λ1, λ2)

«
= log

„
λ1

λ2

«
(33)

The logistic (or softmax) function is the inverse of the log
odds:

p(a1|r = 1, b) =
1

1 + exp(−b) (34)

Using the above definitions it is simple to show that equation
(28) is equivalent to:

P (a1|r = 1, D) =

Z
p(a1|r = 1, b)p(b|D)db (35)

As there is no analytic solution (other than approxima-
tions) to the integral, we sample λ′1 and λ′2 and define:

b′ = log

„
λ′1
λ′2

«
, (36)

hence

P (a1|r = 1, D) ' 1

N

NX
i=1

1

1 + exp(−b′i)
. (37)

The integration can be seen as the moderation of the lo-
gistic function by the latent variable. High uncertainty in
either of the λ posteriors will result in high uncertainty in
the latent variable. Higher uncertainty in the latent vari-
able will result in a posterior probability through the logis-
tic integration which is closer to the prior of 0.5, even if the
expectation of b′ is the same.

4. RESULTS
To assess the relative performance of different bandit strate-

gies we compare them on a suite of test problems. The test
suite consists of 2000 2-armed Bernoulli bandit tasks. For
each task, the probability of reward when taking action ak,
P (rt|ak, t) = λ∗k, is drawn from a uniform probability distri-
bution between 0 and 1:

λ∗k ∼ U(0, 1) (38)

Once drawn λk remains constant throughout the duration
of each task representing a static system scenario. During
each task all methods are tested using the same set of reward
probabilities for consistency. The horizon of each task is
H = 1000 to allow enough time for the relative behaviours
of each algorithm to emerge.

We analyse the performance of each algorithm using three
measures: proportion optimal action taken, average reward
received and information gained. All three measures are
evaluated and plotted against time to see how performance
varies as actions are taken. The optimal action is defined
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Figure 1: Average performance of Maximum Likelihood, Ex-
pectation and Moderated Expectation Greedy Maximisation
on the 2-Armed Bernoulli Bandit Test Suite.

as the action with the highest true probability of reward.
Information gained is calculated as the symmetric Kullback-
Leibler divergence between a uniform prior, indicating com-
plete uncertainty, and the inferred Beta distributions at each
time step. As information is gained the inferred Beta dis-
tributions move away from the uniform prior and KL diver-
gence increases. We calculate the information gained for the
optimal action and the suboptimal action separately.

The three methods tested are those described in Section 3
which are: Maximum Likelihood maximisation (ML GREEDY
- Section 3.2), Expectation maximisation (EX GREEDY -
Section 3.4) and Moderated Expectation maximisation (MOD-
EX GREEDY - Section 3.5). All three methods use a greedy
action selection strategy. As the maximum likelihood method
does not infer the posterior Beta distributions in its decision
process, we use the successes and failures at each time step
to establish what the posterior distributions would be if such
a method was used, and use these distributions to calculate
the KL divergence.

Figure 1 shows the average reward gained, the propor-
tion the optimal action was taken and the average regret for
each algorithm over the full test suite. EX GREEDY per-
formed the best on all three measures, followed by MOD-EX
GREEDY and finally ML GREEDY. This clearly illustrates
the importance of correctly encoding uncertainty using a
Bayesian formulation; Both Bayesian methods outperform
the Maximum Likelihood method.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

Time Step

KL
 d

ive
rg

en
ce

 (b
its

)  
 

Average KL divergence arms Op and Nop

 

 

ML GREEDY Op
ML GREEDY Nop
EX GREEDY Op
EX GREEDY Nop
MOD−EX GREEDY Op
MOD−EX GREEDY Nop

(a) Optimal Action (Op) and Non-Optimal
Action (Nop) plotted separately

940 950 960 970 980 990 1000
470

475

480

485

490

495

500

505

Time Step
KL

 d
ive

rg
en

ce
 (b

its
)  

 

Total Average KL divergence

 

 

ML GREEDY
EX GREEDY
MOD−EX GREEDY

(b) Total information gained (for clarity only
the last 60 time steps are presented)

Figure 2: Average information gained (KL-divergence) using
Maximum Likelihood, Expectation and Moderated Expecta-
tion Greedy Maximisation on the 2-Armed Bernoulli Bandit
Test Suite.

MOD-EX GREEDY moderates the expectation based ac-
tion evaluation according to the uncertainty of both poste-
rior distributions. This results in more information being
gained about non-optimal actions. Figure 2 shows the infor-
mation gained over the test suite and further illustrates this
point. Interestingly, we can see from this figure that MOD-
EX GREEDY gains more information about non-optimal
actions than EX GREEDY but gains less total information
than any other method. This figure also illustrates how poor
ML GREEDY is at utilising information. ML GREEDY
gains significantly more total information than either other
method but still gains the least reward. Once again this
is because uncertainty is not incorporated into the decision
process.

Although on initial inspection it appears that EX-GREEDY
outperforms MOD-EX GREEDY it is important to remem-
ber this is a static reward test suite with a small discrete
action space. EX-GREEDY should perform well on such a
test suite as it minimises the sampling of non-optimal levers
whilst still encoding uncertainty, however if the action space
became larger or the system was dynamic this algorithm
would not necessarily perform comparatively as well. In con-
trast this test has shown that MOD-EX GREEDY utilises
information well by gaining the smallest amount of total in-
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formation but still performing better than ML GREEDY.

5. MULTI-AGENT SYSTEMS
Sequential decision making in multi-agent systems fur-

nishes us with the additional problem that an agent’s re-
ward function could be a function of the actions of other
agents acting in the system as well as its own. Each agent
must be aware that there is a feedback between sensing, de-
cision making and acting in such a system; any action made
by agent A will likely affect the reward agent B receives,
thus altering agent B’s future actions and in turn changing
the future reward agent A receives. Uncertainty can exist
in the structure of an agent’s own reward function as well
as the structure of other agents’ reward functions making
it difficult to predict what actions others are likely to take.
Even with perfect knowledge of all reward functions in a
system, each agent can operate under its own set of un-
known strategies adding yet another layer of uncertainty to
the problem; this is especially the case in systems containing
human agents.

The importance of incorporating uncertainty when deal-
ing with multiple agents is demonstrated in [9]. In that pa-
per a two-agent problem is defined with the following com-
bined payoff matrix:

R =

„
(1, 1) (0, r)
(r, 0) (10, 10)

«
(39)

where r is a factor determining the degree of risk dominance
of the action pair 1/1 set to range from r = −1,−2 · · · − 25.
It is clearly best for both agents to choose action 2 and re-
ceive a payoff of 10, however it was shown in that paper that
many traditional learning approaches which did not incor-
porate uncertainty resulted in agents becoming convinced
that playing action 2 was bad due to the penalty for playing
1 against 2 being high. Using a moderated fictitious play
algorithm, similar in approach to the method presented in
Section 3.5 and in which agents evaluated actions over a lo-
gistic function, they found convergence to the strategy with
payoff (10, 10) was more likely.

We have presented our work using the multi-armed ban-
dit platform as it is a simple way to illustrate decision mak-
ing under uncertainty. The methods discussed are equally
applicable to systems with further levels of uncertainty; it
is also simple to extend the multi-armed bandit itself such
that an individual’s success in making choices is dependant
on the choices others make. How an agent should combine
uncertainty over strategies as well as reward functions does
however require future research.

6. CONCLUSION
The exploration vs. exploitation trade-off has been stud-

ied extensively, particularly in the field of Reinforcement
Learning, as it could be applied to almost any system in
which an individual seeks to gain some form of utility under
uncertainty. Many methods, not just those implemented on
the Multi-Armed Bandit, focus on a binary decision between
exploitation and exploration.

As Bayesians we fundamentally disagree that an individ-
ual should be forced to make a decision between exploiting
knowledge and exploring the system. This is not because
we believe an agent does not need to reduce uncertainty.
We believe that if an individual correctly incorporates the

uncertainty it has about the system using a Bayesian for-
mulation, it will gain all the information it needs to achieve
maximum utility whilst always behaving in an exploitative
manner. Certainly our results reinforce this idea, demon-
strating how algorithms using Maximum Likelihood param-
eter estimation show decreased performance when compared
to Bayesian methods.

Unfortunately formulating the full Bayesian behaviour can
not only be mathematically complicated, but frequently in-
tractable. This is one of the reasons many heuristic meth-
ods have enjoyed a great deal of attention and analysis. The
most popular of these methods are based on ε-greedy action
selection policies, first described in [14]. In this approach
the agent chooses its greedy action with frequency (1 − ε),
otherwise choosing an action at random. The ε parameter
is ad-hoc and thus solutions of this form do not generalise
well, although their performance is often hard to beat [11].
Ultimately we have to be aware of the tractability of our so-
lutions whilst attempting to maintain a Bayesian approach.
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ABSTRACT
This paper is concerned with sequential decision making
by self-interested agents when their decision processes are
largely independent. This situation can be formulated as a
stochastic game which would traditionally be represented in
extensive form (a single game tree), a representation that
fails to exploit the loose coupling in the game. We propose
a new representation for 2-agent loosely coupled stochastic
games that allows exploiting the sparsity and structure of
agent interactions while still being able to capture a general
stochastic game. We provide analytical and experimental
results to show the representational and computational sav-
ings we obtain compared to extensive form in settings with
different degrees of coupling. Our second contribution is a
compact formulation of our problem as a Multi-Agent Influ-
ence Diagram, a first step towards the goal of solving prob-
lems with more than two agents. Finally, we investigate the
challenges that need to be resolved to meet this goal.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Coherence
and coordination

General Terms
Performance, Economics

Keywords
Game theory, Structured game representations

1. INTRODUCTION
In this section, we introduce the notion of loosely coupled

stochastic games, provide an example to motivate it and
provide a general characterization of this class of games.
We also introduce the running example that will be used
throughout this chapter.

1.1 Loosely coupled stochastic games
A stochastic game describes a situation where agents are

self-interested and interact over a number of stages. Each
stage begins with the game at some state. Agents take ac-
tions simultaneously and, in general, receive rewards based
on the actions taken by all agents and the particular state

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

the game was in. The game then probabilistically transi-
tions to a new state based on the previous state and joint
actions. The agents are therefore very tightly coupled; each
action of each agent affects the rewards and next games of
all others.

In contrast to this tight coupling, we introduce loosely
coupled stochastic games where the agents are largely inde-
pendent. Each agent has its local state and its decisions only
affect its own reward and next state. In our games, an agent
generally does not know about the other agent’s states and
actions and, typically, does not care. What ties the decision
processes of the two agents, however, is that there is some
interaction between the agents; some actions of an agent af-
fect the others. As the number of interactions increases, we
move from completely independent decision processes to the
tightly coupled stochastic games discussed in the literature.

Loose interactions arise in many situations. Consider a
set of cleaning robots owned by different companies which,
between them, manage the cleanliness of a building. Each
robot is responsible for a set of halls, but corridors are
joint responsibility and the robots can get extra reward if
they correctly coordinate their cleaning of this shared space.
Other interactions stem from sharing the waste bins and po-
tentially getting into each other’s way in shared areas like
corridors and elevators. Non-situated agents can also have
loose interactions. Consider a set of self-intersted compu-
tational servers that offer their computational resources for
a fee. Each server has its set of incoming computational
tasks, resources, and fee policy. However, some tasks re-
quire more resources than is available to any single server,
in which case the server receiving the task can propose to
some of the others to complete the task for a fee. In addi-
tion to affecting each other’s rewards, the servers can affect
each other’s state. Collaborating on certain tasks can result
in a server gaining more experience on these tasks, causing
it to transition to states where future tasks of this kind are
executed more quickly.

Traditionally, the above situations would be represented
in extensive form, which requires specifying an agent’s re-
wards and next state for each of its actions and the other
agents’ actions. Clearly, this representations is overly ver-
bose, since in most cases, the rewards and new states are
independent of the other agents. Ignoring this fact results
in game trees that are much larger than they need to be. Be-
sides being representationally inefficient, a single game tree
obscures the structured interaction among agents, making it
hard to exploit to efficiently find a Nash equilibrium.

1.2 Characteristics of loosely coupled games
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The above examples share these general characteristics:

• Each agent has its local states and actions (e.g. robots
have different locations and grabbing actions). Most
of an agent’s action outcomes and rewards are inde-
pendent of the other agent.

• Agents are generally unaware of each other’s states and
actions, unless some form of communication is speci-
fied.

• Few interactions among agents, compared to the num-
ber of actions they can take. They are also structured,
meaning that an action can affect the other agent in
a specific way. In a reward (resp. transition) interac-
tion, an action of one agent affects the reward (resp.
outcome probabilities) of certain actions of the others.

• Interactions are not only between actions taken at the
same time. An action can be affected by something
that happened in the past (e.g. a robot’s dumping a
large object in a waste bin will affect the outcome of
using the bin at any later point). The fact that the
affecting action happened is not necessarily encoded
in an agent’s state.

Self-interested Mars rovers
To ground future discussions, we use the following simple
example that captures the above characteristics.

We use a self-interested variant of the Mars Rovers sce-
nario [1]. Consider a situation where two countries send
autonomous rovers to collect data from the surface of Mars.
Each rover has a list of samples that it wants to gather.
The rovers need to accomplish their missions within a lim-
ited time, so they cannot gather all the samples on their list.
A rover’s set of actions is the set of sites it has not visited
yet, and each action has two outcomes, fast and slow, prob-
abilistically chosen by nature. An agent’s decision problem
is therefore which sites to gather data from and in what or-
der so as to maximize its expected reward. Even though
the rovers are generally unaware of each other’s actions and
whereabouts, their decision processes are not totally inde-
pendent. We define a shared site to be a site where one
agent’s visit can affect the reward or the outcome probabil-
ity of the other agent when/if it visits that same site. For
example, if both rovers want to gather data from the same
site, they may help each other, thus getting a higher re-
ward for the site, or they may get in each other’s way, thus
reducing one or both rover’s reward.

One solution concept for the above situation is the Nash
equilibrium; a pair of policies such that no agent is moti-
vated to deviate from its policy. At an equilibrium, i.e.,
each agent’s policy is a best response to the other’s.

2. REPRESENTING AND SOLVING 2-PLAYER
LOOSELY COUPLED GAMES

2.1 Existing representation: Extensive form
A stochastic game can be represented as an extensive form

game (EFG), which is a tree capturing the order in which
agents take actions, what they know when they take each
action, and the probabilistic nature of actions. An EFG is
a tuple < I, V, E, P, H, u, p > where:

• I is the set of n players

• (V, E) is a finite directed tree with nodes V and edges
E and Z is the set of terminal nodes

• Player : V \ Z → I determines which player moves at
each decision node.

• H = {H0, ..., Hn} is the set of information sets, one
for each player. Each Hi is a partition of Playeri.

• Ai(h): the set of actions available at information set h

• u : Z → R is the utility function defined over the set
of terminal nodes. For x ∈ Z, ui(x) is the payoff to
player i if the game ends at node x

• p is the transition probability of chance moves

In a game with imperfect information, an agent does not
know exactly the state of the other agent (and thus the
game played by the agents at any particular stage), but does
have a probability distribution over it. In such games, an
information set can contain more than one node, which the
agent cannot tell apart. A policy should therefore make
the same decision across all nodes belonging to the same
information set. It is a mapping from information sets to
probability distributions over actions.

2.2 Proposed representation: Self-Interested
EDI-CR

In loosely coupled games, the rule is that agents’ actions
are independent and the exceptions are the reward and tran-
sition interactions among them. We would therefore like
to represent the decision processes of the two agents sepa-
rately and enumerate the (relatively few) interactions. This
is exactly what our model Event-Driven Interactions with
Complex Rewards (EDI-CR) does. In previous work [14],
we used EDI-CR to capture structured interactions among
cooperative agents. For self-interested agents, we slightly
modify the original definition of EDI-CR to allow agents to
have different reward functions. A 2-agent EDI-CR instance
is therefore a tuple < S1,2, A1,2, P1,2, R1,2, ρ, τ, T > where:

• Si, Ai, Ri : Si ×Ai → R, Pi : Si ×Ai ×Si → [0, 1] are
the local state space, action space, reward function and
transition function of agent i. These elements specify
the separate decision processes of the agents.

