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Abstract

In this paper, we study efficient temporal plan-
ning based on a continuous and differentiable
nonlinear programming transformation of the
planning problem. Based on the observation
that many large planning problems have con-
straint locality, we have previously proposed
the constraint partitioning approach that uti-
lizes the constraint structure by partitioning the
constraints of a planning problem into sub-
problems and solving each subproblem indi-
vidually. Constraint partitioning has led to the
design of SGPlan, a state-of-the-art planner.
However, SGPlan is based on a mixed-integer
programming formulation that is computation-
ally expensive to solve. In this paper, we
present a continuous and differentiable non-
linear programming formulation for planning
problems, and apply the constraint partition-
ing approach to this formulation. Because the
nonlinear programming transformation is con-
tinuous and differentiable, we can utilize pow-
erful existing continuous nonlinear optimiza-
tion packages to solve each subproblem very
quickly. We apply the new strategies in solv-
ing some planning benchmark problems and
demonstrate significant improvements in time
and quality.

Introduction

Our goal in this paper is to develop efficient search
methods for solving large-scale temporal planning prob-
lems. In our approach, we formulate a planning problem
as acontinuous (involving continuous variables) and
differentiable (involving differentiable objective and
constraint functionshonlinear programming (CNLP)
problem. Based on the subgoals of the planning problem,
we partition those constraints related to a subgoal into a
disjoint subset and apply the newly developed partitioned
search algorithm to solve each subproblem individually
before composing the solution.

One key observation we have made is that many plan-
ning problems have highly structured constraints derived
from the underlying applicatiof26; 4. For example,
in the AIRPORT domain from the Fourth International
Planning Competition (IPC4¥], constraints are largely
localized by the subgoals, which means that most con-
straints only relate one subgoal that aims at moving an
airplane around. This is intuitively true because that the
movement of an airplane is independent with others most
of the time and interacts with others only when the air-
plane is at the same location as another. Our study on
this domain shows that 86 percent of the constraints are
local constraints related to a single subddidl

Based on the observation that application-based plan-
ning problems have highly localized constraints, we have
previously proposedhe constraint partitioning ap-
proach that exploits the constraint structure by partition-
ing the problem constraints into locally coherent sub-
sets and resolving them individually. The key benefit
of the constraint partitioning approach is that it leads to
much relaxed subproblems (with fewer constraints) that

A temporal planning problem involves arranging actionsare significantly easier to solve. However, this approach
and assigning resources in order to accomplish a givelads to global constraints relating multiple subproblems
set of tasks over a period of time and to Optimize Onethat may be violated when the solutions are Composed.
or more objectives. It can be defined loosely by a set We have recently developed the theory of extended
of states; a discrete or continuous time horizon; a set ofaddle points (ESP) for efficiently resolving the global
actions defining valid transitions between states; a set ofonstraints under constraint partitioning. By formulat-
effects to be evaluated in each state or action; a set dhg the constraints into afr1 penalty formulation, the
constraints to be satisfied in each state or throughout aBSP theory provides a necessary and sufficient condition
action; and a set of goals to be achieved.

to prune the search space during the backtracking search



for resolving global constraints. the MINLP subproblems by transforming them back
o into smaller planning problems and solving them using
1.1 SGPlan planner and limitations Metric-FF [15], an existing heuristic planner. Second,

We have developed a fully automated PDDL2.2 plannerSGPlan does not provide any guarantee of the solution
called SGPlan, based on the constraint partitioning apduality, since that the subproblems cannot be solved op-
proach[5; 4. The SGPlan planner formulates a plan- timally.- .

