
Temporal Planning by a Continuous and Differentiable Nonlinear
Optimization Formulation and Constraint Partitioning

Yixin Chen
Department of Computer Science and Engineering

Washington University in St Louis
St Louis, MO 63130

E-mail: chen@cse.wustl.edu

Abstract

In this paper, we study efficient temporal plan-
ning based on a continuous and differentiable
nonlinear programming transformation of the
planning problem. Based on the observation
that many large planning problems have con-
straint locality, we have previously proposed
the constraint partitioning approach that uti-
lizes the constraint structure by partitioning the
constraints of a planning problem into sub-
problems and solving each subproblem indi-
vidually. Constraint partitioning has led to the
design of SGPlan, a state-of-the-art planner.
However, SGPlan is based on a mixed-integer
programming formulation that is computation-
ally expensive to solve. In this paper, we
present a continuous and differentiable non-
linear programming formulation for planning
problems, and apply the constraint partition-
ing approach to this formulation. Because the
nonlinear programming transformation is con-
tinuous and differentiable, we can utilize pow-
erful existing continuous nonlinear optimiza-
tion packages to solve each subproblem very
quickly. We apply the new strategies in solv-
ing some planning benchmark problems and
demonstrate significant improvements in time
and quality.

1 Introduction

A temporal planning problem involves arranging actions
and assigning resources in order to accomplish a given
set of tasks over a period of time and to optimize one
or more objectives. It can be defined loosely by a set
of states; a discrete or continuous time horizon; a set of
actions defining valid transitions between states; a set of
effects to be evaluated in each state or action; a set of
constraints to be satisfied in each state or throughout an
action; and a set of goals to be achieved.

Our goal in this paper is to develop efficient search
methods for solving large-scale temporal planning prob-
lems. In our approach, we formulate a planning problem
as acontinuous (involving continuous variables) and
differentiable (involving differentiable objective and
constraint functions)nonlinear programming (CNLP)
problem. Based on the subgoals of the planning problem,
we partition those constraints related to a subgoal into a
disjoint subset and apply the newly developed partitioned
search algorithm to solve each subproblem individually
before composing the solution.

One key observation we have made is that many plan-
ning problems have highly structured constraints derived
from the underlying application[26; 4]. For example,
in the AIRPORT domain from the Fourth International
Planning Competition (IPC4)[9], constraints are largely
localized by the subgoals, which means that most con-
straints only relate one subgoal that aims at moving an
airplane around. This is intuitively true because that the
movement of an airplane is independent with others most
of the time and interacts with others only when the air-
plane is at the same location as another. Our study on
this domain shows that 86 percent of the constraints are
local constraints related to a single subgoal[4].

Based on the observation that application-based plan-
ning problems have highly localized constraints, we have
previously proposedthe constraint partitioning ap-
proach that exploits the constraint structure by partition-
ing the problem constraints into locally coherent sub-
sets and resolving them individually. The key benefit
of the constraint partitioning approach is that it leads to
much relaxed subproblems (with fewer constraints) that
are significantly easier to solve. However, this approach
leads to global constraints relating multiple subproblems
that may be violated when the solutions are composed.

We have recently developed the theory of extended
saddle points (ESP) for efficiently resolving the global
constraints under constraint partitioning. By formulat-
ing the constraints into anℓ-1 penalty formulation, the
ESP theory provides a necessary and sufficient condition
to prune the search space during the backtracking search

for resolving global constraints.

1.1 SGPlan planner and limitations
We have developed a fully automated PDDL2.2 planner,
called SGPlan, based on the constraint partitioning ap-
proach[5; 4]. The SGPlan planner formulates a plan-
ning problem as a mixed-integer nonlinear programming
(MINLP) problem. formulation assumes that some or
all of the constraints of a planning problem can be par-
titioned intoN + 1 stages, each scheduled at different
times. Staget, t = 0, . . . , N , hasut variables,mt

local equality constraints, andrt local inequality con-
straints. Such partitioning decomposes the variable vec-
tor z ∈ Z intoN + 1 subvectorsz(0), . . . , z(N), where
z(t) = (z1(t), . . . , zut

(t))T is aut-elementstate vector
in mixed space and staget, andzi(t) is theith dynamic
state variable. The MINLP formulation is as follows:

(Pt) : min
z

J(z) (1)

subject to h(t)(z(t)) = 0, g(t)(z(t)) ≤ 0,

and H(z) = 0, G(z) ≤ 0.

Here, h(t) = (h
(t)
1 , . . . , h

(t)
mt

)T and g(t) = (g
(t)
1 , . . . ,

g
(t)
rt

)T are local-constraint functions that involvez(t) in
staget; andH = (H1, . . . , Hp)

T andG = (G1, . . . ,
Gq)

T are global-constraint functions that involve state
variables in two or more stages. A solution to (1) is a
plan that consists of the assignment ofz.