• ρ = {< (sk
k1 , ak

k1), ..., (s
k
k2 , ak

k2), r
k >k=1..|ρ|} specifies

reward interactions. The kth entry specifies rk, the
additional reward/penalty obtained when each agent
does its specified action in its specified state at any
point during its execution.

• τ = {< (sk
k1 , ak

k1), (s
k
k2 , ak

k2), p
k >k=1..|τ |} specifies tran-

sition interactions. The kth entry specifies the new
transition probability pk of the state-action pair of
agent k2 when agent k1 does its specified state-action
pair before the affected agent makes its transition.

• T is the time horizon for the problem.

The individual states, actions and rewards describe the
dynamics of each agent’s decision process, while ρ and τ
capture the interactions among them. We stress that the
model can be used for general stochastic games; it would
have entries in ρ and τ for every combination of actions and
states to mirror the fact that all actions affect all agents.

Representing a game as an EFG is more compact than
EDI-CR when modeling tightly coupled games. With 2
agents, each having 2 states and 2 actions, the joint rep-
resentation has 32 entries (16 in each of the reward and
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transition functions). If all actions participate in determin-
ing the game’s next state and individual rewards, EDI-CR
has 4 entries per local transition and reward function, in
addition to 16 reward and 16 transition interactions, clearly
less compact than EFG. At the other extreme, if the agents
do not interact, then instead of having a single tree in which
rewards and transitions depend on the joint states and ac-
tions of agents, EDI-CR has separate trees with transition
and reward functions defined over local states and actions.
In this case, EDI-CR only has entries in the local functions,
for a total of 8 entries compared to EFG’s 32. Between these
two extremes, the extent to which EDI-CR’s representation
is more intuitive depends on the number of interactions (e.g.,
for 3 interactions, EDI-CR would have 8+3=11 entries, com-
pared to EFG’s 32).

2.3 Solution Method
In this section, we review an existing formulation of a

stochastic game as a bilinear program (BLP) and discuss
how this formulation is affected by having nearly separable
decision processes as opposed to a single game tree. The
original formulation of extensive form games was derived by
Petrik and Zilberstein [15] and is as follows:

Maximize xTr1 + xT(C1 + C2)y + yTr2 − λT
1b1 − λT

2 b2

subject to A1x = b1 A2y = b2

r1 + C1y −AT
1λ1 ≤ 0

r2 + xTC2 −AT
2λ2 ≤ 0 x, y ≥ 0

We use the sequence form [10] to represent the agents’
policies. x and y are vectors of realization weights of agent
i and j’s action sequences, respectively. r1 (resp. r2) is a
vector representing the individual rewards of agent i (resp.
j); those rewards that do not depend on what the other
agent does. Each entry in ri contains the expected reward
of a sequence of player i. C1 and C2 are matrices with a
row for each sequence of i and a column for each sequence
of j. These matrices represent rewards of i and j whose
attainment depends on what both agents did. A1, A2, b1

and b2 form constraints that guarantee that a solution in-
deed represents the realization weights of a legal policy; i.e.
probabilities of actions at each state add up to 1 (for more
details on the constraints over a policy in sequence form,
see [10]). λ1 and λ2 are the variables of each agent’s dual
optimization problem. Their presence in the objective func-
tion reflects our interest not in a solution that maximizes
the sum of rewards, but in one that is an equilibrium.

When dealing with loosely coupled games, there can po-
tentially be many sequences of one agent’s actions that nei-
ther affect, nor are affected by, the other agent. These se-
quence will have their own local rewards, but will have zero
entries in the agent’s C matrix. Using this observation, we
can have much fewer rows and columns in C1 and C2 if we
exclude such sequences. Denoting by x̄ and ȳ those elements
of x and y that affect, or are affected by, actions of the other
agent, we get the following program

Maximize xTr1 + x̄T(C1 + C2)ȳ + yTr2 − λT
1b1 − λT

2 b2

subject to A1x = b1 A2y = b2

r1 + [C1ȳ; 0̄]−AT
1λ1 ≤ 0

r2 + [x̄TC2; 0̄]−AT
2λ2 ≤ 0 x, y ≥ 0

where [v; 0̄] is vector v padded with enough zeros to make
it of the desired length. The details of calculating C1 and

C2 are similar to those of calculating the team’s reward ma-
trix C in the formulation of the cooperative case [14]. The
resulting bilinear program is solved using an existing algo-
rithm [15] to find a Nash equilibrium.

3. COMMUNICATION SCHEMES IN EDI-
CR AND EXTENSIVE FORM

In this section, we investigate how the degree of coupling
affects the relative savings of using EFG and EDI-CR. One
simple way to change the degree of coupling is by introducing
different amounts of communication among agents1. The
more the agents communicate, the more they affect each
other; sending a message affects what the receiver observes.

Analytical and experimental setup
We present three communication schemes; no, mandatory
and optional communication. For each, we analyze the effect
on the size of an instance when represented using EDI-CR,
EFG and the MAID which will be discussed in the next sec-
tion. For EFG and EDI-CR, we measure size as the number
of states in the joint game tree and in each agent’s decision
process, respectively. For MAIDs, we look at the total size
of the CPDs of all nodes. We express these quantities in
terms of A actions, O outcomes per action, T time steps,
k reward interactions and m transition interactions, with
k + m ≤ A. The variables k and m allow us to investigate
how the number of interactions and their nature affect the
size of a representation. We stress that our analysis is not
specific to the Mars rover example. It applies to any loosely
coupled game that fits the characterization we give in Sec-
tion 1.2. To simplify the analysis, we assume that an action
takes one time unit and that actions can repeat.

We also look at the effect of communication on the time to
find the first Nash equilibrium2. EFGs are solved using the
logit solver in the game theoretic package Gambit [13] and
reported as “Gambit” (we report results of logit because it
performed better than lcp). EDI-CR is solved as a bilinear
program reported as “BLP”. We time out a solver after 30
minutes and report “N/A”.

We present experimental results from 8 instances of the
Mars rovers domain with T ∈ [6, 8] and number of actions
is 5 or 6 (unlike the analytical analysis, an action here can
take more than one time unit). To avoid generating very
large games that would not fit in memory regardless of the
representation, we can specify restrictions over actions by
having earliest start times before which they cannot proceed.
We obtained results from a larger set of data which showed
the same trend as in the results we report, so we omit them.

3.1 No communication
We first look at the case where communication is not al-

lowed. An agent makes decisions based only on its local
state, which keeps track of what actions have been done so
far and the outcomes obtained for them. With EFG, each
stage consists of actions and outcomes for both agents. The
number of nodes is therefore O(A2T O2T ).
1Communication is a special kind of transition interaction;
sending a message makes the recipient transition to a state
where the message is observed, thereby affecting its transi-
tion probability. As such, communication can be handled
by our solution method.
2Because it is hard to compare solution qualities in selfish
settings, we are concerned with finding any equilibrium
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Table 1: Size and performance comparison for the
no-communication case (times in seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

49 1301 132 89.85% 9 2
68 1618 140 91.35% 18 9
100 3195 216 93.24% 63 2.4
151 7987 303 96.21% 306 2.5
173 11.2k 348 96.89% 1080 3
296 25.1k 610 97.57% N/A 2.5
333 44.4k 695 98.43% N/A 2.6
841 473k 2079 99.56% N/A 8

In EDI-CR, each stage in an agent’s decision process con-
sists of an action and outcome for this agent only, resulting
in O(AT OT ) states per agent. Because there are transition
interactions, an agent needs to remember the outcome of
affected actions, but our state representation remembers all
outcomes, so states space size is independent of m.

While theoretically the sizes of EFG and EDI-CR are both
exponential in the time horizon T , Table 1 shows that in
practice, doubling the exponent results in game trees that
are too large to build and/or solve.

3.2 Mandatory communication
We now model situations where communication is inher-

ently part of the setting, rather than a conscious decision on
the part of the agents. An agent i doing its part of a reward
or transition interaction involuntarily leaves a trace that it
has done this action. Consequently, the other agent j will
see this trace upon doing its part of the action. An agent
does not suffer a cost for this implicit communication, but
cannot avoid it either. To allow an agent to make decisions
based on the traces it sees, an agent’s state keeps track of
a flag denoting whether a trace was seen upon doing each
reward or transition interaction.

In EFG, even though the state now stores the actions,
outcomes and k+m flags of each agent, the number of states
is not O(A2T O2T 22k+2m). The reason is that the values of
an agent’s flags are fully determined by earlier actions of the
other agent, so when an agent does an ineteraction, there is
no branching over whether it will see a trace there. In fact,
there is no more branching in this communication scheme
than in the case without communication, and the number of
nodes in the EFG tree is still O(A2T O2T ).

Even though they are of the same size, the EFG repre-
sentation of the no communication case and the mandatory
case are not the same. To see why, note that because of the
additional flags, an agent has more information available to
make its decisions when there is communication. This trans-
lates into the game tree having more information sets per
agent; nodes that were indistinguishable in the absence of
communication can now be told apart. Comparing Tables 1
and 2 shows how much the number of information sets in an
EFG increased. Since a policy specifies a distribution over
actions for each information set, mandatory communication
increases the size of the policy space and makes finding a
Nash equilibrium more difficult. Table 2 indeed shows that
even though the size of EFG did not change, the solution
time generally increased.

As for EDI-CR with mandatory communication, there is
probabilistic branching in an agent’s decision process over

Table 2: Size and performance comparison for the
mandatory communication case (times in seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

82 1301 1107 14.91% 21 2.7
83 1618 377 76.70% 29 6
135 3195 600 81.22% 120 6.5
204 7987 1481 81.46% 460 3
201 11.2k 2600 76.80% 900 4
574 25.1k 3475 86.17% N/A 5
630 44.4k 3000 93.24% N/A 14.3
1438 473k 7823 98.35% N/A 5.6

whether or not it sees a trace upon doing an interaction,
since that depends on what the other agent has done. The
size of each agent’s process is therefore O(AT OT 2k+m).

It is interesting to note the effect of mandatory communi-
cation on the size gap between EFG and EDI-CR. Compared
to no-communication, mandatory communication results in
EDI-CR achieving less reduction in size. The increased cou-
pling introduced by communication makes EFG less inad-
equate, compared to EDI-CR. If we increase the frequency
and language of communication, at some point the decision
processes will be so tightly coupled that EDI-CR’s advan-
tage of representing them separately will be lost.

3.3 Optional communication
We now look at optional communication where an agent

can choose whether to leave a trace upon doing its part
of an interaction. Even though communication here does
have a cost, an agent may still decide to communicate if it
knows that communication will cause the other agent to do
something beneficial to it. For example, in the Mars rovers
scenario, if rover j knows from i’s policy that if i visits site
s1, then i will visit s2, and if s2 has a much higher value
if visited by both rovers, then rover i will choose to leave a
trace at s1 as an inducement for j to go there too.

To represent optional communication in EFG, in addition
to actions and outcomes for each agent, there is an action
node with two branches (leave trace or not) after every de-
cision to do part of an interaction. A state keeps track of
the actions and outcomes of both agents, as well as at most
k +m binary communication decisions per agent, for a total
of O(A2T O2T 22(k+m)) states. Note that even though in this
scheme an agent can potentially have the same information
to make its decisions as in the mandatory case, the number
of decisions itself is much larger, because of the communi-
cation decisions, resulting in a larger number of information
sets.

In EDI-CR, again, there are communication decision nodes,
in addition to branching over whether an agent will see
a marker upon visiting a site. The number of states is
O(AT OT 22(k+m)).

Table 3 shows that having communication decisions re-
sults in huge EFG trees, making it impossible for Gambit to
solve them within a reasonable amount of time. However,
the 4th instance shows that solution time and size are not
always correlated, which can be explained by the fact that
we are searching for the first equilibrium we can find, and
the time this takes depends on both the size of the problem
and the structure of the search space.
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Table 3: Size and performance comparison for the
optional communication case (times in seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

547 21.1k 6213 70.58% N/A 8.6
136 3777 671 82.23% N/A 3
190 7511 1093 85.45% N/A 2.8
602 51.6k 5651 89.06% N/A 214
589 68.3k 5766 91.57% N/A 11
2668 295k 13.9k 95.29% N/A 35
2004 316k 10.2k 96.76% N/A 32
N/A 2200k 21.8k 99.01% N/A 195

4. COMPACTNESS OF MAIDS FOR LOOSELY
COUPLED GAMES

EFG is a representation that does not exploit any struc-
ture in a game. In this section, we investigate a more struc-
tured representation and its suitability for loosely coupled
games. We give a brief background on Multi-Agent Influ-
ence Diagrams (MAIDs) and discuss how we can represent
our communication schemes using it.

4.1 Background on MAIDs
Multi-agent influence diagrams (MAIDs) [11, 3] are repre-

sentations that have their origins in influence diagrams [7].
Like all alternatives to the extensive form representation,
MAIDs try to explicitly capture a structural property of a
game that would otherwise be obscured in extensive form.
In the case of MAIDs, this property is that not all decision
variables in a game are inter-dependent.

A MAID defines a directed acyclic graph in which nodes
correspond to random variables of three types. For each
agent i, there is a set of 1) decision variables, Di, whose
domains are available actions and are represented as rect-
angles; 2) chance variables, χi, whose values are chosen by
nature and are represented as ovals; and 3) utility variables,
Ui, which represent the agent’s payoffs and are drawn as di-
amonds. A conditional probability distribution (CPD) spec-
ifies the conditional probability of the node’s variable given
an instantiation of its parents, P (x|Pax).

A strategy profile for agent i is a set of decision rules, one
for each node in Di. A decision rule specifies the probability
of making a certain decision given values of its parents. To
represent perfect recall (an agent does not “forget” decisions
it made in the past), all earlier decisions and their parents
are among the parents of a later decision node.

4.2 No communication MAID
At each stage, each agent i has a decision node Di, a

chance outcome node Oi (e.g., a Boolean representing the
slow or fast outcome of visiting a site) and a utility node. To
guarantee perfect recall, an agent’s decision node depends on
all its previous decisions and outcomes. The per-agent util-
ity nodes Ui at each stage represent rewards from individual
actions. Addition utility nodes Uρ

i represent payoffs from
reward interactions.

In a naiive representation, Oi and Uρ
i nodes depend on all

j’s past decision nodes to account for the dependence of i’s
transitions and the shared rewards on j’s actions.

To avoid the blow up in CPDs size that this results in, we
introduce helper nodes that act as “memory” or storage, al-
lowing us to break some of the dependencies on previous de-

cision nodes and replace them with dependencies on helper
nodes at the previous stage only. A helper node is a chance
node representing a Boolean variable whose value determin-
istically depends on that of the corresponding helper node
at the previous stage and on the decision node at the current
stage. The helper node remembers whether a certain action
was done in the past.

For the no-communication scheme, we add, for each agent,
a helper node at each stage for each of the k+m interacting
actions. The variable of agent i’s helper node at stage t
indicates whether i did the associated action at or before
stage t. The node for agent i’s xth action that is involved in
a reward (resp. transition) interaction is denoted rx

i (resp.
tx
i ) and is referred to as reward indicator (resp. transition

indicator). An indicator has the value True if it was True
at the previous stage or the associated action was taken at
the current stage. Figure 1 shows a no-communication Mars
rovers instance with A = 4, k = m = 2, T = 3 represented
as a MAID.

We now calculate the size of the MAID representation of
the no-communication case.

• Decision nodes: because of perfect recall, an agent’s
decision node has as its parents all its own previous
decisions and outcomes. The CPD of a decision node
at level t has At−1Ot−1 instantiations of parents, for
each of which it specifies the probability of A values,
for a CPD size of O(AT OT ) per agent.

• Because it has a decision node and a Boolean as its
parents, a transition or reward indicator’s CPD is of
size 2A.

• Outcome nodes: if an action is part of a transition in-
teraction, its outcome probability depends on whether
the affecting action was done by the other agent. An
outcome node therefore depends on the current level
decision node and the other agent’s m transition indi-
cators from the previous level. The CPD then specifies
the probability of AO values for each of A×2m instan-
tiations of its parents.3

• Utility nodes: the individual utility nodes Ui (labeled
ux

i/j in the figure), specify a reward for each outcome

of each action, resulting in A2O2 entries for each CPD.
For shared reward nodes Uρ

i (labeled bx in the figure
to denote bonus from the xth interaction), the reward
depends on whether each agent has done its part of
the interaction as summarized in the last level reward
indicators of the xth interaction. Each CPD therefore
has 2 Boolean parents, for a total size of 4k per agent
for all reward interactions.