ning problem as a mixed-integer nonlinear programming I this paper, we solve the above two issues by
(MINLP) problem. formulation assumes that some orProposing a continuous and differentiable nonlinear pro-
all of the constraints of a planning problem can be par-gramming (CNLP) formulation of the temporal planning
titioned into NV + 1 stages, each scheduled at differentProblems. Applying the constraint partitioning approach
times. Stage, t = 0,...,N, hasu; variables,m; to this formulation, we derive continuous and dn‘feren—_
local equality constraints, and local inequality con- t|f';1ble subproblems that can be solved much more effi-
straints. Such partitioning decomposes the variable vecciently by the state-of-the-art CNLP solvers. Moreover,

tor z € Z into N + 1 subvectors(0), ..., z(N), where ~ Since the CNLP problems can be solve optimally, the so-
2(t) = (21(t), . .., 2, (1)) is aus-elementstate vector  lution quality of the constraint partitioing approach can
in mixed space and stageandz;(t) is thei'" dynamic ~ be significantly improved. .
state variable The MINLP formulation is as follows: This paper is organized as follows. We first present
necessary background of mathematical programming in
(P;): min J(2) (1)  Section 2. We then present the CNLP formulation of a
7 temporal planning problem in Section 3 and apply the
subjectto £ (z(t)) =0, ¢ (z(t) <0, constraint-partitioning approach on the CNLP formula-
and  H(z)=0, G(z) <0. tion in Section 4. We present experimental results in Sec-
tion 5, discuss related work in Section 6, and conclude in
Here, h® = (", .. a7 andg® = (¢\",...,  Section7.
gff?)T are local-constraint functions that involg€t) in . .
staget; and H = (Hy,...,H,)” andG = (Gy,..., 2 Mathematical Programming

G,)" are global-constraint functions that involve state  Background

variables in two or more stages. A solution to (1) is ayye first overview the basic definitions and methods for
planthat consists of the assignmentof . ... . CNLP problems. We then overview the recently devel-

Based on the ESP the.o.ry_, th_e constraint part|t|0n|ngoped ESP theory that supports the constraint partitioning
approach solves (1) by dividing it into smaller SprrOb'approach Refer td4] for more details
lems, solving each independently, and resolving those vi- ' '

olated global constraints at the end. Though the com2 1 Continuous nonlinear optimization

plexity of resolving the global constraints is exponen—ho\ continuous nonlinear programmir@NLP) problem

tial and depends on the Cartesian product of the solutio s defined as follows, with continuous and differentiable
spaces of all the subproblems, the base of the exponen- /

_ T _ T H
tial complexity is significantly reduced by limiting the : rféaTs(}:aléé'z: yhm)", andg = (g1,...,g-)" defined
solution space of each subproblem using the ESP condl* P :

tions[26]. _ _ ~_ (P.): min f(z) wherez = (z1,...,2,)T € R’ (2)
The SGPlan planner, using the constraint partitioning z
approach and powered by the ESP theory, has been suc- subjecttoh(z) =0 and g(z) < 0.

cessfully applied to solve the PDDL2.2 planning prob-

lems in the Fourth International Planning Competition Definition 1.  Pointz* is aCGM,, a constrained global

(IPC4), 2004[9; 4]. SGPlan has won the First Prize minimum of (P.), if z* is feasible andf (z*) < f(x) for

in the Suboptimal Temporal Metric Track and the Sec-g|| feasiblezr.

ond Prize in the Suboptimal Propositional Track in IPC4. S _ )

This achievement has clearly demonstrated the power of WhenC'G M. is difficult to find, the goal of solving.

the constraint partitioning approach. is to find a constrained local minimumwith respect to
Despite its success, the current method used by SGVc(z) = {z': [|2" — 2| < e ande — 0}, thecontinuous

Plan still suffers the following limitations. First, SG- neighborhoodf x.

Plan uses a mixed-integer MINLP formulation where pefinition 2. Pointz* is aCLM... a constrained local
. Cc

the functions are not continuous nor differentiable. '”minimum with respect to the continuous neighborhood
general, MINLPs are computationally much more dif- ¢ .« i, P,, if o* is feasible andf(z*) < f(x) for all

ficult to solve than CNLPs because CNLPs can befeasiblexej\/(:v*).
solved efficiently using the gradient information of func- ¢
tions whereas MINLPs can not. In fact, SGPlan solves Based on Lagrange-multiplier vectoks= (\q,...,