Based on the ESP theory, the constraint partitioning
approach solves (1) by dividing it into smaller subprob-
lems, solving each independently, and resolving those vi-
olated global constraints at the end. Though the com-
plexity of resolving the global constraints is exponen-
tial and depends on the Cartesian product of the solution
spaces of all the subproblems, the base of the exponen-
tial complexity is significantly reduced by limiting the
solution space of each subproblem using the ESP condi-
tions[26].

The SGPlan planner, using the constraint partitioning
approach and powered by the ESP theory, has been suc-
cessfully applied to solve the PDDL2.2 planning prob-
lems in the Fourth International Planning Competition
(IPC4), 2004[9; 4]. SGPlan has won the First Prize
in the Suboptimal Temporal Metric Track and the Sec-
ond Prize in the Suboptimal Propositional Track in IPC4.
This achievement has clearly demonstrated the power of
the constraint partitioning approach.

Despite its success, the current method used by SG-
Plan still suffers the following limitations. First, SG-
Plan uses a mixed-integer MINLP formulation where
the functions are not continuous nor differentiable. In
general, MINLPs are computationally much more dif-
ficult to solve than CNLPs because CNLPs can be
solved efficiently using the gradient information of func-
tions whereas MINLPs can not. In fact, SGPlan solves

the MINLP subproblems by transforming them back
into smaller planning problems and solving them using
Metric-FF [15], an existing heuristic planner. Second,
SGPlan does not provide any guarantee of the solution
quality, since that the subproblems cannot be solved op-
timally.

In this paper, we solve the above two issues by
proposing a continuous and differentiable nonlinear pro-
gramming (CNLP) formulation of the temporal planning
problems. Applying the constraint partitioning approach
to this formulation, we derive continuous and differen-
tiable subproblems that can be solved much more effi-
ciently by the state-of-the-art CNLP solvers. Moreover,
since the CNLP problems can be solve optimally, the so-
lution quality of the constraint partitioing approach can
be significantly improved.

This paper is organized as follows. We first present
necessary background of mathematical programming in
Section 2. We then present the CNLP formulation of a
temporal planning problem in Section 3 and apply the
constraint-partitioning approach on the CNLP formula-
tion in Section 4. We present experimental results in Sec-
tion 5, discuss related work in Section 6, and conclude in
Section 7.

2 Mathematical Programming
Background

We first overview the basic definitions and methods for
CNLP problems. We then overview the recently devel-
oped ESP theory that supports the constraint partitioning
approach. Refer to[4] for more details.

2.1 Continuous nonlinear optimization
A continuous nonlinear programming(CNLP) problem
is defined as follows, with continuous and differentiable
f , h = (h1, . . . , hm)T , andg = (g1, . . . , gr)

T defined
in real spaceR:

(Pc) : min
x

f(x) wherex = (x1, . . . , xv)
T ∈ Rv (2)

subject toh(x) = 0 and g(x) ≤ 0.

Definition 1. Pointx∗ is aCGMc, a constrained global
minimum of (Pc), if x∗ is feasible andf(x∗) ≤ f(x) for
all feasiblex.

WhenCGMc is difficult to find, the goal of solvingPc

is to find a constrained local minimumx with respect to
Nc(x) = {x′ : ‖x′ − x‖ ≤ ǫ andǫ→ 0}, thecontinuous
neighborhoodof x.

Definition 2. Pointx∗ is aCLMc, a constrained local
minimum with respect to the continuous neighborhood
of x∗ in Pc, if x∗ is feasible andf(x∗) ≤ f(x) for all
feasiblex ∈ Nc(x

∗).

Based on Lagrange-multiplier vectorsλ = (λ1, . . . ,

2

λm)T ∈ Rm andµ = (µ1, . . . , µr)
T ∈ Rr, the La-

grangian function ofPc is defined as:

L(x, λ, µ) = f(x) + λTh(x) + µT g(x). (3)

a) Karush-Kuhn-Tucker (KKT) necessary condition
[1]. Assumingx∗ is aCLMc and a regular point,1 then
there exist uniqueλ∗ andµ∗ such that:

∇xL(x∗, λ∗, µ∗) = 0, (4)

whereµj = 0 ∀ j /∈ A(x∗) = {i | gi(x
∗) = 0} (the set

of active constraints), andµj > 0 otherwise.

The uniqueλ andµ that satisfy (4) can be found by
solving a system of nonlinear equations inλ, µ, andx. In
general, (4) cannot be used effectively on multiple sub-
problems related by global constraints.

b) Sufficient saddle-point conditionThe concept of
saddle points has been studied extensively in the past.
Here,x∗ is a saddle point ofPc if there exist uniqueλ∗

andµ∗ such that:

L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗) (5)

for all x that satisfies‖x − x∗‖ < ǫ and allλ ∈ Rm

andµ ∈ Rr. This condition is only sufficient but not
necessary. Hence, ifx∗ is aCLMc, there may not exist
λ∗ andµ∗ that satisfy (5).