Even though the size of MAID’s decision CPDs is the same
order as EDI-CR, the MAID is overall larger because of the
CPDs of the other kinds of nodes.

Problems with MAID representation
The above mapping highlights some problems MAIDs have
in representing loosely coupled games. First, as can be seen
in the figure, the structure in our loosely coupled games
(the independence of most actions’ rewards and transitions)
is obscured because a decision node does not branch over

3Note that the outcome node needs the value of all m tran-
sition indicators because we do not know which of the m
affected actions, if any, this agent will take.
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Figure 1: MAID representation of a no-
communication Mars rovers instance

the possible decisions, so we cannot isolate a single action
and represent its dependence on another. Second, MAIDs do
not naturally capture dependencies that are temporally non-
localized, forcing us to resort to constructs that “remember”
actions done in the past and allow them to affect future
actions without having the latter depend on all previous
decisions. A MAID representation is essentially stateless,
and trying to capture a game in which agents have local
state that is affected by previous actions and affects the
choice of future actions is problematic.

We also note that for simplicity, we assumed that actions
can repeat. MAIDs are not good at representing domains
where the set of available actions is context-sensitive, which
is what would be needed. To disallow repeated actions, we
would need, for every pair of an agent’s decision nodes, a
utility node that imposes a large penalty if the actions taken
at these nodes are the same.

4.3 Mandatory communication MAID
Representing mandatory communication requires making

the following modifications to the no-communication MAID.

• At each stage, we need an indicator for whether an
agent sent a message (left a trace) when it did its
part of an interaction. This information is already con-
tained in the transition and reward indicators.

• For each agent, each stage, and each of the k+m inter-
actions, we add a helper node called RCV that indi-
cates whether a message regarding the corresponding
interaction was received. A RCV is True if it was True
at the previous level, or if the agent did its part of an
interaction that was also done by the other agent. The
parents of a RCV at level t are the RCV from level
t − 1, the other agent’s indicator for the interaction
from level t− 1 and this agent’s decision node at level
t, for a size of 4A.

• We change each decision node at each level t so that in
addition to all previous decision and outcome nodes,
its parents also include RCV nodes from level t − 1,
allowing an agent to base decision on what messages
it received. The size of a decision node at level t is

AtOt2k+m, resulting total size of decision nodes being
O(T2k+mAT OT ).

Mandatory communication exacerbates MAID’s main prob-
lems because 1) receiving messages depends on actions done
by the other agent arbitrarily long ago and 2) decision nodes
now have even more information feeding into them.

4.4 Optional communication MAID
To represent optional communication, we need to make

the following changes to the mandatory communication MAID:

• We add a SND node after each decision node. SND
is a Boolean decision node representing the choice of
whether to leave a trace or not. To represent per-
fect recall, a SND has all previous decision, SND and
RCV nodes as parents. The total size of SND CPDs
is therefore O((4AO(k + m))T+1).

• Decision nodes have the same set of parents as SND
nodes, so their size is comparable.

• A RCV node at level t now depends on the RCV at
level t − 1, the decision node at level t, and the other
agent’s SND node at level t− 1.

Experimentally comparing MAID to EFG and EDI-CR
was not possible because of the simplifying assumptions we
made (actions have unit durations and can repeat) in order
to get a reasonable MAID representation, assumptions that
place MAIDs and other representations on unequal foot-
ings. Without these assumptions, we would get even bigger
MAIDs, but even with them, the MAIDs were too large to
solve.

5. RELATED WORK: STRUCTURED GAME
REPRESENTATIONS

MAID: As introduced earlier, Multi-Agent Influence Di-
agrams [11, 3] (MAID) is a representation for sequential
games that is suitable for capturing independence among
variables, rather than among actions of different agents. Ini-
tial work on MAIDs used this representation to decompose a
game into interacting fragments, and provided an algorithm
that finds equilibria for these smaller games in a way that
is guaranteed to produce a global equilibrium for the entire
game [11]. Later work addresses the issue that most realis-
tic games are not decomposable in this way. Blum et. al.
address this by exploiting finer-grained structure in MAIDs
to improve the efficiency of a certain family of algorithms
called continuation algorithm [3]. In Section 6, we discuss
the possibility of exploiting the structure in loosely coupled
games to improve continuation algorithm.
TAGG: Temporal action graph games (TAGG) [8] is a graph-
ical representation of imperfect-information extensive form
games that can be much more compact than MAIDs; a
TAGG can be exponentially more compact than a naiive
MAID representation. However, a carefully constructed MAID
is only polynomial in the size of the TAGG. TAGGs repre-
sent games with anonymity (a player’s payoffs depend on
how many players took a certain action, rather than ex-
actly who they are) and context-specific utility indepen-
dence. TAGGs are an extension of AGGs to represent games
taking place over multiple stages. Because TAGGs are specif-
ically geared towards games with anonymity, we cannot use
them to represent our games.
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Succinct EFG: For some games, the game trees expressed
in extensive form are too large to be stored in memory ex-
plicitly. To overcome this, Dudik and Gordon propose an
implicit representation called succinct EFG [5]. A represen-
tation is succinct if it has enough information to support
certain queries that make it possible to simulate play in a
game through sampling. As such, MAIDs are themselves
examples of succinct EFGs. However, MAIDs cannot rep-
resent context-specific independence (e.g. allowing different
decision nodes to have different available actions), a draw-
back addressed by succinct EFG. For loosely coupled games,
however, succinct EFG does not capture the large degree of
independence that agents have, and still represents their in-
teraction in a single game tree.
I-DIDs [4] model multi-agent interactions extending over
time. An agent maintains and updates models of other
agents as part of its belief update. We believe this explicit
modeling and the maintenance of the models can get expen-
sive. For loosely coupled games, agents may not need to
construct and maintain such accurate models of each other.
Other representations Unlike the dearth of representa-
tions for sequential games, a number of representations have
been proposed for 1-stage games with special structure. For
example, graphical games [9], Game nets (G-nets) [12] and
action-graph games [2] address games whose special struc-
ture is the locality of interactions where an agent only inter-
acts with a subset of other agents whose size is small relative
to the total number of agents.

The work on poker (e.g. [6]) tries to exploit structure in
sequential games to scale to larger games and provides auto-
matic abstractions that produce much smaller games whose
solutions can be converted to solutions of the original games.
The problem is that with the assumptions they make, it is
not clear that these techniques are of general use.

6. CHALLENGES OF HAVING MORE THAN
TWO AGENTS

Even though we pointed out some weaknesses in using
MAIDs to represent loosely coupled games, MAIDs still have
one important advantage over our bilinear program formula-
tion: using MAIDs and algorithms developed for MAIDs, we
can represent and solve games with more than two agents.
In this section, we briefly overview the state-of-the art algo-
rithm for solving MAIDs [3], investigate whether we can ex-
ploit the structure in loosely coupled games to make this al-
gorithm more efficient, and highlight the challenges involved
in doing so.

6.1 Continuation method for MAIDs
Continuation methods work by perturbing a problem into

a simpler problem that can be easily solved. The solution
is then traced to that of the original problem by decreasing
the magnitude of the perturbation. When the perturbation
is zero, we have a solution to the original problem.

This approach was used by Blum et. al to solve MAIDs [3].
A large pertubation is applied to the rewards in the form of
a bonus vector that rewards an agent for its actions regard-
less of anything else that happens in the game. If large
enough, these bonuses dominate the original game rewards
and simply determine what the optimal strategies are.

When applied to MAIDs, tracing the solution of the per-
turbed problem to that of the original problem requires find-

ing the Jacobian (the first order derivative) of the vector
function V G(σ). Each entry V G

a (σ) in this function maps
the profile σ to the payoffs obtained by the agent playing
a for deviating from σ and playing a all the time. Using
the sequence form representation, if there is a total of n se-
quences for all agents, then σ is a profile of length n, V G(σ)
is a vector of length n and ∇V G(σ) is an n× n matrix.

In an unstructured game, we would need to fill an entry
in the Jacobian for each pair of sequences. In a MAID,
however, Blum et. al decompose this task into computing a
joint marginal distribution for every pair of agents i and j,
and every utility node Ui of agent i over PaUi , Di and Dj ,
where PaUi is the set of parents of Ui and Dx is the set of
decision nodes of agent x. For node Ui, the calculation is

X
PaUi

,Di,Dj

Util(Ui) ∗ P (PaUi , Di, Dj)

σi(Di)σj(Dj)

where σx(Dx) is the realization probability of decisions in
Dx as dictated by x’s part of the profile σ, and Utili(Ui) is
i’s utility from Ui under a given assignment of the variables
in PaUi , Di and Dj . Note that the above expression is

an expectation E( Util(Ui)
σi(Di)σj(Dj)

) taken over all values of the

variables in PaUi ∪Di ∪Dj .
Instead of doing naiive inference on the induced Bayesian

Network of the MAID4 , Blum et. al use the clique tree algo-
rithm to compute and cache factors over pairs and triplets of
cliques which are later used to calculate the desired marginals.
So the joint probability P (PaUi , Di, Dj) would be obtained
from a triple factor over the union of variables in the 3 cliques
containing these 3 sets of variables. In what follows, we de-
note the clique containing a set of variables V by Q(V ).

6.2 Computational challenges
We tried to use Blum et. al’s implementation of their con-

tinuation method for MAIDs [3] to solve 2-agent instances
of Mars rovers5. We faced the following computational chal-
lenges. The first is typical of most implementations of nu-
merical algorithms, while the second is a more inherent con-
cern.
Sensitivity to the initial random seed: The continua-
tion method starts with certain random parameters, which,
because tracing the path is not 100% exact, can affect whether
a run will find an equilibrium. For our examples, we found it
difficult to hit upon a random seed that results in a solution.
Large size of Jacobian: In our instances, a profile can
easily have 500 elements (with A = 4 and T = 3, σ has
512 elements), so the sheer size of the matrix is very large.
Manipulating the matrix, and even constructing it, quickly
becomes infeasible.

We next discuss how the second problem can be addressed.

6.3 Exploiting loose coupling
The construction of the Jacbobian as described in [3] does

not use the fact that not all of an agent’s variables affect
another agent’s reward. Our idea for making the calcula-
tion of the Jacobian more efficient is to exploit the structure
in loosely coupled games to come up with reduced versions

4The induced BN of a MAID under a profile σ is obtained by
replacing decision nodes in the MAID with random variables
whose CPDs are dictated by the decision rules in σ
5We are very grateful to Prof. Christian Shelton of UC
Riverside for the code and related discussions.
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of the marginal utilities that abstract away details of one
agent that are irrelevant to another agent’s reward, leading
to smaller factors and a speed up in calculation.

In our loosely coupled game, consider calculating the ex-
pectation of i’s individual utility node at time 2, which only
depends on i’s decision at time 2 (d2

i ) and its probabilistic
outcome (ch2

i ), so PaUi = {d2
i , ch

2
i }. Q(PaUi), however, can

potentially include many more variables; decisions of i and
their outcomes, as well as reward and transition indicators
of j. Similarly, a set Dx contains decision variables of agent
x, but the clique Q(Dx) contains these variables in addition
to all but the last outcome variable of x. The number of
parents of a utility node is therefore much smaller than the
number of variables in the union of the 3 concerned cliques.

If we just wanted to calculate E(Util(Ui)), we could get
rid of all variables except {d2

i , ch
2
i }. But because of the terms

σi(Di)σj(Dj), we can only get rid of some of these variables.
To see how this can be done, we expand the expectation to

X
Di

X
Dj

X
CHi

X
CHj

X
Tj

Util(Ui) ∗ P (Di, Dj , CHi, CHj , Tj)

σi(Di)σj(Dj)

where CHx are x’s chance outcome variables and Tx are its
transition indicators. By pushing terms outward as far as
the summations allow, we get

X

d2
i

X

ch2
i

Util(Ui)
X

Di\d2
i

1

σi(Di)

X
Dj

1

σj(Dj)

X

CHi\ch2
i

X
CHj

X
Tj

P (Di, Dj , CHi, CHj , Tj)

Clearly, the last 3 summations can be eliminated to give

X

d2
i

X

ch2
i

Util(Ui)
X

Di\d2
i

1

σi(Di)

X
Dj

1

σj(Dj)
P (Di, Dj , ch

2
i )

For a utility node representing i’s reward from a shared
task, the node’s parents will be the reward indicator vari-
ables at the last level, which indicate whether each agent
has done its part of the shared task. Again, our 3 cliques
will contain variables that are irrelevant to the expectation,
so we marginalize out all variables CHi, CHj and all reward
indicators except the parents of the utility node.

The question we have not resolved yet is how to calculate
these smaller joint distributions. Blum et. al calculate joint
distributions by manipulating potentials computed in the
calibration step of the clique tree algorithm. But since we
want distributions over parts of cliques, we cannot do this.

7. CONCLUSION
In this paper, we addressed a special kind of stochastic

games where the agents are largely independent except for
a relatively small number of interactions among them. We
characterized this kind of games and proposed a representa-
tion that separates the agents’ decision processes and enu-
merates their interactions. Using this representation, we
can formulate the problem of finding a Nash equilibrium
as a bilinear program. We also discussed the suitability
of two existing representations (extensive form games and
multi-agent influence diagrams) for loosely coupled games.
We introduce different kinds of communication as a way of
varying the degree of coupling among agents. We investi-
gate how changing this degree affects the compactness of the

three representations we study, both analytically and exper-
imentally. Finally, we looked at the potential of exploiting
the special structure in our games to make algorithms for
multi-agent influence diagrams more efficient, which would
open the way to solving games with more than two agents.

One important future direction of our work is investigating
the effect of having communication on the quality, in terms
of social welfare, of the Nash equilibria we find. In order to
do this, we need to be able to find (a bounded approximation
of) the socially optimal equilibrium; the one with the highest
total reward. We are currently trying to make the objective
function of the bilinear program reflect this requirement.
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ABSTRACT
Although Dec-POMDP techniques can be useful to mod-
eling a wide range of problems, their practical application
is limited by the inherent computational complexity of the
algorithms currently available to solve such models. The ap-
plication of these techniques is typically restricted to theo-
retical examples. This work studies the application of a par-
ticular type of Dec-POMDP (a multiagent POMDP) model
to solve a simple task in a realistically simulated robotic
soccer environment. The multiagent POMDP exploits the
availability of a communication channel, as is often the case
in multi-robot systems. The necessary constraints on the
problem are identified, and the steps taken to accomplish
efficient cooperative behavior within real robot middleware
are explained. Finally, results are presented for the proposed
task that highlight further possible improvements.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Multiagent Decision Processes. Planning Under Uncertainty.
Cooperative Robotics.

1. INTRODUCTION
Planning and decision-making is one of the central topics

of robotics and operations research. In most realistic envi-
ronments, it is necessary to take into account uncertainty in
the agent’s actions and/or observations. A Markov Decision
Process (MDP) is a widely known and well-studied math-
ematical framework to model problems where the outcome
of an agent’s actions is probabilistic, but knowledge of the
agent’s state is assumed [6]. For this type of problems, sev-
eral algorithms exist that provide optimal and approximate
solutions to MDPs in reasonable time.

When the agent’s knowledge is insufficient to directly de-
termine its state, for example a mobile robot with noisy sen-

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

sors, then the uncertainty of its observations must also be
considered. Such problems are where the Partially Observ-
able Markov Decision Process (POMDP) framework finds
its domain of application. Planning under uncertainty for a
single agent using POMDPs has been the object of active
research for the last decade [7, 8]. While solving a POMDP
optimally in its general case is an difficult problem, vari-
ous algorithms exist to compute approximate solutions to
moderately-sized POMDPs [2, 8, 11] that may find some
application in real-world scenarios.