An)t € R™andpy = (p1,...,p)7 € R”, the La- 2.2 Extended saddle points condition

grangian function of”. is defined as: Wah and Chen has recently proposed the theory of ex-
tended saddle points (ESP) to support constraint par-
_ T T
Lz, A\, p) = f(z) + A" h(z) + 1 g(). (3)  titioning [26; 4. By using a penalty function with
transformed constraints, we show a necessary and suffi-
cient condition that is satisfied for an extended region of
penalty values. The latter property is important because
it allows the formulation to be partitioned and used in re-
woyE Ry solving global constraints under constraint partitioning
Vo L(z™, A", pu*) =0, @) The ESP theory is developed for general MINLPs, with
wherep; = 0 V j ¢ A(z*) = {i | g;(*) = 0} (the set CNLPs also applicable as a special case.

of active constraints), and; > 0 otherwise. Consider an MINLP whosg/, g and h defined in
' mixed space are continuous and differentiable functions

The uniqueX and . that satisfy (4) can be found by with respect to the continuous variable
solving a system of nonlinear equations\in:, andz. In ) ; w
general, (4) cannot be used effectively on multiple sub-  (Fm) : min fz,y), * <€ R”andy € D (6)
problems related by global constraints.

b) Sufficient saddle-point conditidihne concept of
saddle points has been studied extensively in the past. The goal of solvingP,, is to find a constrained lo-
Here,z* is a saddle point of’. if there exist unique\* cal minimum(zx, y) with respect toV,,, (z, y), the mixed
andy* such that: neighborhood of z,y). To defineN,,(z,y), we need

to specify its continuous and discrete counterparts. Al-
L(z™, A\, p) < L™, A", p*) < L(w, A", p1*) (5)  though a continuous neighborhood is well defined, there

- is no accepted definition of a discrete neighborhood. We
for all z that satisfiegjz — 2*|| < eand allA € R™  4efine it as follows:

andp € R". This condition is only sufficient but not
necessary. Hence, if* is aC'LM., there may not exist Definition 3. A user-defineddiscrete neighborhood
A* andp* that satisfy (5). Na(y) of y € DY is afinite user-defined set of points
Eqg. (5) is difficult to apply in practice because it is {' € D"} in such a way thay’ is reachable frony in
difficult to solve for unique\* and p* in a system of one step, thay’ € N,(y) <= y € Ny(y'), and that it
nonlinear inequalities. is possible to reach every’ from anyy in one or more
c) Penalty formulationsA static-penalty approachl]  steps through neighboring points.
transformsP, into an unconstrained minimization with
the following objective function:

a) Karush-Kuhn-Tucker (KKT) necessary condition
[1]. Assumingz* is aC LM, and a regular pointthen
there exist unique* andy* such that:

subjectto h(z,y) =0 and g(z,y) < 0.

Intuitively, Ny(y) represents points that can be
reached fromy in one step, regardless of whether there
_ T o T o is a valid action to effect the transition. Next, we define
Lp(z,7,9) = f(@) + 77 [A()]” + 7 max(0, g(x))", a mixed neighborhood and a constrained local minimum

wherep > 0. By choosingp = 1, there exist finite and N this neighborhood:
sufficiently large penalty vectors € R™ andy € R”
such thatz*, a global minimum ofL,(z, v, ), corre-
sponds to @onstrained global minimufC' G M..) of ..
Hence, findinge* by an unconstrained global optimiza- , ; N
tion algorithm amounts to finding@GA\1, of P.. How- Non(@,y) = {(w ) | e NC(I)}U{(m’y )|y € Nd(y)}'
ever, the approach is hard to apply in practice because
andy must be large enough in order fet to be a global  Definition 5.  Point(z*, y*) is aconstrained local min-
minimum in the search space. This makes the functioimum in mixed neighborhodd'LM,,,) of P,,, if (x*, y*)
too rugged to be searched effectively. is feasible andf(z*,y*) < f(z,y) for all feasible
A dynamic-penalty approachi] increases penalties (z,y) € N (2, y%).
gradually and solves for the optimal solution in a se- : ,
guence of unconstrained problems. However, the re- Be]l‘or? we state the.magn theorem, we define e
quirement of finding a global optimum &f,(z, v, ) for ~ PENalty function in a mixed space:

each unconstrained problem may be computationally expefinition 6. The transformed-1 penalty function of
pensive in practice. P, in (6) is defined as follows:

Definition 4. A user-defined mixed neighborhood
Now (2, y) in mixed spaceR’ x DY is:

- - .. . T T
pointz is aregular pointwith respect td if gradient vec-  Lm (2,4, @, 8) = f(z,y) + o [h(x, y)| + 7 max(0, g(z,v)),

torsVhi(z),. .., Vhn(z) atz are linearly independent. wherea andg are theextended penalty values



Theorem 1. Necessary and sufficient extended saddleDefinition 8. The /-1 penalty function ofP; in (1) is

point condition (ESPC) oriCLM,, of P,. Suppose
(z*,y*) € RY x D" is a point in the mixed space of

P,,, and the gradient vectors of the equality and the ac-Lm

tive inequality constraints with respectitdor giveny*
are linearly independent. Thén*,y*) is aCLM,, of
P, iff there exist finitea™ > 0 ands* > 0 such that, for
anya™* > o* andg** > %, the following condition is
satisfied:

Lm(x*ay*aaaﬁ) <

Lm(x*ay*aa**aﬁ**)
< Lip(z,y,a™, )
forall (x,y) € Ny (2%, y*), « € R™, and € R".

(7)

The following corollary facilitates the implementation
of ESPC in (7) and follows directly from the definition
of N, (z,y). This definition allows (7) to be partitioned
into two independent necessary conditions.

Corollary 1. GivenN,,(z,y) the ESPC in (7) can be
rewritten into two necessary conditions that, collectiyel
are necessary and sufficient:

Lm(I*vy*vavﬁ) S Lm(x*7y*7a**7/6**)
Lm(x*ay*va**vﬁ**) S Lm(x7y*7a**76**) (9)

wherey € Ny((z*,y*) |2* fixed) andz € N((2*,
y*) | y* fixed).

2.3 ESPC under constraint partitioning

To solve (1) efficiently, we define a partitionable neigh-
borhood and partition the ESPC in (7) into a set of nec
essary conditions that collectively are necessary and su
ficient. The partitioned conditions can then be imple-
mented by finding local saddle points in each stag®,of
and by resolving the unsatisfied global constraints usin
appropriate penalty values.

To enable the partitioning of ESPC into independentr
necessary conditions, we define the neighborhood o

planz as follows:

Definition 7. Given N,,(z(¢)), the mixed neighbor-
hood ofz(t) in staget, we define\,(z), the partition-
able mixed neighborhood of plan as:

N N
M) = Unge = UL | 20 eano
t=0 t=0

andz’'(i |i #£t) = z(z‘)}, (20)
Intuitively, NV, (z) is partitioned intaV + 1 neighbor-
hoods, each perturbingin one of the stages af,. By

consideringP; in (1) as an MINLP, we can apply Def-
inition (6) and Theorem 1 to get the ESPC condition.

griginal problem. Hence, the original problem is now

g

defined as follows:

(200 Boyom) = J(2) + Z{au)ﬂh‘” (2(6))] + BT

max(0,g"" (Z(t))}JrleH(Z)I +7' max(0,G(2)), (11)

where «a(t)

(Br(8), - -

n=(m,...
values.

(a1 (t),..., am,(t)) € R™, B(pt) =
) ﬁTp(t)) S R”, v = (717 cee 771)) eR ’ and
\Mq) € R" are vectors of extended penalty

Theorem 2. Distributed necessary and sufficient ESPC

onCLM,, of P,. Planz is aC' LM, of (1) with respect

to V, (z) iff the following IV + 2 conditions are satisfied:

(", a(t), B),y", ™) < TR (" at)™, B, v n"™)
< TR (za()™, B0 7" ™),

L’”L(Z*7 Oé**7 ﬂ**7 ’-Y7 77) S L"L(Z*7 OC**7 ﬁ**7 ’7**7 77**)7

for all z € N”(z*) anda(t) € R™, B(t) € R,

yeR' neR" andt=0,...,N, where

5 (2, (), B(t),v,m) = J(2) + (&) R (2(6)) + B() "
max(0, 9" (2(1))) + 7" |H ()| + n" max(0, G(2)).

r®

m

By using a partitionable neighborhood, Theorem 2
shows that the original ESPC in Theorem 1 capési-
tioned into V + 1 necessary conditionseach of which
corresponds to finding a saddle point in a stage of the

reduced to solving multiple smaller subproblems and to
the resolution of unsatisfied global constraints across the
ubproblems. By reducing the solution space in each
ubproblem through the search of saddle points, Theo-
em 2 leads to a significant reduction in the base of the
gxponential complexity in finding’L M, ,.