Eq. (5) is difficult to apply in practice because it is
difficult to solve for uniqueλ∗ andµ∗ in a system of
nonlinear inequalities.

c) Penalty formulations.A static-penalty approach[1]
transformsPc into an unconstrained minimization with
the following objective function:

Lρ(x, γ, ψ) = f(x) + γT |h(x)|ρ + ψT max(0, g(x))ρ,

whereρ > 0. By choosingρ = 1, there exist finite and
sufficiently large penalty vectorsγ ∈ Rm andψ ∈ Rr

such thatx∗, a global minimum ofLρ(x, γ, ψ), corre-
sponds to aconstrained global minimum(CGMc) of Pc.
Hence, findingx∗ by an unconstrained global optimiza-
tion algorithm amounts to finding aCGMc of Pc. How-
ever, the approach is hard to apply in practice becauseγ
andψ must be large enough in order forx∗ to be a global
minimum in the search space. This makes the function
too rugged to be searched effectively.

A dynamic-penalty approach[1] increases penalties
gradually and solves for the optimal solution in a se-
quence of unconstrained problems. However, the re-
quirement of finding a global optimum ofLρ(x, γ, ψ) for
each unconstrained problem may be computationally ex-
pensive in practice.

1Pointx is aregular pointwith respect toh if gradient vec-
tors∇h1(x), . . . ,∇hm(x) atx are linearly independent.

2.2 Extended saddle points condition
Wah and Chen has recently proposed the theory of ex-
tended saddle points (ESP) to support constraint par-
titioning [26; 4]. By using a penalty function with
transformed constraints, we show a necessary and suffi-
cient condition that is satisfied for an extended region of
penalty values. The latter property is important because
it allows the formulation to be partitioned and used in re-
solving global constraints under constraint partitioning.
The ESP theory is developed for general MINLPs, with
CNLPs also applicable as a special case.

Consider an MINLP whosef , g and h defined in
mixed space are continuous and differentiable functions
with respect to the continuous variablex:

(Pm) : min
x,y

f(x, y), x ∈ Rv andy ∈ Dw (6)

subject to h(x, y) = 0 and g(x, y) ≤ 0.

The goal of solvingPm is to find a constrained lo-
cal minimum(x, y) with respect toNm(x, y), the mixed
neighborhood of(x, y). To defineNm(x, y), we need
to specify its continuous and discrete counterparts. Al-
though a continuous neighborhood is well defined, there
is no accepted definition of a discrete neighborhood. We
define it as follows:

Definition 3. A user-defineddiscrete neighborhood
Nd(y) of y ∈ Dw is a finite user-defined set of points
{y′ ∈ Dw} in such a way thaty′ is reachable fromy in
one step, thaty′ ∈ Nd(y) ⇐⇒ y ∈ Nd(y

′), and that it
is possible to reach everyy′′ from anyy in one or more
steps through neighboring points.

Intuitively, Nd(y) represents points that can be
reached fromy in one step, regardless of whether there
is a valid action to effect the transition. Next, we define
a mixed neighborhood and a constrained local minimum
in this neighborhood:

Definition 4. A user-defined mixed neighborhood
Nm(x, y) in mixed spaceRv ×Dw is:

Nm(x, y) =

{

(x′

, y)
∣

∣ x
′ ∈ Nc(x)

}

∪

{

(x, y
′)

∣

∣ y
′ ∈ Nd(y)

}

.

Definition 5. Point(x∗, y∗) is aconstrained local min-
imum in mixed neighborhood(CLMm) of Pm if (x∗, y∗)
is feasible andf(x∗, y∗) ≤ f(x, y) for all feasible
(x, y) ∈ Nm(x∗, y∗).

Before we state the main theorem, we define theℓ-1
penalty function in a mixed space:

Definition 6. The transformedℓ-1 penalty function of
Pm in (6) is defined as follows:

Lm(x, y, α, β) = f(x, y) + α
T |h(x, y)| + β

T max(0, g(x, y)),

whereα andβ are theextended penalty values.

3

Theorem 1. Necessary and sufficient extended saddle
point condition (ESPC) onCLMm of Pm. Suppose
(x∗, y∗) ∈ Rv × Dw is a point in the mixed space of
Pm, and the gradient vectors of the equality and the ac-
tive inequality constraints with respect tox for giveny∗

are linearly independent. Then(x∗, y∗) is aCLMm of
Pm iff there exist finiteα∗ ≥ 0 andβ∗ ≥ 0 such that, for
anyα∗∗ > α∗ andβ∗∗ > β∗, the following condition is
satisfied:

Lm(x∗, y∗, α, β) ≤ Lm(x∗, y∗, α∗∗, β∗∗)

≤ Lm(x, y, α∗∗, β∗∗) (7)

for all (x, y) ∈ Nm(x∗, y∗), α ∈ Rm, andβ ∈ Rr.

The following corollary facilitates the implementation
of ESPC in (7) and follows directly from the definition
of Nm(x, y). This definition allows (7) to be partitioned
into two independent necessary conditions.