In certain applications, however, a single agent is not
enough to model the full scale of the problem. Such is the
case, for example, in cooperative robotics, where multiple
agents must work together to achieve a common goal. The
Decentralized POMDP framework is a natural extension of
the POMDP paradigm for multiple agents. In this type of
model, not only do the agents need to consider the uncer-
tainty of their own actions and observations, but also that of
their partners, which may (or may not) be aided by the use
of communication [12, 13]. Naturally, being more general,
this type of models is also harder to solve than their POMDP
and MDP counterparts. In fact, optimally solving a general
Dec-POMDP is provably intractable [5, 1]. However, ap-
proximate solutions can be found [4], even if the computa-
tional complexity of the current existing algorithms restricts
their application to small-scale problems. This same prob-
lem limits their usability in real world scenarios, and so far
their application has been restricted to theorical experiments
and small simulated examples [1]. Special classes of this
model include Multiagent MDPs and POMDPs (MMDPs)
and decentralized MDPs (Dec-MDPs) [1].

This work is means as an example of the application of
POMDP-related techniques in a small-scale realistic sce-
nario. By doing so, the necessary constraints and possible
simplifications to the general model can be identified, and
the underlying implementation problems become apparent.
Specifically, the problem under study is identified as a mul-
tiagent POMDP, a particular form of Dec-POMDPs. The
case-study for this work is robotic soccer, a widely known
environment for cooperative robotics. Before applying these
techniques directly to a real team of soccer robots, which
would be impractical, a reasonable approach is to first test
the behavior of such robots in realistic simulated environ-
ments. This work describes the steps taken from the de-
sign of a cooperative robotic task to its implementation in
a real robotic middleware using techniques within the Dec-
POMDP framework. We establish that, with some reason-
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able abstractions and simplifications, (Dec-)POMDP tech-
niques can be applied in real problems, and that, within the
context of this particular case-study, the obtained results
are comparable, and in some aspects advantageous, to other
established decision-making frameworks.

2. THE DEC-POMDP MODEL
A Dec-POMDP is a tuple < n, S, A, Ω, T, O, R, h > where:

• n is the number of agents;

• S is the discrete set of states for the system. The initial
state, s0 ∈ S, is assumed to be unknown to the agents;

• A is the discrete set of joint actions. A = ×iAi, with
Ai the set of actions available to agent i. At each step
a joint action a =< a1, ..an >∈ A is selected, where
ai ∈ Ai is the action selected by agent i;

• Ω is the set of joint observations. As with the joint
actions, Ω = ×iΩi, and at each step a joint observation
< o1, ..., on >∈ Ω is taken;

• T is the transition function, i.e. for states s, s′ ∈ S,
and joint action a ∈ A, T (s′, s, a) = P (s′|s, a), the
probability of making a transition from state s to s′

by applying action a;

• O is the observation function. O(o, a, s′) = P (o|a, s′)
specifies the probability of observing o after applying
action a and ending up in state s′;

• R is the reward structure. R : S×A → < specifies the
immediate reward granted to the agents as a whole,
for taking joint action a in state s;

• h is the horizon of the problem, which represents the
number of steps (decisions) that the agents can take.

The framework also allows models for communication be-
tween the agents [9]. In this particular context, commu-
nication is assumed free (although not instantaneous, re-
fer to section 5). For a more thorough description of Dec-
POMDPs and their mathematical properties, see [5].

In the most general case, in order to choose a specific ac-
tion at each time step, each agent needs to take into account
all the possible actions taken by every other agent up un-
til that time step, and all the observations that they might
have received. However, in scenarios where the agents are
able to communicate freely with each other, the problem be-
comes simpler, since it is then possible to compute a proba-
bility distribution over the set of joint states (a joint belief )
given only the latest information gathered by the agents.
This Markovian signal eliminates the need to consider the
complete history of the agents’ histories. In this sense, the
problem then reduces to a Multiagent POMDP problem. In
each step, a joint action for all agents is selected based on
this joint belief, which is then updated given the joint ob-
servation gathered by the agents.

3. MODELING A ROBOTIC SOCCER TASK
The task proposed in this work is based on a simple sit-

uation where two robotic soccer players must cooperate in
order to take the ball towards their opponent’s goal. During
the course of their task, the robots may encounter obsta-
cles that they should be able to avoid, although the position

Figure 1: The different sections into which the field
of play is divided according to an agent’s localization
information: 1-Its own half; 2-The opponent’s half;
3-Near the goal; 4-In a shooting opportunity. Note
that 3 and 4 are coincident with respect to position
but vary in their orientation requirements.

of these obstacles is not known beforehand. One of these
players should carry the ball forward, and the other should
position itself so that it may receive a pass from its partner,
if necessary. The robots may choose to pass the ball in or-
der to avoid imminent obstacles, since it is difficult to avoid
obstacles while carrying the ball. The robot that carries the
ball at any given time will be referred to in this case study
as the “Attacker”, and its partner the “Supporter”. When-
ever a pass occurs, the roles of the robots should switch,
meaning that an Attacker becomes a Supporter and vice-
versa. The Attacker should then kick the ball to the goal
as soon as it detects an opportunity to score. The initial
position of the robots and of the ball in their field of play is
unknown, and so is their role. They should then determine
which robot should carry the ball. The robots possess sen-
sors to detect their own location, the position of the ball,
and any surrounding obstacles.

3.1 Identifying states, observations, and actions
The first step in the modeling process of this task as a

Multiagent POMDP is identifying the states of the overall
system. It is assumed that the robot’s field of play only
contains the agents themselves, the ball, and an unknown
number of opponents, and except for these obstacles, their
navigation is free inside the field. The state of the robots
can then be encoded through their localization information,
the position of the ball, and the presence of obstacles. Re-
garding localization, the field of play is discretized into four
different sections, as represented in Figure 1. The agent may
be located in its own half-field, in its opponent’s half, near
the opponent’s goal, or in a shooting opportunity, which re-
quires not only for the robot to be near the goal while carry-
ing the ball, but also turned towards it. The robot may also
use localization information to sense if its ready to receive a
pass from its partner. The information regarding obstacles
can be encoded in a binary form, in the sense that the robot
is either blocked by obstacles or free to move in its current
direction. Finally, the robot is also able to detect whether or
not it is in possession of the ball. Note that the robots share
their localization information —they require this informa-
tion in order to be able to follow each other and to be able
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to sample their own observations (see Section 5). This is ac-
complished through explicit communication, as described in
the following sections. None of the remaining state variables
(information about the ball and obstacles) is shared, since
they are not required by each robot’s partner. This means
that, given this information, the robot is able to estimate
(with uncertainty) its own state, but not his partner’s.

According to this description, each agent may then be in
one of the 13 local states si ∈ Si described in the diagram
in Figure 2. However, these local states are not indepen-
dent, i.e., the problem specification mandates that one of
the robots is an Attacker and the other a Supporter. There-
fore, the total number of states is 60, which results from the
admissible combinations of local states. It is important to
note that this does not affect the partial observability of the
agents. They may still receive conflicting observations (for
example, that they are both Attackers or Supporters).

Since the complexity of most POMDP algorithms is heav-
ily dependent on the number of observations, it follows that
this set should be as reduced as possible. Since the robots
must be able to switch roles, this set is necessarily the same
for each agent. The set of possible observations is described,
for each agent, as follows:

• Own Half —Having the ball in the half-field belonging
to the agent’s team;

• Opponent’s Half —Having the ball in the opposing
team’s half-field;

• Near Goal —Having the ball near the goal;

• Ready —for an Attacker, this signals that the robot
is in a shooting opportunity. For a Supporter, this
implies that the robot is able to receive a pass;

• Not Ready —signal received by an Attacker without
the ball, or a Supporter which isn’t ready to receive a
pass.

• Blocked —if the agent is blocked by obstacles.

The preceding signals encapsulate all necessary informa-
tion about the environment, and result in 36 possible joint
observations. The construction of the associated observation
model, O = 〈oi, oj〉, i = 1, ..., 6, j = 1, ..., 6, may be further
simplified by exploiting observation independence between
agents (Section 3.2).

Note that the observation set for each agent does not de-
pend on its specific role as either an Attacker or a Supporter.
In some instances (the Ready and Not Ready signals), it is
possible to use the same representations implicitly for both
cases, since each agent will take its own observation into
context through the observation function.

These observations are, in themselves, quite abstract, and
each of them depends on possibly more than one source of in-
formation. To achieve this level of abstraction in real robots,
it is necessary to implement high-level “virtual sensors” that
classify the information collected by the robots’ physical sen-
sors (and, in the case of localization, information shared
by the partner robot) into one of the observations defined
above. The observation function can then be constructed
in practice by collecting the output of these classifiers while
setting the robot in a specific, a priori known state. The
observation function is then estimated through the collected
data.

Figure 2: Diagram showing the different possible
local states the agent may be in. Note that they
are not independent, since for one agent to be the
Attacker the other must be the Supporter and vice-
versa.

The remaining component of this model that must be de-
scribed is the set of joint actions, A. As with the observation
set, this set is identical for both agents. For this particular
task, the following actions are sufficient:

• Dribbling the ball towards the goal;

• Shooting (or kicking) the ball;

• Passing the ball towards the other robot;

• Recovering the ball if it becomes lost by the attacker;

• Following the attacker;

• Finding a position where a pass can be received (find-
ing clearance for the pass).

Logically, the first four actions described in this manner
should be performed by the Attacker robot, while the re-
maining actions should be taken by the Supporter. There-
fore, A = 〈ai, aj〉, i = 1, ..., 6, j = 1, ..., 6.

Notice that these actions are defined as high-level behav-
iors that each robot can assume. Each of these high-level ac-
tions is then interpreted by the robot’s middleware, and trig-
gers a series of more basic behaviors, that may possess their
own local decision-making loops. When the robot decides
to dribble towards the goal, for example, these lower-level
behaviors ensure that the robot is always turned towards
the goal, and supplies the robot with the necessary controls
so that it may drive the ball and try to avoid any imminent
obstacles. The specific mechanisms through which this is
accomplished lie outside of the scope of this work. However,
it is important to note that the actions taken at this level
impact the transition function of the Multiagent POMDP
model. To define such functions rigorously, it is necessary
to collect experimental data to such an extent that the tran-
sition probabilities estimated through this data approximate
the correct values of the transition function (although this
may be aided by the use of simulators).

3.2 Exploiting Local Independence
Given the set of joint observations and the set of joint ac-

tions, it is then necessary to describe the uncertainty in each
of these elements, which is to say that the transition func-
tion T and observation function O must be defined. How-
ever, in constructing these models, it is advantageous to re-
duce as much as possible the required information about
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the environment. Ideally, if the local state of an agent was
not influenced by the actions of the other agent, the model
would be completely conditional independent, i.e.:

P (s′|s, a1, a2) = P (s′|s, a1)P (s′|s, a2) (1)

This would mean that there is an independent transition
function for each agent, Ti, such that

T (s′, s, a) = T1(s
′, s, a1)T2(s

′, s, a2) (2)

for every s, s′ ∈ S, a = 〈a1, a2〉 ∈ A. From the above de-
scription of the action set, it is evident that for some of the
actions (namely, passing and shooting), this assumption is
not valid, since the application of one of these actions by an
agent may induce its partner to switch its role. However, it is
valid for all of the remaining actions. The problem may still
be further simplified by noting its symmetry. Since there is
no characteristic feature to distinguish one agent from the
other, their transition functions are identical, T1 = T2. This
means that its only necessary to consider the effects of the 4
possible independent actions for each agent (which is a con-
siderable reduction from the 36 possible joint actions). Also,
since only half of the states correspond to a specific agent be-
ing Attacker or Supporter, this means that, in matrix form,
the transition function for each of the independent actions is
block-diagonal (i.e. it is impossible to transition from being
an Attacker to a Supporter by applying these actions). For
the joint actions that are not conditional independent, their
distribution over the possible 60 states must be obtained.

For the observation model, a similar rationale can be taken,
but in this case the problem is further simplified by noting
the full observation independence in this particular Multia-
gent POMDP model. At first sight, the passing and kicking
actions could be understood to also influence the observa-
tions of the respective partner robot, but this is indeed not
the case, since the observations have been defined indepen-
dently for each state, and the actions taken by the partner
robot do not influence the ability of each agent to perceive
its respective information. The joint actions in this task can
then be said to be non-informative, in that they may in-
fluence the state of the system, but not the sensors of the
agents. In practice, this means that:

P (o|a, s′) = P (o1|a, s′)P (o2|a, s′) (3)

= O1(o1, a, s′)O2(o2, a, s′), o1,2 ∈ Ω1,2 (4)

It should also be noted that O1 = O2.
So far nothing has been said about the reward structure

for this particular robotic task. The agents will choose a
course of action (a policy) according to the expected reward
obtained in future steps (see Section 4). Although the be-
havior of the agents can be indirectly influenced by manip-
ulating the reward structure in such a way that the desired
actions are promoted, this is undesirable since it would in
fact encode the optimal policy in the model itself, and would
remove any merit from its solution. The definition of the re-
ward model is simply to assign a high reward for kicking
the ball in a shooting opportunity, and to penalize (lightly)
every other step taken.

3.3 Comments on the Functionality of the Mul-
tiagent POMDP model

Although the transition and observation models for this
particular Multiagent POMDP have been found to be rela-

tively simple to define in theory, in order to rigorously ob-
tain these models in practice, it is necessary to estimate
the respective probability distributions by collecting large
amounts of experimental data. However, due to restrictions
in time, this was overlooked in favor of using empirically es-
timated values. The effect of this decision on the optimality
of the resulting joint policy will be noted. The manner in
which the environment was discretized into states may also
prove some difficulties with respect to the definition of these
models. Since the states were defined in a loose topologi-
cal manner, they are coarse relative to the dimension of the
agents, and so the probability of transitioning to a neigh-
bour state depends heavily on the particular configuration
of the agent inside a given state. Although this effect can be
modelled, to some extent, in a given action’s transition dis-
tribution, the resulting distribution will be necessarily flat,
and little information can be taken from it. A possible way
to overcome this problem is to take advantage of the spe-
cific sensor information (for localization) of the agent, which
contains much more information than what is used by the
Multiagent POMDP.

4. OBTAINING AN APPROXIMATELY OP-
TIMAL POLICY

Although various algorithms allow for the approximate
solution of Dec-POMDPs in its most general form, such as
JESP [3], Bayesian Game based approaches [4], and Mem-
ory Bounded Dynamic Programming [14], these algorithms
typically take into account the history of each of the agents,
i.e. all the past actions taken, as well as the perceived ob-
servations. This greatly increases the computational com-
plexity of the problem. For the simpler case of Multiagent
POMDPs, more efficient algorithms exist. The Perseus al-
gorithm [2] was chosen to solve the Multiagent POMDP in
this work, due to its efficiency in handling moderately-sized
POMDPs. Perseus belongs to the family of point-based
POMDP solvers, but it is by no means the only one [11,
15]. While it is true that often the algorithm to solve a given
POMDP model should be chosen according to the problem’s
structure, this does not create, in this case, a dependancy on
any particular algorithm. In fact, if communications were
assumed instantaneous, the model could simply be reduced
to a single-agent POMDP and dealt with accordingly by any
appropriate solver.

The main objective of any MDP-based model is to maxi-
mize the expected reward of the agent(s) obtained for a given
number of steps, the problem’s horizon. This is described
by the optimal value function associated with a particular
MDP. The optimal action to take at each step is then sim-
ply the action that maximizes the value function. In the
POMDP case, this function has the useful property of being
piecewise-linear convex, i.e. the value of a given belief is a
linear combination of a set of vectors:

V ∗(b) = max
k

∑
i

biα
k
i , (5)

where b represents the belief (in this case the joint belief), t
is the number of remaining decisions to make, and αk are the
vectors that define the linear segments of the value function.
Although the value function itself can be efficiently described
in this manner, the number of vectors that define the value
function k, increases, in the worst case, exponentially in
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Figure 3: Synchronization timeline with instanta-
neous communication.

the number of observations as the horizon of the problem
increases, which is problematic when attempting to calculate
infinite-horizon solutions. Instead of taking the whole belief
space into account, the Perseus algorithm [2] considers only
a set of reachable belief points, obtained through“simulated”
exploration using the POMDP’s transition and observation
models. The algorithm then samples belief points from this
reachable set at each step and calculates its corresponding
α-vector (a reasonably inexpensive step) until the value for
all points in the belief set has been improved. The algorithm
then continues to iterate until a convergence criteria is met.