An important aspect of Theorem 1 over the original
saddle-point condition in (5) is that, instead of solving a
system of nonlinear equations to find unigiieand ..*
that minimizeL(z, \*, u*) at z*, it suffices to find any
o™ > o andg** > g*. Such a property allows the
solution of P, to be implemented iteratively by looking
for a local minimum(z*, y*) of L,,(x,y, o, 3) with re-
spect to points inV,, (z*,y*) in an inner loop, and for
anya™ > o* andg** > g* in an outer loop.

Figure 1la shows the pseudo code that implements the
conditions in Corollary 1. The two inner loops look for
local minima ofL,, (x, «, ) in the continuous and dis-
crete neighborhoods, whereas the outer loop performs
ascents o and for unsatisfied global constraints and
stops when &'L.M,,, has been found.

The iterative search can be extended to the distributed

Based on the partitionable neighborhood, our main theog,ditions in Theorem 2. In Figure 1b, the two inner

rem shows the partitioning of this condition into a set of
distributed conditions.

nested loops of stagelook for a local saddle point of



paradigm that has been used for SAT encodirfj and
constrained programming encodif#$] before. Second,
the CNLP formulation we developed is limited to canon-
ical solution plang12] in which every grounded action

a—0;8—0;

repeat
increasey; by 0; if h;(z,y) # 0 for all ¢;
increases; by d; if g;(z,y) £ 0 forall j;

repeat ;
perform descent o, (, y, o, 3) with respect tar can be executed at most once. It is known that for most
for giveny; A benchmarks in temporal planning, the optimal plans are

canonical25]. It is possible to extend a canonical plan-
ner to a complete planner by duplicating actions.

A temporal planning problem is briefly defined as fol-
lows.

Definition 1 (State) Given a set of atomic factg' =
{f1, o, , fn}, a states is a subset of".

Definition 2 (Action) An actiono is a triple o=(pre(o),
add(), del(o)), where pre¢)C F'is the preconditions of
0, add@)C Fis the set of added facts of and delp)C
F is the set of deleted facts of.

The result of applying a single actianto a states is

until a local minimum ofL, (z, y, v, 3) with respect
to x for giveny has been found;
repeat
perform descent ok, (z, y, o, 8) with respect ta
for givenz;
until a local minimum ofL,, (z, y, «, 3) with respect
toy for givenz has been found;
until aCLM,, of P,, has been found on(> a* andg > 3*);

a) Implementation of Theorem 1

I (2 a(0), 80,51 T 0500

= T (2, a(0), 5(0),%,9) | defined as follows,

s

=

o e (s Vadd(o) \ del(o)), if pre(o) C s;
< [ ), B2 T Result(s,0) = { unde fined, otherwise
3

From above definition, for a sequenc®
(01,09, ,0,) Of actions, we have Result(s, P)
Result(Result(Result(s,01),02) -+ ,0n).

Definition 3 (Planning task) A planning task is a tuple
T = (O, F,1,G), whereO is a set of actionsF is a set
of facts,I C F is theinitial state, and? C F'is the goal
state.

Tz, a(N), BIN), 1,m) |y

b) Implementation of Theorem 2

Figure 1. Simple iterative implementation of ESPC to
look for CLM,, of P,, and that of distributed ESPC to
look for CLM,, of P,.

(t) . .
v/ (2, a(t), B(t),~,n). Thisis done by updating and ; :
a(t) and((t) associated with the local constraints, using3'1 Logical encodllng .
fixed~ andy associated with the global constraints. With In our CNLP formulation, we use an action-based encod-

fixed v ands), the algorithm is actually finding(¢) that ~ ing in which all variables are associated with the time
solves the following MINLP in stage assignments of actions. Before presenting the CNLP for-

mulation, we first less rigorously describe a constraint

min  J(2) + 7T H(2) + " G(2) (12)  programming formulation containing logical operators
=) OR (V) and AND (A). We then transform it into a CNLP
subjectto AP (z(t)) =0 and ¢®(z(t)) <o0. formulation.