Corollary 1. GivenNm(x, y) the ESPC in (7) can be
rewritten into two necessary conditions that, collectively,
are necessary and sufficient:

Lm(x∗, y∗, α, β) ≤ Lm(x∗, y∗, α∗∗, β∗∗)

≤ Lm(x∗, y, α∗∗, β∗∗) (8)

Lm(x∗, y∗, α∗∗, β∗∗) ≤ Lm(x, y∗, α∗∗, β∗∗) (9)

wherey ∈ Nd((x
∗, y∗) | x∗ fixed) and x ∈ Nc((x

∗,
y∗) | y∗ fixed).

2.3 ESPC under constraint partitioning
To solve (1) efficiently, we define a partitionable neigh-
borhood and partition the ESPC in (7) into a set of nec-
essary conditions that collectively are necessary and suf-
ficient. The partitioned conditions can then be imple-
mented by finding local saddle points in each stage ofPt

and by resolving the unsatisfied global constraints using
appropriate penalty values.

To enable the partitioning of ESPC into independent
necessary conditions, we define the neighborhood of
planz as follows:

Definition 7. Given Nm(z(t)), the mixed neighbor-
hood ofz(t) in staget, we defineNp(z), thepartition-
able mixed neighborhood of planz, as:

Np(z) =
N
⋃

t=0

N (t)
p (z) =

N
⋃

t=0

{

z′
∣

∣

∣

∣

z′(t) ∈ Nm(z(t))

andz′(i | i 6= t) = z(i)

}

, (10)

Intuitively, Np(z) is partitioned intoN + 1 neighbor-
hoods, each perturbingz in one of the stages ofPt. By
consideringPt in (1) as an MINLP, we can apply Def-
inition (6) and Theorem 1 to get the ESPC condition.
Based on the partitionable neighborhood, our main theo-
rem shows the partitioning of this condition into a set of
distributed conditions.

Definition 8. The ℓ-1 penalty function ofPt in (1) is
defined as follows:

Lm(z, α, β, γ, η) = J(z) +
N

∑

t=0

{

α(t)T |h(t)(z(t))|+ β(t)T

max(0, g
(t)(z(t))

}

+γ
T |H(z)|+ η

T max(0, G(z)), (11)

whereα(t) = (α1(t), . . . , αmt
(t)) ∈ Rmt , β(t) =

(β1(t), . . . , βrt
(t)) ∈ Rrt , γ = (γ1, . . . , γp) ∈ R

p

, and
η = (η1, . . . , ηq) ∈ R

q

are vectors of extended penalty
values.

Theorem 2. Distributed necessary and sufficient ESPC
onCLMm of Pt. Planz is aCLMm of (1) with respect
toNp(z) iff the followingN +2 conditions are satisfied:

Γ(t)
m (z∗

, α(t), β(t), γ∗∗

, η
∗∗) ≤ Γ(t)

m (z∗

, α(t)∗∗, β(t)∗∗, γ∗∗

, η
∗∗)

≤ Γ(t)
m (z, α(t)∗∗, β(t)∗∗, γ∗∗

, η
∗∗),

Lm(z∗

, α
∗∗

, β
∗∗

, γ, η) ≤ Lm(z∗

, α
∗∗

, β
∗∗

, γ
∗∗

, η
∗∗),

for all z ∈ N
(t)
p (z∗) andα(t) ∈ R

mt , β(t) ∈ R
rt ,

γ ∈ R
p

, η ∈ R
q

, andt = 0, . . . , N , where

Γ(t)
m (z, α(t), β(t), γ, η) = J(z) + α(t)T |h(t)(z(t))|+ β(t)T

max(0, g
(t)(z(t))) + γ

T |H(z)| + η
T max(0, G(z)).

By using a partitionable neighborhood, Theorem 2
shows that the original ESPC in Theorem 1 can beparti-
tioned into N + 1 necessary conditions, each of which
corresponds to finding a saddle point in a stage of the
original problem. Hence, the original problem is now
reduced to solving multiple smaller subproblems and to
the resolution of unsatisfied global constraints across the
subproblems. By reducing the solution space in each
subproblem through the search of saddle points, Theo-
rem 2 leads to a significant reduction in the base of the
exponential complexity in findingCLMm.

An important aspect of Theorem 1 over the original
saddle-point condition in (5) is that, instead of solving a
system of nonlinear equations to find uniqueλ∗ andµ∗

that minimizeL(x, λ∗, µ∗) at x∗, it suffices to find any
α∗∗ > α∗ andβ∗∗ > β∗. Such a property allows the
solution ofPm to be implemented iteratively by looking
for a local minimum(x∗, y∗) of Lm(x, y, α, β) with re-
spect to points inNm(x∗, y∗) in an inner loop, and for
anyα∗∗ > α∗ andβ∗∗ > β∗ in an outer loop.

Figure 1a shows the pseudo code that implements the
conditions in Corollary 1. The two inner loops look for
local minima ofLm(x, α, β) in the continuous and dis-
crete neighborhoods, whereas the outer loop performs
ascents onα andβ for unsatisfied global constraints and
stops when aCLMm has been found.