5. COMMUNICATION
In order for the problem to be modeled as a multiagent

POMDP, it was assumed that the robots could communi-
cate their observations freely to each other. However, the
agents’ optimal actions are dependent on the joint belief,
which depends on each of their partners’ observations (their
actions are already known since the joint policy is common
knowledge). For this information to be coherent, the robots
must keep synchronized when carrying out their policies,
i.e. they both must execute an action at (approximately)
the same time. This way, the agents will calculate the same
joint belief at each step.

The synchronization process and necessary explicit com-
munication is performed according to the diagram in Fig-
ure 3. Each agent is assumed to perform its own compo-
nent of the maximizing joint action for a fixed time step T .
The agents’ observations are only available after the out-
come of this action is known. Therefore, after T has passed,
the agents sample their own observations and exchange it
with their partners’. If one of the agents is delayed, then
its partner will wait for this information before proceeding.
This step is where synchronization is enforced between both
robots. This information is then used to locally calculate
the joint belief. After the joint belief is obtained, each agent

Figure 4: Synchronization timeline with delayed
communication of observations.

computes a new maximizing joint action and proceeds to the
next step.

In a realistic scenario, it might not be feasible to assume
instantaneous communication between the agents. This is
often the case in robotic soccer, since the high number of
agents quickly saturate the communication medium. In such
a setting, it can be advantageous not to wait for synchro-
nization between all involved agents. In this sense, the agent
would select an optimal action based on its own local obser-
vation, and receive its partners’ data throughout the decision
step (Figure 4). It is then necessary to investigate the effect
of receiving delayed information. Spaan et al. determined
that the solution of a Dec-POMDP in such a setting, with
up to one step of delay in the communication process, can
be acheived through a series of Bayesian games [10]. Using
a slightly modified version of the Perseus algorithm, results
were obtained for this case.

6. RESULTS
Since the planning and execution phases must be carried

out separately in the proposed task, here too they should be
made distinct. With respect to planning, the Perseus algo-
rithm performed favorably, and converged in as few as 100
iterations, as can be seen in Figure 5. Such a value function
is a good approximation of a stationary solution, i.e., a solu-
tion that assumes an infinite horizon. Such a result demon-
strates the tractability of the proposed Multiagent POMDP
model.

The execution of the task itself was tested in the Webots
simulation environment, which allows for realistic physics
and control of the robotic agents. Furthermore, the real
soccer robots upon which these agents were modeled may
be controlled by directly using the same code as in the sim-
ulator, increasing its overall realism. The two agents were
placed in arbitrary initial positions in the field of play, and
the ball was initially placed in the center of the field (which is
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Figure 5: Convergence of the Perseus algorithm for
the proposed Multiagent POMDP.

the origin of the world frame for the robots). The time step
with which these agents should select an action was set to 3
seconds. The robots possessed an estimated 0.4 probability
of performing a transition to a neighbour state when drib-
bling the ball (again, this was done empirically). The obser-
vation model for these robots considered both the possibility
of having false positive and false negative detections of ob-
stacles (0.1 probability of failing to detect an obstacle and
0.05 probability of detecting an inexistent obstacle). The lo-
calization uncertainty was deliberatily made small (around
0.05) since the information it provides is coarse and may
heavily affect the agents’ joint belief in the case of an erro-
neous observation.

Generally, the robots succeeded in their task in an effi-
cient manner. In the instantaneous communication case,
the expected reward was approximately ∼ 360, with 150 the
immediate reward for scoring a goal, −1 for all other actions
and a discount factor of 0.95. The discrepancy between the
expected reward through simulation and the final expected
value as obtained by Perseus is caused by the automatic ter-
mination of each episode by the solver after scoring a goal,
whereas in the simulator the ball was automaticaly reset to
the center of the field and rewards continued to be accumu-
lated.

When introducing a one-step delay in the communica-
tions, the robots performed less favorably with ∼ 30 ex-
pected reward. The comparative results shown in in Figure 6
were obtained by simulating both policies for 500 runs. The
fact that this reward is positive, however, demonstrates that
even in such a case, the robots are still able to cooperate in
order to score goals, albeit notably less efficiently.

Although it is difficult to demonstrate the behaviors car-
ried out by the robots in practice, two different situations
are here presented that highlight the correct performance of
the desired robotic task. These refer to the policy obtained
assuming instantaneous communication.

In Figure 7, the positions of the robots and of the ball that
were recorded from the simulator in a typical situation are
shown. The supporter robot (here shown initially through a
dashed line) maintains a fixed distance to the attacker, until
at t2 the attacker scores a goal. The ball is reset by the
simulator back to the center of the field. Since the initial
supporter is now the closest robot to the ball, it assumes the
role of attacker, and at t3 their roles have been exchanged
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Figure 6: Expected reward collected from simulat-
ing the proposed task with instantaneous communi-
cation (top) and one-step delay (bottom).

from their initial configurations. The process then repeats
itself. Note that in this case, there are no obstacles in the
field other than the agents themselves.

A second situation occurs in the presence of obstacles, and
is depicted in Figure 8. A barrier of obstacles is placed in
front of the initial attacker agent (shown in a dashed line)
and at t2 it selects a pass action since its partner has better
clearance to the goal. Their roles then switch, and the agent
shown by a filled line then carries the ball until it scores a
goal at t3. Note that the initial attacker still decided to carry
the ball for a short amount of time before passing. This is
due to the fact that the agent is commited to performing the
latest selected joint action until the predefined time-step ex-
pires. This presents a problem in dynamic environments,
since the robot may not have enough time to select the op-
timal action when presented with a sudden change in its
state. However, the time-step for these decisions cannot be
reduced too much, since otherwise the robots do not have
enough time to experience the effects of their own actions,
i.e., they would most likely remain in the same state when
using such coarse topological state definitions as the one
proposed in this robotic task.

It is apparent that the resulting policy in both of these
cases provides results that are comparable to those obtained
with decision-making frameworks that are more common in
this context (for example, manually defined policies through
finite-state automata), despite the simplifications that were
made while modeling the problem. These policies were ob-
tained naturally as the solution of the associated Multiagent
POMDP, and, once the observation and transition functions
are obtained, only the reward model needs to be adjusted if a
different task must be performed (provided that the possible
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Figure 7: Behavior of the robots after scoring a goal.
The positions of the initially attacking and support-
ing robots are shown by a filled and dashed line,
respectively. The position of the ball is marked in
gray. The goal is located at (9,0) and is 2m wide.

actions and observations remain the same). This may prove
advantageous in environments where the possible tasks are
repetitive and predictable.

7. CONCLUSIONS AND FUTURE WORK
This work described the implementation of a robotic task

based on a Multiagent POMDP model in a realistic simu-
lated scenario. The steps taken to model, solve and imple-
ment the task itself were presented, and results were taken
from various simulations. These simulations show that the
robots are able to efficiently complete the proposed task
with the given model, even if their transition and obser-
vation functions are not rigorously defined. In this man-
ner, it was established that it is possible to perform effec-
tive decision-making in realistic scenarios by using the Dec-
POMDP framework.

The advantage of this approach over most current policy-
definition methods in the robotic soccer environment is that
it deals with uncertainty in the local information of the
robots (regarding the position of obstacles or the ball, for
example) in a natural way, without having to manually de-
scribe the desired policy for each of the agents. The model
itself proved to be solvable in reasonable time. The effect
of losing immediate synchronization between the agents was
studied. It was shown that the control quality of the agents
suffers, although the resulting policy still permits the agents
to complete its task.

One problem with this type of approach is related to the
time that must elapse between two successive decision steps.
If this time value is too large, then the robot loses its ability
to react to sudden changes in its state, as when it encounters
obstacles along its course, for example. Even if the robot is
able to receive an observation consistent with these changes,
it may not be enough to alter the belief of the agent suffi-
ciently for it to perform the desired action (the observation
model has to be narrow in this sense). If the elapsed time
between iterations is too small, then there is not enough
time for the robots to transition to another state, and so
the transition function would become flat and uninforma-
tive.

Figure 8: Behavior of the robots when passing to
avoid obstacles. The initial attacker, in this case, is
shown by the dashed line. At t2 a pass occurs.

As future work, it would be advantageous to develop a
mechanism to condition the observation model on each agent’s
local information, which is typically much more accurate
than the information contained in the coarse topological def-
inition of the system’s state.
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ABSTRACT
Recent algorithmic advances in multiagent sequential decision mak-
ing have opened up a need to move beyond the traditional toy prob-
lems such as the multiagent tiger problem. Further evolution of the
algorithms will only make the gap more significant. In this paper
we introduce theGeorgia testbed for autonomous control of vehi-
cles (GaTAC), which facilitates scalable and realistic problem do-
mains pertaining to autonomous control of unmanned agents such
as uninhabited aerial vehicles (UAVs). GaTAC provides a low-cost,
open-source and flexible environment for realistically simulating
the problem domains and evaluating solutions produced by multia-
gent decision making algorithms. We describe GaTAC in detail and
demonstrate example problem settings that we are using in GaTAC.
We expect GaTAC to facilitate the development and evaluation of
scalable decision making algorithms with results that have imme-
diate practical implications.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Experimentation

Keywords
scalability, testbed, autonomous vehicles

1. INTRODUCTION
There is a critical need for problem domains for sequential de-

cision making (planning) in multiagent settings, which are realistic
and scalable to accommodate more elements such as environmen-
tal states and other agents in a natural way. These problem do-
mains will allow research in multiagent decision making to move
beyond the traditional toy problems such as the multiagent tiger
problem [10], machine maintenance problem [5], and the box push-
ing problem [13], to name a few. While these simple problem do-
mains aid in illustrating the challenges of multiagent decision mak-
ing, and sometimes turn out to be surprisingly rich in structure,
their solutions do not have immediate practical implications. This
gap will become significant as algorithms for multiagent decision
making mature sufficiently to enable application.

We think that desired problem domains should,(a) be scalable
to naturally allow for greater numbers of physical states, actions,
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observations, and agents while maintaining the plausibility of the
problem;(b) produce solutions that are rich in structure and which
have practical implications; and(c) be realistic and have popular
appeal. In this paper, we introduce a problem domain that meets
these criteria.

Unmanned agents such as uninhabited aerial vehicles (UAVs) are
used in fighting forest fires [4], law enforcement [9] , and wartime
reconnaissance. They operate in environments characterized by
multiple parameters that affect their decisions, including other agents
with common or antagonistic preference. The task is further com-
plicated as the vehicles may possess noisy sensors and unreliable
actuators. In such complex and unreliable settings, an autonomous
UAV must choose navigational and surveillance actions that are ex-
pected to optimize its objective of say, timely reconnaissance of tar-
get while avoiding detection. UAV operation theaters may be pop-
ulated by a single reconnaissance target or a host of other agents
including UAVs working together as a team, or other hostile UAVs
who could be reasoning about the subject UAV’s actions [11].

Related research in this field focuses on automatically formulat-
ing the flight trajectories of the UAVs that optimize the coverage of
region of surveillance interest while avoiding hazardous areas [1,
2, 8]. While relevant to static or high-altitude operation theaters,
the research has little applicability to UAVs in low-altitude urban
theaters (e.g. Raven RQ-11), because the interesting or hazardous
objects could themselves be mobile; their actions must be predicted
to enable optimal reconnaissance. This motivates the application
of more expressive decision-theoretic models such as interactive
POMDPs [7] and decentralized POMDPs [3].

In order to facilitate application of multiagent decision mak-
ing to the problem domain of UAV reconnaissance and its evalu-
ation, we have developed theGeorgia testbed for autonomous con-
trol of vehicles (GaTAC). GaTAC is a computer simulation frame-
work for evaluating autonomous control of aerial robotic vehicles
such as UAVs. It provides a low-cost and open-source alternative
to highly complex and expensive simulation architecture. GaTAC
uses a free, open-source and multi-platform flight simulator soft-
ware calledFlightGear. GaTAC deploys multiple instances of the
flight simulator utilizing realistic 3D terrain data on a networked
cluster of computing platforms using a scalable architecture. It
is flexible allowing the interchange of instances of manually con-
trolled vehicles with autonomous ones. It can be extended to in-
clude complex scenarios such as multiple UAVs, possibly hostile,
and reconnaissance targets attempting to blend in with civilians.

In Section 2 we describe GaTAC in detail focusing on its archi-
tecture and its components. We illustrate an example application
and evaluation of multiagent decision making to a specific problem
setting simulated in GaTAC, in Section 3. Finally, in Section 4,
we discuss the utility of realistic testbeds such as GaTAC toward
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Figure 1: (a) Design of GaTAC showing two networked instances of a flight simulator (FlightGear with 3D scenery from TerraGear),
one autonomously and other manually controlled. GaTAC is extensible and more instances may be added.(b) Snapshots of a UAV
flying within FlightGear. Notice the two different viewpoints – one of which is an external view while the other is the cockpit view.

furthering the research on multiagent decision making.

2. TESTBED FOR AUTONOMOUS
CONTROL

As we mentioned previously, the objective behind the develop-
ment of GaTAC is to provide a realistic and scalable testbed for al-
gorithms on multiagent decision making. GaTAC facilitates this by
providing an intuitive and easy to deploy architecture that makes
use of powerful, open-source software components. Successful
demonstrations of algorithms in GaTAC would not only represent
tangible gains but have the potential for practical applications to-
ward designing autonomous UAVs. We think that multiagent deci-
sion making could make significant contributions in this area.

2.1 Architecture
We show a simplified design of the GaTAC architecture in Fig. 1,

where a manually controlled UAV is interacting with an autonomous
one. Briefly, GaTAC employs multiple instances of an open-source
flight simulator possibly on different networked platforms that com-
municate with each other via external servers, and an autonomous
control module that interacts with the simulator instances. GaTAC
can be deployed on most platforms including Linux and Windows
with moderate hardware requirements, and the entire source code
is available. Gatac is implemented using C++ as the programming
language.

We describe the individual components next.

2.1.1 Flight Simulator
We utilize FlightGear [12] as the flight simulator in GaTAC.

FlightGear flight simulator project is an open-source, multi-platform,
hyperrealistic flight simulator with a goal to develop a sophisticated
flight simulator for use in academic and research environments.
The entire source code of FlightGear written in C++ is available un-
der GNU General Public License, allowing full extensibility. This
dictates our choice of programming language. It provides a flex-
ible platform with options to choose from multiple aircrafts, in-
cluding UAVs (e.g., Predator), which could be operated manually
or guided automatically by external programs. FlightGear uses a
generic, six degrees-of-freedom flight dynamics model for simu-
lating the motion of aerial vehicles. It simulates the effect of air-

flow on different part of the aircraft making it possible to perform
the simulation based on geometry and mass information combined
with more commonly available performance numbers for an air-
craft. FlightGear utilizes realistic 3-dimensional scenery available
from TerraGear, which virtually maps many parts of the world in-
cluding models of the sky.

Of particular importance is that FlightGear provides multiple
views of the flying aircraft, including external views from differ-
ent viewpoints and an internal cockpit view. The cockpit view
allows for a realistic flying experience, and is somewhat similar
to the screens shown to the actual UAV operators. Finally, multi-
ple instances of FlightGear may be run on different hosts and are
linked together through external servers located in different coun-
tries. This multi-player mode allows for multiple aircrafts to fly si-
multaneously and see each other if the aircrafts are in visual range.
This is a crucial functionality for its use in multiagent systems re-
search.

Besides providing a hyperrealistic view of the field of operation
of the UAV, the flight simulator allows realistic testing of decision-
making problem formulations and the assumptions implicit in the
formulation, which often go unnoticed and could be unreasonable.
It may also explicitly bring out the advantages of decision-theoretic
agents over other conventional methods used currently.

2.1.2 Communications Module
FlightGear allows remote control of the aircrafts through UDP

socket based communication channels. The communication mod-
ule in GaTAC (see Fig. 1(a)) establishes the UDP sockets, and
sends or receives data from the instance of FlightGear. Control
data at a low level is sent to FlightGear in order to remotely pilot
the UAV. This data includes values for more than 30 flight param-
eters including the throttle, rudder, elevator and aileron settings.
The communications module receives the aircraft’s flight dynamics
in real time from FlightGear. This includes data about the cur-
rent latitude and longitude location of the aircraft, the values of the
different flight surfaces, and current fuel level. During flight, the
communication module continuously sends and receives data from
the FlightGear instance at a pre-specified baud rate. GaTAC asso-
ciates a communication module with every instance of FlightGear
regardless of whether the corresponding aircraft is autonomously
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or manually controlled. If the aircraft is manually controlled, the
communication module simply receives the flight dynamics of the
aircraft in order to remain informed about the state of that aircraft.