Given a planning task” = (O, F,I, &), we assign

Since this is a well-defined MINLP, any existing solver
with little modification can be used to solve it. We have
studied this approachin discrete planning domains by u

crete version of Theorem[B].

each actioru € O astarting time s(a) and denote its
duration ast(a). In addition, we create two artificial

S_ . . " ey
; .3 . t ting th tial and | states. For th
ing ASPEN to solve subproblems partitioned by a d|s-aC Ions representing the inal and goal states. +or the

initial state, we add an actian, with zero precondition
and delete-effects , with the factsiras add effects, and

After performing the local searches, the penalties on, i sero duration:
unsatisfied global constraints are increased in the outer '
loop. The search iterates until a feasible local minimumpre(as) = del(as) = 0, add(as) = I, t(as) = 0.

in the constrained model has been found.

3 Continuous and Differentiable
Nonlinear Optimization Formulation
In this section, we present our CNLP formulation for

For the goal state, we add an actigpwith the facts in
G as preconditions, with all facts as add-effects, and with
zero duration:

pre(ag) = G,add(ag) = F,del(ag) =0, t(ay) = 0.

temporal planning problems. We make several remarks 2| fy|| PDDL2.1 specification, preconditions and effects

before presenting the formulation.

First, our formu-

can be effective at different times in the lifetime of an awti

lation is based on a partial order casual link (POCL)We have adopted a simplified version here.



We add these two actions into the original set of ac-3.2 CNLP transformation

tions to define an extended set of action:
Ot =0 U {as,a,},
and we fix the starting time of the initial action to zero:
s(as) = 0.

A partial order casual link STRIPS plan is an assign-
ment of the starting time of actions satisfying the follow-
ing conditions:

1) Every prerequisite has a cause. If an action is as-S.t.

signed at time, then for each of the preconditions @f
there is at least one action befaresupporting the pre-

condition.
\/ (s(b) +t(b) < s(a))
besup(f)
Va € O, Vf € pre(a) (13)

whereV means logically ORsup(f) defines the set of
actions that support a fagtas an add-effect:

sup(f) = {a|f € add(a),a € O}.

Note that since the goal actian, supports all facts as
add-effectsg, is in sup( f) for the all facts. The implicit
effect of this scheme is that if an action happens after
itis in fact aninactive actionwhose preconditions do not
need to be supported by regular actions. Indeed, in th
final solution to this encoding, we treat all actions after

a, as unused actions and do include them in the solutior?

plan.

2) Every prerequisite support is maintained. For ever)f:

prerequisite facf of an actiona, for each actiorr that
invalidatesf, eitherc happens aftet, or there is another
actionb that supportg and happens betweeranda.

\/ (s(b) +(b) < s(a) [\ s(c) +t(c) < s(b))

besup(f)

V(s + tta) < 50) V (s(a) < (@),
Va € O, Vf € pre(a), Ve € inv(f), (14)

whereinv(f) defines the set of actions that invalidate a
fact f as a delete-effect:

inv(f) = {a|f € del(a),a € OT}.

The last part of the above functior(a,) < s(a), en-
sures that if an action is an inactive action (happenin
aftera,), all the other requirements can be waived.

The constraints in (13) and (14) ensure that the solu
tion plan is a valid temporal plan. Note that the informa-
tion of the initial and goal states are implicitly encoded
using the speciat; anda, actions, which are included
in O*. All the subgoals inGG will be reached because
they are preconditions af, and they will need to be sup-
ported.