The iterative search can be extended to the distributed
conditions in Theorem 2. In Figure 1b, the two inner
nested loops of staget look for a local saddle point of

4

α −→ 0; β −→ 0;
repeat

increaseαi by δi if hi(x, y) 6= 0 for all i;
increaseβj by δj if gj(x, y) � 0 for all j;
repeat

perform descent ofLm(x, y, α, β) with respect tox
for giveny;

until a local minimum ofLm(x, y, α, β) with respect
to x for giveny has been found;

repeat
perform descent ofLm(x, y, α, β) with respect toy

for givenx;
until a local minimum ofLm(x, y, α, β) with respect

to y for givenx has been found;
until aCLMm of Pm has been found or (α > ᾱ∗ andβ > β̄∗);

a) Implementation of Theorem 1

Γ
(N)
m (z, α(N), β(N), γ, η)



y

z(N)

Γ
(N)
m (z, α(N), β(N), γ, η)

x



α(N),β(N)

Γ
(0)
m (z, α(0), β(0), γ, η)



y

z(0)

L
m

(z
,α

,β
,γ

,η
)x 

γ
,η

Γ
(0)
m (z, α(0), β(0), γ, η)

x



α(0),β(0)

b) Implementation of Theorem 2
Figure 1: Simple iterative implementation of ESPC to
look for CLMm of Pm and that of distributed ESPC to
look forCLMm of Pt.

Γ
(t)
m (z, α(t), β(t), γ, η). This is done by updatingz and
α(t) andβ(t) associated with the local constraints, using
fixedγ andη associated with the global constraints. With
fixed γ andη, the algorithm is actually findingz(t) that
solves the following MINLP in staget:

min
z(t)

J(z) + γTH(z) + ηTG(z) (12)

subject to h(t)(z(t)) = 0 and g(t)(z(t)) ≤ 0.

Since this is a well-defined MINLP, any existing solver
with little modification can be used to solve it. We have
studied this approach in discrete planning domains by us-
ing ASPEN to solve subproblems partitioned by a dis-
crete version of Theorem 2[6].

After performing the local searches, the penalties on
unsatisfied global constraints are increased in the outer
loop. The search iterates until a feasible local minimum
in the constrained model has been found.

3 Continuous and Differentiable
Nonlinear Optimization Formulation

In this section, we present our CNLP formulation for
temporal planning problems. We make several remarks
before presenting the formulation. First, our formu-
lation is based on a partial order casual link (POCL)

paradigm that has been used for SAT encoding[16] and
constrained programming encoding[25] before. Second,
the CNLP formulation we developed is limited to canon-
ical solution plans[12] in which every grounded action
can be executed at most once. It is known that for most
benchmarks in temporal planning, the optimal plans are
canonical[25]. It is possible to extend a canonical plan-
ner to a complete planner by duplicating actions.

A temporal planning problem is briefly defined as fol-
lows.

Definition 1 (State) Given a set of atomic factsF =
{f1, f2, · · · , fn}, a states is a subset ofF .

Definition 2 (Action) An actiono is a triple o=(pre(o),
add(o), del(o)), where pre(o)⊆ F is the preconditions of
o, add(o)⊆ F is the set of added facts ofo, and del(o)⊆
F is the set of deleted facts ofo2.

The result of applying a single actiono to a states is
defined as follows,

Result(s, o) =

{

(s ∨ add(o) \ del(o)), if pre(o) ⊆ s;
undefined, otherwise.

From above definition, for a sequenceP =
〈o1, o2, · · · , on〉 of actions, we haveResult(s, P) =
Result(Result(Result(s,o1), o2) · · · , on).

Definition 3 (Planning task) A planning task is a tuple
T = (O,F, I,G), whereO is a set of actions,F is a set
of facts,I ⊆ F is the initial state, andG ⊆ F is the goal
state.

3.1 Logical encoding
In our CNLP formulation, we use an action-based encod-
ing in which all variables are associated with the time
assignments of actions. Before presenting the CNLP for-
mulation, we first less rigorously describe a constraint
programming formulation containing logical operators
OR (∨) and AND (∧). We then transform it into a CNLP
formulation.

Given a planning taskT = (O,F, I,G), we assign
each actiona ∈ O a starting time s(a) and denote its
duration as t(a). In addition, we create two artificial
actions representing the initial and goal states. For the
initial state, we add an actionas with zero precondition
and delete-effects , with the facts inI as add effects, and
with zero duration:

pre(as) = del(as) = ∅, add(as) = I, t(as) = 0.

For the goal state, we add an actionag with the facts in
G as preconditions, with all facts as add-effects, and with
zero duration:

pre(ag) = G, add(ag) = F, del(ag) = ∅, t(ag) = 0.

2In full PDDL2.1 specification, preconditions and effects
can be effective at different times in the lifetime of an action.
We have adopted a simplified version here.

5

We add these two actions into the original set of ac-
tions to define an extended set of action:

O+ = O ∪ {as, ag},

and we fix the starting time of the initial action to zero:

s(as) = 0.

A partial order casual link STRIPS plan is an assign-
ment of the starting time of actions satisfying the follow-
ing conditions:

1) Every prerequisite has a cause. If an action is as-
signed at timet, then for each of the preconditions ofa,
there is at least one action beforea supporting the pre-
condition.