The communication module also provides a way to make UAVs
aware of the positions of the other agents in the theater. This could
be used to formulate the observations of the UAVs as needed.

2.1.3 Autonomous Control Module
In order to allow algorithmic control of the aircraft, GaTAC im-

plements an autonomous control module (see Fig. 1(a)). This mod-
ule implements control actions such astakeoff,fly straight,change
headingas well as aircraftturnsusing low-level actions that change
the settings of the various flight surfaces to achieve the correspond-
ing high-level actions.

We utilize these actions to provide a set ofhigh-level actions
which guide the UAV on a user-defined grid. These actions in-
clude moving the UAV in one of the four cardinal directions (north,
south,west, andeast), flying the UAV from one location to another
defined using latitude and longitude coordinates, and making the
UAV hover over a particular area. Additionally, GaTAC allows
users to define their own grids of any size by specifying the lati-
tude and longitude coordinates of the starting location of the grid,
size of each grid cell, and the number of cells in two directions.

Consequently, algorithms for piloting the UAV now have a li-
brary of high-level actions made available to them. While we have
made efforts to implement generic actions that could be composed
to produce complex aircraft behavior, this library is extensible to
include additional actions. The low-level implementations of the
selected control actions are sent to the communications module for
delivery to FlightGear. In response, the communication module
sends back the flight dynamics, which are interpreted to obtain in-
formation about the state.

Because we intend to utilize GaTAC with multiagent decision
making frameworks, it implements methods that readpolicy tree
files in different formats including the output format of the popular
POMDP solver1. We expect these policy trees to encode intelli-
gent ways of guiding the UAVs. We intend to support additional
formats including those output by the Multiagent Decision Process
Toolbox [14].

We have made effort to make GaTAC independent of any par-
ticular type of decision-theoretic framework. It may be easily in-
tegrated with existing implementations by simply providing it with
the behavioral policies generated by the various algorithms for de-
cision making.

3. EXAMPLE PROBLEM SETTINGS
In order to demonstrate the use of GaTAC in multiagent decision

making research, we provide example problem settings that could
be simulated in GaTAC in straightforward ways. Beginning with
relatively simple settings consisting of another hostile UAV and
a ground reconnaissance target (Fig. 2(a)), we may easily extend
simulations in GaTAC to include complex scenarios comprising of
a team of UAVs, multiple hostile UAVs and reconnaissance targets
attempting to blend in with civilians. Notice that these settings have
immediate pragmatic relevance.

A particular simple setting that we have been using to evalu-
ate the performance of our decision-making algorithms is shown in
Fig. 2(b). Analogous to the previous setting, UAVI performs re-
connaissance of a potentially hostile theater populated by another
UAV J , which is the target of reconnaissance. We have divided the

1The POMDP solver is available athttp://www.cassandra.org/
pomdp/code/index.shtml.

theater into a 3×3 grid of equal-sized sectors – a common practice
in actual combat theaters. For notational convenience, let’s label
UAV J as thefugitive. UAV I must track down the fugitive before
it flees to the safe zone (indicated by the gray sector). The problem
is made complex by assuming that the fugitive is unaware of its
own location though it knows the location of the safe zone, andI

may not be aware of the fugitive’s location. The problem is further
complicated if we realistically assume nondeterministic actions and
observations.

Complexity of the above problem formulation is limited due to
the particular multiagent decision making technique that we use.
Its utility is that it demonstrates how decision-making problems
could be formulated for GaTAC. The problem formulation may be
extended to larger grids and more agents in a straightforward way.

3.1 Formulation
As a majority of the decision making frameworks require a for-

mulation of the problem in terms of the physical states, actions, ob-
servations, and the corresponding dynamic functions, we provide
examples of these below. Note that we assume partial observabil-
ity of the agents’ locations, and there are other ways to model this
problem as well.

• We begin with thephysical states. Because we must track the lo-
cations of both agents in the setting, a straightforward formulation
entails 81 states forI and 9 states for a fugitive who is ignorant of
I or 81 states otherwise. However, these numbers of physical states
are unwieldy for many of the current multiagent decision-making
algorithms. Hence, we reduce the state space forI by using the
possible relative positions of the fugitive as states. Hence, possible
states would besame,north, south,east,west,north-west, and so
on. Based on degrees of coarseness, we may have different num-
bers of states. Our representation consists of 25 physical states for
the UAV I. We initially assume that the fugitive is unaware ofI

resulting in 9 physical states for it.

• Both UAV I and the fugitive may move in one of the four car-
dinal directions or hover at their current position and listen to get
informative observations. Thus theactionsfor bothI and the fugi-
tive are {move_north, move_south, move_west, move_east, listen}.
We may synchronize the actions for the two agents in GaTAC by
allocating equal time duration to the performance of each action.

• Typically, UAVs have infrared and camera sensors whose range
is limited. Accordingly, we assume that both the UAVI and the
fugitive can sense whether their respective target is north of them
(sense_north), south of them (sense_south), west or east of them in
the same row (sense _level) or in the same location as them (sense
_found). ForI the target is the fugitive, while the fugitive’s target
is the safe zone.

• Because we assume that the fugitive is unaware of the UAV
I, its transition functionis straightforward and simply reflects the
possible nondeterministic change in grid location of the fugitive
as it moves or listens. However, transitions in physical state ofI

are contingent on the joint actions of both agents as is usually the
case in multiagent settings. Furthermore, the probability distribu-
tion over the next states is not only due to the nondeterminism of
the actions, but is also influenced by the current physical state. For
example, if the current physical state isnorth and the agents per-
form (move_south, listen), the next state could either remainnorth
or becomenorth-northbased on whether the UAVI was in the bot-
tom row or not. Thus, the formulation of the transition function is
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Figure 2: (a) Example theater of UAV I, which performs low-altitude reconnaissance of a potentially hostile theater populated by
another UAV J with conflicting objectives and a ground reconnaissance target,T . I may receive a noisy communication which
informs it about the quadrants that likely contain T . UAV J may inform T that it is likely to be spotted, in which caseT may move.
The problem may be flexibly scaled by adding more targets and sectors.(b) A simpler setting that we use consisting of one other
hostile UAV J whose task is to flee to the safe zone (gray sector) while avoiding UAVI.

impacted by our decision to use a coarse state space.

• To provide an opportunity for the UAVI to catch the fugitive, we
assume that the fugitive can sense the safe zone when it is within
a distance of 1 sector (horizontally or vertically) from it. Because
the fugitive knows the location of the safe zone, these observations
would help it learn its own location(s). On the other hand, UAV
I ’s observations of the fugitive are not limited by this constraint.
Thus, if the fugitive is in any location that is north ofI (including
north-west or north-east),I receives an observation ofsense_north.
To simulate noise in the sensors, we assume that the likelihood of
the correct observation is 0.8 while all others are equi-probable.

• The reward function is straightforward with the fugitive receiv-
ing a reward if its location is identical to that of the safe zone, and
small costs for performing actions to discourage excessive action
taking. Analogously, UAVI recieves a reward on performing an ac-
tion and receiving an observation of sense_found, and incurs small
costs for actions that lead to other observations.

• Finally, the optimality criterion could be either finite horizon
or infinite horizon with discounting. We believe that a small hori-
zon of about 10 is sufficient to compute an optimal policy for the
fugitive while larger horizons are needed for the UAVI.

3.2 Solution
We modeled the problem formulation described in Section 3.1

within the finitely-nestedinteractive POMDPframework [7]. We
modeled the UAV at a single level of nesting, which models the
fugitive at level 0. Thus, UAVI models the fugitive intentionally
but ignorant of other agents in its environment. We assumed that
the UAV and the fugitive perform their actions simultaneously and
in step.

The size of the problem precludes exact solutions and approxi-
mate solution methods are needed. We picked theinteractive point-
based value iteration (I-PBVI) technique[6] in order to approx-
imately solve the problem and generate policies for guiding the
UAV. We utilized 50 level 1 belief points and ran the I-PBVI over
3 time horizons. After running for about a day on a 2.8GHz Xeon
dual core with 4GB of RAM and Linux, we obtained satisfactory
solutions.

In Fig. 3, we show the approximately optimal policy trees for
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Figure 3: (a) Approximately optimal policy trees for the fugi-
tive who is unaware of its location, obtained by solving its
POMDP. (b) UAV I ’s policy tree obtained by solving a level 1
I-POMDP using I-PBVI.

the fugitive modeled as a POMDP and the level 1 UAV. Because
the fugitive knows the location of the safe zone (but not its own),
it starts by moving north followed by listening. Based on the in-
formative observations it receives, the fugitive then moves accord-
ingly. Given I ’s belief that it knows that the fugitive is unaware
of its own location and it is itself unaware of the physical state,
the UAV begins by listening. Based on its observations about the
relative location of the fugitive, the UAV then moves accordingly
followed by moving north in the last step. This is becauseI knows
that the fugitive is going to be moving north since it knows the
location of the safe zone.

While these policies appear satisfactory, we may evaluate them
conclusively by deploying them in GaTAC. In particular, we could
note the number of times the UAV is able to track down the fugi-
tive over multiple runs. We deployed two instances of FlightGear in
GaTAC for each of the two agents. The fugitive instance was con-
trolled by randomizing between the policy trees in Fig. 3(a), while
the UAV instance was controlled by the policy tree in Fig. 3(b).
The autonomous control modules associated with both instances
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parsed the policy trees. As we mentioned previously, the exact
position of another instance is communicated to the subject UAV
at all times using the communication module. The stochastic ob-
servations were implemented by adding noise while reporting the
position of the fugitive to the UAV.

We simulated several runs of the UAV and the fugitive in GaTAC
with the UAV and the fugitive’s location randomly sampled. We
noticed that the fugitive was caught about 60% of the times while
it reached the safe house 20% of the times. No result was obtained
the remaining times.

3.3 Scalability
Though the example problem we presented in this section is

limited, which is due to the constraints imposed by the algorithm
we used, GaTAC, being independent of the decision-making algo-
rithm, can be used to simulate policies for more complex prob-
lem settings involving larger grids, more complex actions and ob-
servations and multiple agents which can be controlled either au-
tonomously or manually. GaTAC is flexible and may be integrated
easily with other problem formulations using the provided commu-
nication and autonomous control modules.

4. DISCUSSION
Toy problem domains abound in the multiagent decision making

literature. These problem domains help highlight the challenges for
multiagent decision making while allowing the application of these
complex algorithms. However, solutions of these problems have
minimal practical significance, and often, they fail to explicitly test
the scalability of the algorithms.

We think that GaTAC fills this critical gap. In addition to being
low cost and open source, it provides a satisfactory simulatory ex-
perience of a problem domain that has popular appeal, and is exten-
sible. GaTAC represents a realistic testbed for multiagent decision
making research, and a first step in our knowledge toward enabling
decision-making algorithms to cross over to domains of practical
import. Problem domains of different sizes in GaTAC could also
function as common benchmarks for comparing the various algo-
rithms within individual decision-making frameworks.

Finally, the problem of autonomous UAV reconnaissance requires
important contributions from the multiagent decision making com-
munity. Successful evaluation of the performance of potentially
useful algorithms in a simulation environment like GaTAC paves
the way for prototype deployments in actual UAVs.
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ABSTRACT
Multi-agent planning under uncertainty, when execution is
decentralized and there is no communication, is one of the
hardest problem studied by the planification community. In
such a problem, the classical approaches consist in comput-
ing a joint behaviour policy for all of the agents. DEC-
POMDP is the most robust model to describe such a prob-
lem and to compute a joint policy. However, the high com-
plexity of this model limits its applications in real world
domains. To our knowledge, there is no solver able to deal
with a general DEC-POMDP considering more than two
agents. Indeed, the complexity grows in a combinatorial ex-
plosion with the number of agents. In order to overcome
this limitation, some new models have been introduced, like
ND-POMDPs which are able to solve problems with a lot of
agents. Unfortunalty, those approaches need some strong as-
sumptions such as independent transitions or observations
between agents. Such assumptions drastically reduce the
applicability to real-world domains. In this paper, we will
show a new method for solving problems with more than
two agents which does not need any assumption on the prob-
lem structure. We will describe how we can solve a DEC-
POMDP with several agents by computing an independent
policy for each agent and compute a coordination step af-
terwards. Experimental results show that our approach re-
mains competitive in comparison with the most popular al-
gorithms with a degradation of the overall solution quality
but deals with more than two agents. We also discuss about
how we could increase the solution quality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence and coordination, Multiagent systems;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan execution, formation, and gen-
eration

General Terms
Algorithms, Theory, Experimentation
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AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

Keywords
Agent Reasoning :: Planning (single and multi-agent),
Agreement Technologies :: Collective decision making,
Agent Cooperation :: Teamwork, coalition formation, co-
ordination, Agent Cooperation :: Distributed problem
solving

1. INTRODUCTION
Planning under uncertainty is a classical problem which

can usualy be solved with a Markov Decision Process (an
MDP [9]). This formalism has been introduced in order
to formulate problems where the outcomes of agents’s ac-
tions are uncertain. DECentralized MDPs (DEC-MDPs)
have been introduced to extend MDPs to multi-agent set-
tings. Finally, DECentralized Partially Observable MDPs
(DEC-POMDPs [3]) have been introduced in order to ex-
tend DEC-MDPs to partially observable settings.

DEC-POMDP can express every kind of multi-agent prob-
lem, which makes it a robust model, but has a high com-
plexity for computing a solution. The number of possible
solutions is so huge that it is not realistic to sweep all the
search space to find the best one. A lot of work has been
done to reduce the complexity and great improvements have
been accomplished, but one point is still as hard as it was at
the begining: dealing with a large number of agents. When
we add agents, the complexity of the problem grows expo-
nentially and, to our knowledge, none of the existing solvers
can compute a solution for more than two agents.

Some new formalisms have been introduced in order to
overcome this limitation. Network Distributed POMDPs
(ND-POMDPs [8],[6]) are one of the most performant ones
and can solve problems with much more than two agents.
Those methods still have a big drawback: they need strong
assumptions. ND-POMDPs for example can only solve prob-
lems where agents have independent transition and observa-
tion functions. Finally, we can not solve a DEC-POMDP
with such a method, but only a problem which can be de-
scribed in a decomposed fashion. Then, such an assumption
stronlgy limits the number of problems that can be solved.

Other approaches have been studied which consist in com-
puting an independent policy for each agent (without taking
the other agents into account). In those approaches, the co-
ordination aspect is not considered during the planning task
as it is in standard methods. In OC-DEC-MDPs [4], the
coordination is made with constraints on tasks executions.
In 2V-DEC-MDPs [7], it is made during a second comput-
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ing step. Such an approach is really interesting because it
gives the possibility to solve a problem with more than two
agents, while keeping a DEC-MDP formalism. However,
those approaches are limited to DEC-MDPs (which are fully
observable problems) and still need strong assumptions on
the problem structure.

We introduce in this paper a new approach to solve DEC-
POMDPs with more than two agents. We called this ap-
proach 2V-DEC-POMDP (Vector-Valued DEC-POMDP).
After a few words about the existing methods, we will ex-
plain how our formalism works and how it can compute a
policy for a given agent. We will show in section 4 how to
solve a classical DEC-POMDP with our method and com-
pute a joint-policy. In section 5, we describe experiments we
developed and results we obtained. We will show that we
can solve a DEC-POMDP with up to 4 agents without mak-
ing any assumption on the problem structure and that we
remain competitive with the most popular algorithms with
a degradation of the overall solution quality. Finally, we will
talk in section 6 about how we could increase the quality of
our policies, what are our method’s limits and how we can
overcome those limits.

2. BACKGROUND
Before introducing 2V-DEC-POMDPs, there are planning

formalisms we need to be familiar with. First of all are
(PO)MDPs, then DEC-(PO)MDPs. We will also present
2V-DEC-MDPs.