Constraint functions in the previous logical encoding are
not continuous or differentiable and contain logical oper-
ators that cannot be handled by CNLP solvers. We derive
a continuous and differentiable CNLP formulation from
the above logical encoding as follows:

(CNLP-PLANNING):

min J = s(ag) (15)
> tap(s(b) +t(b) — s(a)) <0,
besup(f)
Ya € OF, Vf € pre(a) (16)

and

Y Ganels(b) +1(b) = s(a))(s(b) = s(c) — t(c))
besup(f)
+Eac(s(a) +t(a) = s(c)) + (s(ag) — s(a)) <0,

Ya € O, Vf € pre(a), Ve € inv(f). a7)

The variables in this encoding includ€(a) € [0, T}q2]

for all « € O representing the starting time of actions;

andugp > 0,045 > 0, andé, . > 0 which are pos-

itive auxiluary variables. The obejctive functiofia,)

enforces the minimization of the makespan of the plan.

Changing the objective functiod provides a flexible

way to specify other plan quality metrics.

e The CNLP-PLANNING formulation is a direct com-

pliation of the logical encoding in Section 3.1. Each con-

traint in (13) requires that at least one actisupport-

ng the precondition facf is beforea. We specify this

onditionin (16) in the CNLP model. In (16), singeare

all positive, it can be satisfied only when there is at least

one actiorh in sup( f) beforea (s(b) +t(b) — s(a) < 0).
Each constraint in (14) requires thats aftera,, or

the invalidating actior is aftera, or at least one action

b supporting the precondition fagtis afterc and before

a (to recoverf). We specify this condition in (17) in the

CNLP model. In (17), sincé and¢ are all positive, it

can be satisfied only when

e ais aftera, (s(ay) — s(a) < 0),

e or the invalidating action is aftera (s(a) + t(a) —
s(c) < 0),

e or there is at least one actiéne sup(f) between:
anda ((s(b) +t(b) —s(a))(s(b) —s(c)—t(c)) < 0).

Proposition 1. A feasible solution to the CNLP-

LANNING problem corresponds to a feasible temporal
lan of the original problem.

~ Proposition 2. The optimalCG M, solution to the
CNLP-PLANNING problem corresponds to an optimal
temporal plan of the original planning problem under the
quality metric specified in the objective functidn

It should be noted that the CNLP formulation incorpo-
rates the full durations of actions in the constraint func-



tions and thus prohibits parallel execution of mutual ex-modelling format[10]. Since the evaluation version of
clusive activé actions. In fact, for each pair of active AMPL environment we have now can only handle prob-
actionse andb that are mutual exclusive , the duration of lems with less than 300 variables and 300 constraints,
a andb cannot overlap, because the formulation requiresve cannot run the software locally as most CNLP-
thats(a) + t(a) < s(b) or s(b) + t(b) < s(a). PLANNING problems obtained from planning bench-
The CNLP formulation is a continuous and differen- marks exceed the size limit. Instead, We submit each
tiable problem that can be solved by any continuous nonAMPL problem to the NEOS optimization servigz0]
linear programming packages. Since for all actions, theand select a CNLP solver to solve it.
number of preconditions and number of invalidating ac- In our experiments, we have first tried several smaller
tions are typically bounded by a small constant, the numdomains from the Third International Planning Competi-
ber of constraints is of the ordéx(|O|), where|O] is the  tion (IPC3), including Depots and Driverlog, to find out
number of actions. The number of variables is also ofa suitable nonlinear optimization package for the CNLP
the order ofO(|O|). Note that although the auxiliary problems derived from planning applications.
variablesy, ; is indexed by actions andb, only cer- We have tested several leading CNLP packages in-
tain combinations wheré& is a supporting action for ~ cluding: SNOPT[14], a large-scale optimization pack-
are needed. Therefore each actiois associated only age implementing a trust-region sequential quadric pro-
with a small number ofi, ,. Similar observations can be gramming (SQP) methoHL]; Lancelot[7], a dynamic
made forf and¢. penalty method based on an augmented Lagrangian for-
mulation; and PENNON18], a generalized augmented
) e Lagrangian method. We have found that PENNON sig-
4 Constrained Partitioning on the CNLP nificantly outperforms other two candidates in terms of
Formulation solution speed on the planning-based CNLP problems.