∨

b∈sup(f)

(

s(b) + t(b) < s(a)

)

∀a ∈ O+, ∀f ∈ pre(a) (13)

where∨ means logically OR,sup(f) defines the set of
actions that support a factf as an add-effect:

sup(f) = {a|f ∈ add(a), a ∈ O+}.

Note that since the goal actionag supports all facts as
add-effects,ag is in sup(f) for the all facts. The implicit
effect of this scheme is that if an action happens afterag,
it is in fact aninactive actionwhose preconditions do not
need to be supported by regular actions. Indeed, in the
final solution to this encoding, we treat all actions after
ag as unused actions and do include them in the solution
plan.

2) Every prerequisite support is maintained. For every
prerequisite factf of an actiona, for each actionc that
invalidatesf , eitherc happens aftera, or there is another
actionb that supportsf and happens betweenc anda.

∨

b∈sup(f)

(

s(b) + t(b) < s(a)
∧

s(c) + t(c) < s(b)

)

∨

(

s(a) + t(a) < s(c)

)

∨

(

s(ag) < s(a)

)

,

∀a ∈ O+, ∀f ∈ pre(a), ∀c ∈ inv(f), (14)

whereinv(f) defines the set of actions that invalidate a
factf as a delete-effect:

inv(f) = {a|f ∈ del(a), a ∈ O+}.

The last part of the above function,s(ag) < s(a), en-
sures that if an action is an inactive action (happening
afterag), all the other requirements can be waived.

The constraints in (13) and (14) ensure that the solu-
tion plan is a valid temporal plan. Note that the informa-
tion of the initial and goal states are implicitly encoded
using the specialas andag actions, which are included
in O+. All the subgoals inG will be reached because
they are preconditions ofag and they will need to be sup-
ported.

3.2 CNLP transformation
Constraint functions in the previous logical encoding are
not continuous or differentiable and contain logical oper-
ators that cannot be handled by CNLP solvers. We derive
a continuous and differentiable CNLP formulation from
the above logical encoding as follows:

(CNLP-PLANNING):

min J = s(ag) (15)

s.t.
∑

b∈sup(f)

µa,b(s(b) + t(b) − s(a)) < 0,

∀a ∈ O+, ∀f ∈ pre(a) (16)

and
∑

b∈sup(f)

θa,b,c(s(b) + t(b) − s(a))(s(b) − s(c) − t(c))

+ξa,c(s(a) + t(a) − s(c)) + (s(ag) − s(a)) < 0,

∀a ∈ O+, ∀f ∈ pre(a), ∀c ∈ inv(f). (17)

The variables in this encoding include:s(a) ∈ [0, Tmax]
for all a ∈ O+ representing the starting time of actions;
andµa,b > 0, θa,b,c > 0, andξa,c > 0 which are pos-
itive auxiluary variables. The obejctive functions(ag)
enforces the minimization of the makespan of the plan.
Changing the objective functionJ provides a flexible
way to specify other plan quality metrics.

The CNLP-PLANNING formulation is a direct com-
pliation of the logical encoding in Section 3.1. Each con-
straint in (13) requires that at least one actionb support-
ing the precondition factf is beforea. We specify this
condition in (16) in the CNLP model. In (16), sinceµ are
all positive, it can be satisfied only when there is at least
one actionb in sup(f) beforea (s(b)+ t(b)− s(a) < 0).

Each constraint in (14) requires thata is afterag, or
the invalidating actionc is aftera, or at least one action
b supporting the precondition factf is afterc and before
a (to recoverf). We specify this condition in (17) in the
CNLP model. In (17), sinceθ andξ are all positive, it
can be satisfied only when

• a is afterag (s(ag) − s(a) < 0),

• or the invalidating actionc is aftera (s(a) + t(a)−
s(c) < 0),

• or there is at least one actionb ∈ sup(f) betweenc
anda ((s(b)+t(b)−s(a))(s(b)−s(c)−t(c)) < 0).

Proposition 1. A feasible solution to the CNLP-
PLANNING problem corresponds to a feasible temporal
plan of the original problem.

Proposition 2. The optimalCGMc solution to the
CNLP-PLANNING problem corresponds to an optimal
temporal plan of the original planning problem under the
quality metric specified in the objective functionJ .

It should be noted that the CNLP formulation incorpo-
rates the full durations of actions in the constraint func-

6

tions and thus prohibits parallel execution of mutual ex-
clusive active3 actions. In fact, for each pair of active
actionsa andb that are mutual exclusive , the duration of
a andb cannot overlap, because the formulation requires
thats(a) + t(a) < s(b) or s(b) + t(b) < s(a).