2.1 Planning with one agent

2.1.1 MDP
In planning theory, a classical problem is, for an agent, to

compute a policy using stochastic actions (when the agent
is not sure of the effect of its actions). Markov Decision
Process (MDP) [9] framework has been introduced in order
to solve such a problem and compute an optimal policy. An
MDP is a tuple 〈S,A, T,R〉, with: (1) S a set of states, (2)
A a set of actions, (3) T : S × A× S → [0; 1] the transition
function and (3) R : S × A × S → R the reward function
which expresses both positive reward for goal states and
negative reward for hazardous states.

In order to solve such a problem, we need an optimality
criterion which will give us a value for a given policy. One of
the most used is the expected reward on an infinite horizon.
With γ ≤ 1, the optimal value function V ∗ of a state s is
defined by:

V ∗(s) = max
a∈A

(R(s, a) + γ
X
s′∈S

T (s, a, s′) · V ∗(s′)),∀s ∈ S

Using such a criterion, we can compute a policy π. A
policy is a mapping π : S → A and the optimal policy π∗ is
such that:

π∗(s) = Argmax
a

(R(s, a) + γ
X
s′∈S

T (s, a, s′) · V ∗(s′)), ∀s ∈ S

2.1.2 POMDP
A POMDP (Partially Observable MDP) is an MDP in

which an agent can not fully observe its environment. When
it executes an action, it does not know in which state it
will end up in but it receives an observation. The model

is the same than the one used for an MDP and we add an
observations set Ω and an observation function O:

O : S ×A× S × Ω→ [0; 1]

In a PO problem, agents do not count on states while com-
puting a plan, but on belief-states, which are a probability
distribution over states.

2.2 Planning with two or more agents

2.2.1 DEC-MDP
The DEC-MDP formalism has been introduced in order to

deal with problems where two or more agents are involved.
In the same way MDPs have been extended to POMDPs,
DEC-MDPs have been extended to DEC-POMDPs, in order
to solve problems where two or more agents are involved and
where each agent has a partial view of its environment.

2.2.2 DEC-POMDP
A DECentralized Partially Observable MDP [3] (DEC-

POMDP) is a tuple 〈n, S, b0, A, T,Ω, O,R, Z〉 where:

• n is the number of agents involved in the problem,

• S is a finite set of states,

• b0 ∈ ∆S is the initial belief state,

• Ai in A = {A1, ..., An} is a finite set of actions available
to agent i (with A1 × ...×An the set of joint actions),

• T is the transition function (on joint actions),

• Ωi in Ω = {Ω1, ...,Ωn} is a finite set of observations
available to agent i,

• O : A1 × ... × An × S × Ω1 × ... × Ωn → [0, 1] is the
observation function,

• R : S ×A1 × ...×An × S → R is the reward function,

• Z is the number of steps of the problem solution.

In the following, we will write Xi if i refers to an agent, Xi

otherwise. In such a problem, a policy is represented as a
tree where nodes are actions and edges are observations. A
solution for the problem will be a joint policy tree, one per
agent.

2.3 Using local interactions
We will describe two different approaches for solving DEC-

MDPs. Those two approaches are based on the same idea:
solving the problem of each agent independently of the other
agents but keeping the coordination aspect inside the indi-
vidual problems.

2.3.1 OC-DEC-MDP
In [4], the OC-DEC-MDP formalism has been introduced

in order to solve large decision problems with temporal,
precedence and resource constraints. In this approach, each
agent has a set of tasks to execute and know what are the
task sets of the other agents. It can then choose the or-
der in which it will execute its tasks, while considering the
consequences of its actions on the other agents.

In such an approach, agents solve their problems indepen-
dently of each others but do not completely ignore the other
agents. However, the agents take each others into account
while choosing the order in which they will execute their
tasks and when.

68



2.3.2 2V-DEC-MDP
In [7], the Vector-Valued Decentralized Markov Decision

Process (2V-DEC-MDP) framework has been proposed to
coordinate locally the actions of a group of agents. Assuming
without loss of generality that all agents are identical, a 2V-
DEC-MDP is a set of 2V-MDPs, one per agent. A 2V-MDP
is composed of an off-line part (to represent the behaviour
of an agent ignoring its neighbours) and an on-line part (to
adapt its actions with the other agents in the neighborhood).

The off-line part is an MDP such as the one we described
in sec.2.1.1. The on-line part of a 2V-MDP is built with
the computation of a local social impact, according to local
observations. The functions for computing the value of the
social impact are ER for the individual reward (using the
MDP), JER for the group interest and JEP for the negative
impact on the group.

The on-line part is a sequence of small DEC-MDPs with a
special transition model. During this part, an agent builds a
new DEC-MDP after each decision it takes (only considering
agents in its neighborhood and planning on a short horizon,
less than 3). In this DEC-MDP, the probability for an agent
i to go from a joint state s to a joint state s′ only depends
on ai.

Deriving a policy for this DEC-MDP consists in solving
a multi-criteria Bellman equation based on an Augmented
Reward AR = (ER, JER, JEP ). To solve this equation, a
regret based value iteration using LexDiff operator [7] has
been designed.

For each possible policy πi, LexDiff builds a vector v =
(ER(πi), JER(πi), JEP (πi)) and normalize each value vec-
tor vi = (v1

i , v
2
i , v

3
i ) to a utilitie vector vu = (v1

u, v
2
u, v

3
u).

LexDiff then uses a leximin operator to find the best vec-
tor: it permutes those utilities vectors so that each vector
(v1, v2, v3) be such that v1 ≥ v2 ≥ v3. The best vector (and
so the best policy) is then derived from a lexicographic or-
der: for two vectors va = (v1

a, v
2
a, v

3
a) and vb = (v1

b , v
2
b , v

3
b ),

we choose va if v1
a > v1

b and vb if v1
a < v1

b . If v1
a = v1

b , we
compare v2

a and v2
b , and so on.

2.3.3 Scope of those approaches
OC-DEC-MDPs and 2V-DEC-MDPs are powerfull tools

for solving DEC-MDPs with a lot of agents, but some issues
remain. In OC-DEC-MDPs, we can only solve DEC-MDPs
with a very peculiar structure, where each agent has a set of
tasks to accomplish. In 2V-DEC-MDPs, we solve standard
DEC-MDPs, but we only consider very basic interactions
(help or block). Moreover, none of those approaches work
on DEC-POMDPs.

3. OUR FORMALISM: 2V-DEC-POMDPS
We will now introduce our formalism. First, we will ex-

plain its concept. Second, we will show how to formalize a
problem using a 2V-DEC-POMDP. Finally, we will give a
first approach to solve such a 2V-DEC-POMDP.

3.1 Concept
We will describe how a 2V-DEC-POMDP works, in addi-

tion to several examples. We will propose an answer to the
question: How to get rid of the combinatorial explo-
sion due to the number of agents in a DEC-POMDP,
without loosing expressiveness?

3.1.1 Statement

DEC-POMDPs are really hard to solve, so researchers
tried to find ways to reduce this complexity in order to solve
problems with larger horizons, number of states or observa-
tions. Some of them tried to reduce the number of policies
we keep in memory [10], to work only with “probably in-
tersting policies” [5], to use memory-bounded controllers [1]
or to solve goal-oriented problems [2]. If we look deeper
into a DEC-POMDP mechanism, we can see that the “de-
centralized” aspect, which implies taking into account every
possible combination of joint policies, involves a combina-
torial explosion. It is one of the biggest reasons of DEC-
POMDPs’ complexity (without this point, a DEC-POMDP
would “only” be as complex as a POMDP) but almost no-
body tried to work on this aspect of a DEC-POMDP.

ND-POMDPs [10] have been introduced addressing this
specific problem. In an ND-POMDP, each agent has its own
transition and observation functions (they are completly in-
dependent) and rewards are computed on local sub-sets of
agents. Such a formalism can address much bigger instances
in terms of number of agents, but the expressiveness is very
limited.

In [7], Boussard showed how an approach which considers
the individual and the coordination aspects as two different
problems can have good results with DEC-MDPs (or DEC-
POMDPs with full local observation). So, why not trying
such an approach with general DEC-POMDPs?

3.1.2 Consequence
After making this statement, we tried a way to get rid of

this combinatorial explosion and introduced the 2V-DEC-
POMDP formalism. In the same way as in 2V-DEC-MDPs,
an agent tries to solve its own problem independently of
other agents and coordinates itself with the other agents
during its life cycle. We will separate our problem in two
smaller ones. One of them will be the problem of a solo
agent, making the assumption it is alone (this problem will
answer to the agent how to meet its objectives) and the
other one will be a coordination problem (which will answer
to the agent how to react if it meets with other agents).

Contrary to 2V-DEC-MDPs, we wanted a real coordina-
tion problem, capable of expressing any type of interaction.
This coordination problem, which contains the combinato-
rial complexity, can be seen as a collection of small problems,
one per possible type of interaction. By splitting this prob-
lem into several independent sub problems, we will drasti-
cally decrease the combinatorial complexity. Such an ap-
proach do not limit the number of interactions.

Briefly, when we consider a problem, we split it into two
parts (individual and coordination), solve each part and
merge those two solutions in order to compute a global so-
lution (for the original problem). Like in 2V-DEC-MDPs,
we will not compute a joint policy for the global problem.
Instead of that, each agent will solve its own problem in two
steps: the first will be offline (computing a solution for each
part), while the second will be online (after each action,
updating its belief state and choosing its best next action
according to its value functions).

3.1.3 Examples
Those two examples show how a 2V-DEC-POMDP can

be used to describe a problem:

• Example 1: docker robots. We can imagine a problem
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where several agents are in a room, with several items
on the ground. Agents have to catch those items and
to put them on shelves, but some items are too heavy
to be carried by a single agent. In a standard DEC-
POMDP, agents would compute an (optimal) joint pol-
icy in which they will store all the items. In a 2V-DEC-
POMDP, every agent will compute its own policy in
two steps:

– computing an individual policy, to store a maxi-
mum number of items, independently of the other
agents,

– computing coordination policies, exactly one per
each possible type of interaction (how to carry a
heavy item with another agent, how to store its
items without blocking its neighborhood, etc...).

So, during the execution, the robot will follow its in-
dividual policy. But, if it meets another robot, it will
take this opportunity and apply one of its coordination
policies.

• Example 2: robots platooning. In this problem, several
robots have to move in a coordinate fashion, and to
reach a destination while not breaking the platoon.
Such a problem can be solved by a traditional DEC-
POMDP but is really hard. With a 2V-DEC-POMDP,
we solve:

– the individual problem, which consists in reaching
the destination,

– the coordination problems: staying in the pla-
toon, waiting for slow agents, avoiding collisions
with other agents, etc...

Like for the dockers, robots in the platooning problem
will mainly follow their individual policy, but will use
their coordination policies to solve local problems in
order to keep the platoon unbroken. Splitting individ-
ual and coordination policies will make this problem
much easier.

Those are just examples, but 2V-DEC-POMDP can express
every type of problem that a DEC-POMDP can express.

3.2 How to define a problem using a 2V-DEC-
POMDP

A 2V-DEC-POMDP “PB” is the union of two small prob-
lems. We write PB = 〈n, Pbind, P bcoo〉, with n the num-
ber of agents, Pbind the individual problem and Pbcoo the
coordination problem. We will use S = {s1, . . . , s|S|} the
set of every possible joint state for our problem with si =
(si

1, . . . , s
i
n) and si

k the part of si relative to the agent k (and
we write si the part of s relative to the agent i).

3.2.1 The individual problem: Pbind

Pbind will be a POMDP. Once the problem of one agent is
clearly defined, writing the associated POMDP is easy (we
will see in the next section how to extract this POMDP from
a DEC-POMDP). For an agent i, the states for this POMDP

will be {s1i , s2i , . . . , s
|S|
i } and the actions will be A. Solving

this part can be made with any POMDP solver. Actually,
we use the TOP solver, because of its speed. All we need is
a set of Alpha Vectors for the output, so we can have a value
function V ind(b, a) with b a belief-state and a an action.

3.2.2 The coordination problem: Pbcoo

This part is more complex than the first one. We will not
compute two functions like we do in a 2V-DEC-MDP (JEP
and JER), but a single one. Pbcoo = {IC0, . . . , ICj} will
be a set of coordination problems ICi, one for each possible
interaction. Each ICi is associated to an Interaction class.

Definition 1. Interaction class. In a given state, we use a
criterion to decide if two agents are in interaction or not.
Two agents i and j in respectively states si and sj are
in interaction when their joint reward JR (the reward of
the group) at these states is not the sum of their individ-
ual rewards R at these states. More formally speaking :
∃a ∈ A2, JR(si, sj , a) 6= R(si, ai) + R(sj , aj)). An interac-
tion class IC is a set of joint states. We distribute S among
j sets according to which agents are in interaction (with
0 < j ≤ |S|). After that, we reduce each set to the agents
involved in it (example: we build a set Si from S with states
where the 5 first agents are in interaction and we replace ev-
ery state si = (si

1, . . . , s
i
n) in Si by a state s′i = (si

1, . . . , s
i
5)).

Each reduced set is then an interaction class.

We made the choice to solve Pbcoo with a meta-MMDP (a
set of MMDPs) but any other multi-agent formalism could
work (see sec. 6 for more discussions about this point). So,
for each interaction class ICi with k agents, we define a
MMDP Pbi = 〈S′, A′, T,R〉 with:

• S′ = ICi ∪ ε, with ε an abstract state representing the
transition to another interaction class,

• A′ = Ak the set of possible joint actions,

• T : S′ ×A′ × S′ → [0; 1] the transition model between
each state where:

– ∀ai ∈ A′, T (ε, ai, sj) = p and p = 1 if sj = ε,
p = 0 otherwise,

– T (sj , ai, ε) = p, and p = 0 if applying ai in the
state sj can not lead to another interaction class
(else, p is computed such as

X
s′

T (sj , ai, s′) = 1).

• R : S′ ×A′ → R the reward function.

Solving such an MMDP is easy (it can be solved like an

MDP). All we need for the output is a value function V Pbi

:
S′ ×A′ → R.

4. USING A 2V-DEC-POMDP TO SOLVE A
DEC-POMDP

We will show how to solve a DEC-POMDP using a 2V-
DEC-POMDP. We have to convert the DEC-POMDP into
a 2V-DEC-POMDP, using a method to compute the inter-
action classes. Once this is done, we will solve this new
problem and convert the solution into a DEC-POMDP’s so-
lution.

4.1 Computing the interaction classes
If we want to convert a DEC-POMDP into a 2V-DEC-

POMDP without any human intervention, we need a way
to automatically compute the ICs. We can imagine several
criteria to distribute states among ICs, which respect this
rule: each state is in one IC and only one.
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We chose a criterion based on the reward. We consider an
agent ag1 is in interaction with an agent ag2 in a state s if
and only if:

∃(a3, . . . , an) ∈ A3 × · · · ×An, ∃a2, a
′
2 ∈ A2 tq :

Argmax
a1∈A1

R(a1, a2, ..., an, s) 6= Argmax
a′1∈A1

R(a′1, a
′
2, a3, ..., an, s)

Intuitively, it means ag1 interacts with ag2 if the choice of
the best action a1 for ag1 (the action which maximize the
immediate reward) depends on the action ag2 chosen by ag2.

So, using this criterion to define an interaction, we will
have an IC for states where ag1 works alone, another for
states where ag1 is in interaction with ag2, etc...

4.2 How to convert a DEC-POMDP into a 2V-
DEC-POMDP

We take, for the input, a DEC-POMDP 〈S,A, T,R,Ω, O〉
with n agents where each state s is a tuple s = (s1, . . . , sn) of
agents’ states (example: a state s which describes positions
of every agent in a problem can be split into n states si, one
per agent i, describing the position of i). We will split the
DEC-POMDP into two new problems: Pbind and Pbcoo.

4.2.1 Generating the individual problem: Pbind

Computing a POMDP 〈Si, A, Ti, Ri,Ωi, Oi〉 associated to
the DEC-POMDP is simple: we average the DEC-POMDP.
For an agent i, we build:

• Si = {s1i , s2i , . . . , s
|S|
i },

• A is directly cloned from the DEC-POMDP,

• we consider:

S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn

We build A−i and O−i in the same way.