The CNLP formulation is a continuous and differen-
tiable problem that can be solved by any continuous non-
linear programming packages. Since for all actions, the
number of preconditions and number of invalidating ac-
tions are typically bounded by a small constant, the num-
ber of constraints is of the orderO(|O|), where|O| is the
number of actions. The number of variables is also of
the order ofO(|O|). Note that although the auxiliary
variablesµa,b is indexed by actionsa and b, only cer-
tain combinations whereb is a supporting action fora
are needed. Therefore each actiona is associated only
with a small number ofµa,b. Similar observations can be
made forθ andξ.

4 Constrained Partitioning on the CNLP
Formulation

It is straightforward to apply the constraint partitioning
approach and the ESP theory discussed in Section 2 to
the CNLP formulation. Like SGPlan, we partition the
constraints by subgoals. The constraints related to the the
goal actionag are treated as global constraints. Specif-
ically, sincepre(ag) = G, whereG is the set of sub-
goals, for each subgoalf ∈ pre(ag), there is a group
of constraints in (CNLP-PLANNING) enforcing the sup-
port off . Since in a partitioned search, each subproblem
only solves for one subgoalf , the group of constraints
supportingf are treated as local constraints, and other
constraints for supporting other subgoals inpre(ag) are
treated as global constraints.

We have developed CNLP-SGPlan, an implementa-
tion of the partitioned search procedure in Figure.1 on
the CNLP formulation. For each subgoalf , we solve
a local CNLP problem involving local constraints for
the satisfaction of the subgoalf and a biased objective
function incorporating the violation of global constraints.
Note that although in the ESP theory, the biased objec-
tive function contains| · | andmax(·) functions that are
not differentiable, we can apply a simple transformation
to transform each local subproblem into a CNLP with a
continuous and differentiable objective function[4].

5 Preliminary Evaluation
We have performed preliminary study of the perfor-
mance of CNLP-SGPlan on some planning benchmarks.
We use the preprocessing part of SGPlan[5], which is
based on a modified parser of Metric-FF[15], to trans-
form an input planning problem into the CNLP formu-
lation. The output is written in the AMPL optimazation

3An actiona is active whens(a) < s(ag).

modelling format[10]. Since the evaluation version of
AMPL environment we have now can only handle prob-
lems with less than 300 variables and 300 constraints,
we cannot run the software locally as most CNLP-
PLANNING problems obtained from planning bench-
marks exceed the size limit. Instead, We submit each
AMPL problem to the NEOS optimization server[20]
and select a CNLP solver to solve it.

In our experiments, we have first tried several smaller
domains from the Third International Planning Competi-
tion (IPC3), including Depots and Driverlog, to find out
a suitable nonlinear optimization package for the CNLP
problems derived from planning applications.

We have tested several leading CNLP packages in-
cluding: SNOPT[14], a large-scale optimization pack-
age implementing a trust-region sequential quadric pro-
gramming (SQP) method[1]; Lancelot[7], a dynamic
penalty method based on an augmented Lagrangian for-
mulation; and PENNON[18], a generalized augmented
Lagrangian method. We have found that PENNON sig-
nificantly outperforms other two candidates in terms of
solution speed on the planning-based CNLP problems.
The solution plans found by CNLP-SGPlan have consis-
tently better makespan than the solutions found by SG-
Plan, which demonstrates the effectiveness of the objec-
tive function in the CNLP-PLANNING formulation.

We then apply CNLP-SGPlan, with PENNON as
the basic CNLP solver, to the AIRPORT domain from
IPC4[9]. In contrast to the original SGPlan planner that
can only solve the up to the46th problem instance (out of
50 instances), CNLP-SGPlan is able to solve the largest
problems numbered from 47 to 50 in less than 1800 sec-
onds. With an MINLP formulation, each subproblem in
the original SGPlan usually requires several minutes to
solve for the largest instances. In contrast, the time PEN-
NON takes to solve CNLP subproblems is of the order
of ten seconds for the largest instances. We are in the
process of obtaining a full AMPL preprocessor and per-
forming complete evaluation of CNLP-SGPlan in the fu-
ture.

6 Related Work and Discussions
Transformation is a popular approach to planning.
Transformation-based planners include those planners
that transform a planning problem into another formu-
lation before solving it. Example formulations include
SAT used by SATPLAN and Blackbox[23], integer lin-
ear programming models used by ILP-Plan[17], con-
strained programming models used by CPT[25], and
the mixed-integer nonlinear programming model used by
SGPlan[5]. All these models have discrete or mixed-
integer variables, and the functions in these models are
not continuous and differentiable. Among all the formu-
lations, the CNLP formulation proposed in this paper is
generally much more efficient to solve than others be-
cause the CNLP solvers can utilize the powerful gradient

7

information provided by the CNLP functions.
Systematic searches explore the entire state space

completely. Examples include UCPOP[21], Graph-
plan[2], STAN [19], and PropPLAN[11]. These meth-
ods are in general very expensive.

Heuristic solvers prioritize the search space by heuris-
tic functions. Examples include HSP[3], Metric-FF[15],
GRT [22], MIPS[8], and Sapa[24]. There are also local
search solvers such as LPG[13]. Heuristic search and
local search in general do not guaranteed to find feasi-
ble plans and do not have any degree of guarantee on the
solution quality.

7 Conclusions
In this paper, we have proposed a continuous and differ-
entiable nonlinear optimization formulation for optimal
temporal planning. By providing gradient information
through the CNLP formulation, the transformed problem
can be solved efficiently and optimally by sophisticated
CNLP solvers. We have proposed to further improve
the efficiency by applying the constraint partitioning ap-
proach to the CNLP formulation and solve the problem
in a partitioned fashion based on the recently proposed
theory of extended saddle points.

In the future, we plan to study the extension of the
model to numerical domains, investigate the reduction
of encoding size, and systematically evaluate the CNLP
formulation in various application domains.

References
[1] D. P. Bertsekas.Nonlinear Programming. Athena Scien-

tific, Belmont, Massachusetts, 1999.
[2] A. L. Blum and M. L. Furst. Fast planning through plan-

ning graph analysis.Artificial Intelligence, 90:281–300,
1997.

[3] B. Bonet and H. Geffner. Planning as heuristic search.
Artificial Intelligence, Special issue on Heuristic Search,
129(1), 2001.

[4] Y. Chen. Solving Nonlinear Constrained Optimization
Problems Through Constraint Partitioning. PhD thesis,
University of Illinois at Urbana-Champaign, 2005.

[5] Y. Chen, C. Hsu, and B. W. Wah. Sgplan: Subgoal parti-
tioning and resolution in planning. InProc. IPC4, ICAPS,
pages 30–32, 2004.

[6] Y. Chen and B. W. Wah. Automated planning and
scheduling using calculus of variations in discrete space.
In Proc. Int’l Conf. on Automated Planning and Schedul-
ing, pages 2–11, June 2003.

[7] A. R. Conn, N. Gould, and Ph. L. Toint. Numerical ex-
periments with the LANCELOT package (Release A) for
large-scale nonlinear optimization.Mathematical Pro-
gramming, 73:73–110, 1996.

[8] S. Edelkamp. Mixed propositional and numerical plan-
ning in the model checking integrated planning system.
In Proc. Workshop on Planning for Temporal Domains.
AIPS, 2002.

[9] S. Edelkamp and J. Hoffmann. Classical part, 4th in-
ternational planning competition. http://ls5-www.cs.uni-
dortmund.de/ edelkamp/ipc-4/, 2004.

[10] R. Fourer, D. M. Gay, and B. W. Kernighan.AMPL:
A Modeling Language for Mathematical Programming.
Brooks Cole Publishing Company, 2002.

[11] M. P. Fourman. Propositional planning. InProc. Work-
shop on Model Theoretic Approaches to Planning. AIPS,
2000.

[12] H. Geffner. Planning as branch and bound and its rela-
tion to constraint-based approaches. InTechnical report,
Universidad Simon Bolivar, 2001.

[13] A. Gerevini and I. Serina. LPG: a planner based on local
search for planning graphs with action costs. InProc. of
the Sixth Int. Conf. on AI Planning and Scheduling, pages
12–22. Morgan Kaufman, 2002.

[14] P. E. Gill, W. Murray, and M. Saunders. SNOPT: An SQP
algorithm for large-scale constrained optimization.SIAM
Journal on Optimization, 12:979–1006, 2002.

[15] Jörg Hoffmann. The Metric-FF planning system: Trans-
lating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research, 20:291–341,
2003.

[16] H. Kautz, D. McAllester, and B. Selman. Encoding plans
in propositional logic. InProceedings of KR-97, pages
374–384, 1996.

[17] H. Kautz and J. P. Walser. Integer optimization models
of AI planning problems. The Knowledge Engineering
Review, 15(1):101–117, 2000.

[18] M. Kocvara and M. Stingl. Pennon: A code for convex
nonlinear and semidefinite programming.Optimization
Methods and Software, 18(3):317–333, 2003.

[19] D. Long and M. Fox. Efficient implementation of the plan
graph in STAN.J. of AI Research, 1998.

[20] NEOS. The NEOS server for optimization.http://www-
neos.mcs.anl.gov/neos/, 2005.

[21] J. Penberethy and D. Weld. UCPOP: A sound, complete,
partial order planner for ADL. InProc. 3rd Int’l Conf. on
Principles of Knowledge Representation and Reasoning,
pages 103–114. KR Inc., 1992.

[22] I. Refanidis and I. Vlahavas. The GRT planner.AI Mag-
azine, pages 63–66, 2001.

[23] B. Selman and H. Kautz. Planning as satisfiability. In
Proceedings ECAI-92, pages 359–363, 1992.

[24] M. B. D. Subbarao and S. Kambhampati. Sapa: A
domain-independent heuristic metric temporal planner.
Technical report, Arizona State University, 2002.

[25] V. Vidal and H. Geffner. ”branching and pruning: An
optimal temporal pocl planner based on constraint pro-
gramming”. InProc. AAAI-04, 2004.

[26] B. W. Wah and Y. Chen. Constraint partitioning in penalty
formulations for solving temporal planning problems.Ar-
tificial Intelligence, (accepted for publication), 2006.

8