• Ti : Si ×A× Si → [0; 1] with:

Ti(si, ai, s
′
i) = avg

s∈S−i,
a∈A−i

X
s′∈S−i

T ((si, s), (ai, a), (s′i, s
′))

,

• Ri : Si ×A× Si → R with:

Ri(si, ai, s
′
i) = avg

s∈S−i,
a∈A−i

avg
s′∈S′−i

R((si, s), (ai, a), (s′i, s
′))

• Ωi is directly cloned from the DEC-POMDP,

• Oi : Si ×A× Si × Ωi → [0; 1] with Oi(si, ai, s
′
i, oi) =

avg
s∈S−i,
a∈A−i,

s′∈S′−i

X
o∈O−i

O((si, s), (ai, a), (s′i, s
′), (oi, o))

4.2.2 Generating the coordination problem: Pbcoo

For the coordination problem, we will generate Pbcoo =
{Pb1, . . . , P bk} the k sub problems describing each possible
interaction. First of all, we need to split the states of S into
a set of k interaction classes (sec. 3.2.2): the next section of
this paper details this aspect of the problem. Once ICs are
generated, we build an MMDP Pbj = 〈Sj , A, T j , Rj〉 per IC
j with m agents:

• Sj = ICj∪ε (the special state ε is described previously
in sec. 3.2.2),

• A is directly cloned from the DEC-POMDP,

• we write S−Sj the set of tuples (sm+1, ..., sn) associ-

ated to the agents (m+ 1), ..., n which are not in ICj .
We build A−Aj in the same way.

• T j : Sj ×Am × Sj → [0 : 1] with:

– T j(s, a, s′) =

avg
sc∈S−Sj

avg
ac∈A−Aj

X
s′c∈S−Sj

T ((s, sc), (a, ac), (s′, s′c))

– T j(s, a, ε) =

avg
sc∈S−Sj

avg
ac∈A−Aj

X
s′|s′∈S∧s′ /∈Sj

T ((s, sc), (a, ac), s′)

• Rj : Sj ×Am → R with:

Rj(s, a) =

avg
sc∈S−Sj

avg
ac∈A−Aj

X
s′∈S

R((s, sc), (a, ac), s′)

Using an “average” operator for computing T and R is a
first idea but not necessarily the most efficient one. Finding
a smart operator is a subject left to futur works (see sec.6
for details).

4.2.3 usage of sum and averaging operator
During the convertion process, we use a lot the averaging

operator. We also use the sum operator. Such an approach
can decrease the precision of the extracted sub-problems.
We will see in sec. 5 that we are a bit far from optimal
solutions, compared to other algorithms. Those averaging
operators are probably responsible of this lack of optimality.

In sec.6.3, we analyze this problems and we propose in
sec.7 some ways to overcome those difficulties.

4.3 How to solve the problem and generate a
solution for the DEC-POMDP

First of all, we need to solve Pbind and Pbcoo indepen-
dently. We mentioned that we can solve Pbind with a clas-
sical POMDP solver. Solving Pbcoo is a little more compli-
cated:

• we solve every MMDP,

• we write a value function V (s, a) for PBcoo: for each
state s ∈ S and each joint action a ∈ An, we look for
the IC associated and reduce s and a to the concerned
agents. We then write, with sreduced ∈ ICi:

V (s, a) = V Pbi

(sreduced, areduced)

• finally, we write a function V coo(b, a) with b a joint

belief-state with: V coo(b, a) =
X
s∈b

b(s)V̇ (s, a).

Now, each agent has two functions V coo and V ind and
an initial belief-state b. In a traditional DEC-POMDP, we
generate a (joint) policy but, here, the behavior will be com-
puted during the on-line step. During its life, an agent i acts
as follow:
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• It chooses its next action a:

– First, it computes bi:

∀sj ∈ Sj , bi(sj) =
X

s∈S−j

b((s, sj))

– Second, it chooses the best action a:

a = Argmax
a∈An

LexDiff(V ind(bi, a), V coo(b, a))

– Third, it applies ai extracted from a.

LexDiff needs to put coefficients cind on Pbind and ccoo

on Pbcoo. Choosing cind and ccoo is not trivial and can
have a big impact on the final behaviour. Experiments
showed we can not definitely choose them: for some
problems, we need cind to be greater than ccoo but, in
other problems, we need the opposite. Actually, we
manually choose those coefficients, but we need a way
to compute them (in order to make the conversion fully
human independent). This problem will be the subject
of a future work.

• It updates its belief-state. With bao the belief-state in
which we end after a joint action a is applied in a
belief-state b and the agent received an observation o,
we write:

bao(s) =

O(o|s, a)
X
s′∈S

P (s|s′, a)b(s′)X
s′∈S

X
s′′∈S

O(o|s′′, a)P (s′′|s′, a)b(s′)

In this equation, we computeO(o|s, a) with a sum of all
the joint observations containing o. We don’t have a,
because we don’t know what actions the other agents
did, but we have an optimal joint action we computed
previously, so we use this joint action for updating b.

5. EXPERIMENTAL RESULTS
We made some experiments to test our method. We will

present first the context in which we made those experiments
and, second, the results of those tests.

5.1 Context
Because our formalism does not produce a joint policy

tree but a set of value functions, it is not trivial to com-
pare it with other existing methods. We made two kinds of
comparison:

• We computed an ADR (Average Discounted Reward):
this test is made in two steps. First, we compute a
policy (a tree, a value function, or anything else). Sec-
ond, we simulate the execution of this policy (in a sim-
ulator, each agent follows its own policy and the world
evolves according to the transition function. After each
action, an agent receives an observation according to
the observation function). During this execution, we
cumulate discounted rewards (total reward R after n
steps is R = r0 + γ1r1 + · · ·+ γnrn, γ ≤ 1). If we run
enough simulations and average the cumulated reward
of each execution, we obtain a representative value of
the policies’ quality.

• We artificially built a joint policy tree: using the value
functions, we can build a joint policy-tree. Accord-
ing to the initial belief-state, we can choose an initial
action for each agent. Then, we can add an edge for
each possible observation, update the belief state of
each agent according to this observation and choose
the next action, and so on. Once we have those policy-
trees, we can compute the cumulated reward.

Each of those methods have positive and negative aspects.
With an ADR, the good point is we can work on an“infinite”
horizon (we stop the simulation at step i when γi becomes
unsignificant) and we have a result near to what would hap-
pen in“real world”. The problem is the possibility to“ignore”
some parts of the joint policy, because their probability is
too small, so the global discounted reward is misestimated.
This problem does not exist when we compute the value of
a policy tree, because we are sure to explore the totality of
the tree, but we then have to stop the policy at an arbitrary
horizon (we can not compute an infinite tree), which is not
representative of the real behaviour of an agent following
this policy. Moreover, computing the value of all the tree
is not necessary representative of what would happen in a
real execution (some parts can have a high value but nearly
never be used).

We made the choice to compare our results with the PBIP
solver. According to the rate quality/time, PBIP is actually
the best solver. In [5], PBIP is better than MBDP (and its
extensions). Moreover, we used the solver written by the
PBIP author for our tests, so we are sure it works and it is
representative of this algorithm quality.

We wrote a DEC-POMDP solver using our formalism, a
simulator to compute the ADR and a policy-tree extractor
to compute its value. We used TOP to solve the individual
part and MMDPs to solve the coordination part. We used
the same file format for the input problem as in the PBIP
solver, so we are sure that the two algorithms solve the same
problem.

We give results with the following problems, which are
standard DEC-POMDP benchmarks: Dec-Tiger and Meet-
ing in a 3x3 Grid. For the ADR tests, we made 10000 sim-
ulations per problem. We used the following coefficients to
solve those problems: 0.8 for πind and 0.2 for πcoo.

5.2 Results

5.2.1 Using an ADR
The table 1 shows results we had while making tests with

an ADR. We compare PBIP with 2V (Vector-Valued, our
method). We chose a horizon of 10 for PBIP, which is enough
for computing an ADR in those problems. Moreover, PBIP
needs a second parameter which is the number of trajectories
explored: we set a value of 7 to this parameter (which is,
according to the author of PBIP, the best parameter to use
in those problems).

Here, 2V is faster than PBIP for every problem. We note
that our method brings a better ADR than PBIP on the
meeting in a Grid problem. This problem fits very well to
our method, because interactions are very local, in opposi-
tion to dec-tiger where agents have to act in a fully coordi-
nate fashion. We can see here how the problem structure is
important and influence on the performances of our method.

Those results are good, but are just a simulation. Per-
haps the simulator ignored some very rare situations (but
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PBIP Vector-Valued
ADR Duration ADR Duration

Dec-Tiger 1.168 0.54s -3.471 0.22s
Grid 3x3 1.238 0.99s 2.152 0.41s

Figure 1: Computation time and ADR of a policy.

PBIP Vector-Valued
Reward Duration Reward Duration

Dec-Tiger 9.31 0.54s -4.47 0.22s
Grid 3x3 5.21 0.99s 3.68 0.41s

Figure 2: Computation time and cumulated reward
of a policy.

not impossible) in which PBIP would be better than 2V.
Because of this uncertainty, we chose to artificially build a
policy-tree and to compute its value.

5.2.2 Building a policy-tree
Like in the previous part, we have a table showing our

results. After solving the problem, we built a policy tree
according to our value functions. After building the tree of
every agent, we computed a cumulated reward associated to
the execution of this joint-policy with an horizon of 10.

In table 2, we can see computation times are the same (we
didn’t change the resolution process) but values are different.
Now, our method is lower than PBIP in terms of cumulated
reward even for 3x3 Grid. In those conditions, how much is
good or bad our method compared to PBIP? It depends on
how we look at it.

Those results are not a big surprise: we are really fast,
but not so good in terms of quality (not so bad too). Our
objective wasn’t to reach a high quality but to break the
combinatorial complexity. Now, we can work on ways to
improve the quality of our policies (by using little DEC-
POMDPs instead of MMDPs for example, see sec.6). So,
what about problems with more than 2 agents?

5.2.3 Solving problems with a lot of agents
Because existing DEC-POMDPs solvers can’t solve prob-

lems with a lot of agents (we usually don’t go further than
2 agents), there are no existing benchmarks for those type
of problems. So, we took problems usually solved by ND-
POMDP and convert them into DEC-POMDPs (with joint
transition/observation functions, global reward functions,
etc...). Once this translation is done, we have real DEC-
POMDP benchmarks.

We solve the DEC-POMDP equivalence of a Fire Fight-
ing problem with 2 to 4 agents and the equivalence of a
Sensor Network problem. We wrote those problems in order
to have global transitions, observations and reward func-
tions defined on the state of the system (contrary to an ND-
POMDP where we have n functions, each one defined on the
state of one agent).

The Fire Fighting problem was solved in approximaly 20
seconds. We will not try to compare those results with ND-
POMDP ones, because it is not what is important here and
the problem description is not the same anymore. The thing
to see is the following: there are lots of problems which can
not be solved by an ND-POMDP. With our formalism, we

can solve them and we saw we remain competitive in terms
of quality, with good hopes for improving it. As long as we
know, this is the first time that a real DEC-POMDP with
so much agents is solved.

5.2.4 Deeper analysis
We can solve problems with a lot of agents without too

much difficulties. This point is a real success according to
our first objective. Now, we have to increase the quality of
the policies we compute. Anyway, there are still some limi-
tations: going from 3 to 4 agents increase the computation
time from 1.6s to 20s.

First of all, we searched which part of the solving process
takes the most amount of time. Our results are as following:

• Computation times for solving the coordination part
almost didn’t increase: each sub-problem being very
simple, computation times are realy fast.

• Computation times for solving the coordination part
increased a little: in the Fire Fighting problem, the
number of states depends on the number of agents
(there are one house per agent). If only the number of
agents had increased, computation times for this part
would have stayed the same.

• Computation times for reading the input problem and
building the sub-problems increased a lot. This is the
hard part of our method. A transition matrix grows
exponentially with the number of agents, so does the
time for manipulating this matrix.

So, if we want to completely get rid of the combinatorial
explosion, we need to work on this specific problem (manip-
ulating the data). First of all, it is important to see our
solver is absolutly not optimized. It is wrote in python (for
easing the modification), we manipulate strings, etc... The
first thing to do will be a rewriting of this solver, in an
optimized fashion. This will help us to manipulate larger
instances but will not probably be enough. We will discuss
in sec.6 several ways to manipulate larger instances.

6. DISCUSSION
Before concluding, we will try to have a global view of our

work and analyze its key aspects and its limits.

6.1 Advantages of 2V-DEC-POMDPs
Before everything else, this work is a proof that it is pos-

sible to solve bigger instances of DEC-POMDPs than we
usually do, by initially solving the individual problems and
coordinating the agents in a later step.

Using our formalism offers a fast way to solve big DEC-
POMDPs, while keeping the possibility to solve problems
where interactions between agents evolve during the execu-
tion of the problem (in opposite to ND-POMDPs where the
interaction model is fixed). Moreover, even if it is not an
optimal solution, tests prove we can have a “good” solution,
with good results on classical benchmarks. As long as we
know, this work is the first one to solve independently the in-
dividual aspect and the coordination aspect while solving all
kind of DEC-POMDPs. It permitted us to solve instances
that no other solver can solve.
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6.2 Key aspects
There are some “key” points in our work which have a

big influence on the results. First of all, the choice of the
POMDP solver will change a lot of things. Actually, we use
the TOP solver, because it is very fast. The problem is it
can sometimes compute bad policies which will bring us bad
results. The choice of a solver must be made according to
what is the most important: quality, time, etc...?

Another key point is the choice of a coefficient for Pbind

and Pbcoo. Actually, we manually chose those coefficients
and the impact on the final result is very important (sec. 5).
We must find a way to compute those coefficients, in order
to make the solving process completely automatic.

A last key point is the choice of the operator used for
extracting Pbcoo’s transition and reward functions from the
orginial DEC-POMDP’s functions. Actually, we use an av-
erage operator but it is probably too naive: with such an
operator, functions are too approximative, which can ex-
plain the degradation of the overall solution quality. We will
probably have to find better operators which will compute
functions fitting better the situation.

6.3 Model limits
Even if, while solving the problem, we are not limited by

the number of agents anymore, it is still a limit in terms of
memory space. A transition (or observation) matrix can be-
come really big when we have a lot of agents. Representing
it in memory, and manipulating it for computing the indi-
vidual and the coordination problems is not trivial. In the
tests we made, manipulating data takes up to 2/3 of the total
time, and we did not present results with bigger instances.
During our tests, we couldn’t go as far as we wanted in terms
of number of agents, because of this difficulty.

One solution could be to compactly represent the problem,
using some“tricks”. Such a solution could work for instances
“a little bigger”, but not for all instances. One idea we had
is to directly use our formalism to represent the problem
in a distributed way. ND-POMDPs [8] are a solution for
representing problems in a distributed way (each agent has
its own transition function, observation function, etc... and
the reward function is joint on local sets of agents). The
problem of ND-POMDPs is their limited representativity:
we can not express problems where agents’ transitions or
observations are linked. With our formalism, we could use
the individual part to express the transition and observation
functions of one agent, and use the coordination part to link
those functions beetween agents in interaction.

Moreover, we use sum and averaging operators to extract
individual and coordination problems from the main one.
This lead to the loss of informations. Using a model in
which the individual and the coordination parts would be
explicitly described could then improve our results.

7. FUTURE WORK AND CONCLUSION
There are still points on which we have to work on but

2V-DEC-POMDP is already a promising model.

7.1 Future work
We could work on automatically computing coefficients for

Pbind and Pbcoo. We could work too on different criterion
to compute ICs in order to find the best one. We also have
some ideas to make the interaction problem more optimal
and then to increase the quality of the global solution.

The most important work to come (which we are actu-
ally working on) is writing an adapted model, in which we
could explicitly define the individual and the coordination
parts. Such a model could lead us to solve optimally prob-
lems with more thant two agents without any restrictions
on the number of interactions. Moreover, once we will be
able to directly express Pbind and Pbcoo, we should be able
to manipulate bigger instances, with a lot of agents.

7.2 Conclusion
2V-DEC-POMDP is a promising model, which gave us

good results in the tests we made. We actually have good
behaviors, with a small complexity (relative to the complex-
ity of a DEC-POMDP). Obviously, there are still a lot of
work, like making the conversion from a DEC-POMDP fully
automatic, increasing the quality of the computed policies
or expressing really big instances. But, such an approach
gives us a new way to solve DEC-POMDPs and opens a
possibility to work on real size instances.
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