It is straightforward to apply the constraint partitioning | "€ Solution plans found by CNLP-SGPlan have consis-

approach and the ESP theory discussed in Section 2 ntly beFtef makespan than the SO'P“O”S found by S.G'
the CNLP formulation. Like SGPlan, we partition the _Ian, which demonstrates the effectiveness of the objec-

constraints by subgoals. The constraints related to the th&/€ fun(;]tion in thle %NLP-IDSL(;AI\:NING f%rmulatiog.

goal actiona, are treated as global constraints. Specif- We then apply CNLP-SGPlan, with PENNON as

ically, sincepre(a,) = G, whereG is the set of sub- the basic CNLP solver, to the AIRPORT domain from

goals, for each sﬂbgogﬂ e pre(a,), there is a group IPC4[9]. In contrast to the original SGPlan planner that
1 gl

PP ; ly solve the up to thi*" problem instance (out of
of constraints in (CNLP-PLANNING) enforcing the sup- canon .
port of f. Since in a partitioned search, each subproblenp? instances), CNLP-SGPlan is able to solve the largest
only solves for one subgodl, the group of constraints problems numbered from 47 to 50 in less than 1800 sec-

supportingf are treated as local constraints, and otheronds' _With an MINLP formulatior], each subprolblem in
constraints for supporting other subgoalgir(a,) are the original SGPIan_usuaIIy requires several minutes to
treated as global constraints g solve for the largest instances. In contrast, the time PEN-
We have developed CNLiD-SGPIan an implementa-NON takes to solve CNLP subproblems is of the order
tion of the partitioned search procedure in Figure.1 o (€N seconds for the largest instances. We are in the
the CNLP formulation. For each subgofl we solve — PrOC€ss of obtaining a fuI_I AMPL prepracessor and per-
a local CNLP problem involving local constraints for 0'ming complete evaluation of CNLP-SGPlan in the fu-

the satisfaction of the subgogland a biased objective Ur€

function incorporating the violation of global constraint . .

Note that although in the ESP theory, the biased objec6 Related Work and Discussions

tive function contains - | andmax(-) functions that are  Transformation is a popular approach to planning.
not differentiable, we can apply a simple transformationTransformation-based planners include those planners
to transform each local subproblem into a CNLP with athat transform a planning problem into another formu-

continuous and differentiable objective functie#. lation before solving it. Example formulations include
o _ SAT used by SATPLAN and Blackbd23], integer lin-
5 Preliminary Evaluation ear programming models used by ILP-P], con-

We have performed preliminary study of the perfor-Strained programming models used by CF2Bl, and
mance of CNLP-SGPlan on some planning benchmarkghe mixed-integer nonlinear programming model used by
We use the preprocessing part of SGFIah which is SGPlan[s]. All these models have discrete or mixed-
based on a modified parser of Metric-EF5], to trans- integer variables, and the functions in these models are
form an input planning problem into the CNLP formu- not continuous and differentiable. Among all the formu-

lation. The output is written in the AMPL optimazation 1ations, the CNLP formulation proposed in this paper is
generally much more efficient to solve than others be-

3An actiona is active whers(a) < s(ag). cause the CNLP solvers can utilize the powerful gradient



information provided by the CNLP functions.

completely. Examples include UCPQR1], Graph-
plan[2], STAN[19], and PropPLAN11]. These meth-
ods are in general very expensive.

tic functions. Examples include H$8l, Metric-FF[15],
GRT[22], MIPS[8], and Sap#24]. There are also local
search solvers such as LHG3]. Heuristic search and

local search in general do not guaranteed to find feasirig] . Geffner. Planning as branch and bound and its rela-

(9]

Systematic searches explore the entire state space

[10

Heuristic solvers prioritize the search space by heuris-

[11]

ble plans and do not have any degree of guarantee on the
solution quality.

7

Conclusions

(13

In this paper, we have proposed a continuous and differ-
entiable nonlinear optimization formulation for optimal
temporal planning. By providing gradient information [14]
through the CNLP formulation, the transformed problem
can be solved efficiently and optimally by sophisticated
CNLP solvers. We have proposed to further improve[15]
the efficiency by applying the constraint partitioning ap-
proach to the CNLP formulation and solve the problem
in a partitioned fashion based on the recently proposed
theory of extended saddle points.

In the future, we plan to study the extension of the

[16]

model to numerical domains, investigate the reduction
of encoding size, and systematically evaluate the CNLR17]
formulation in various application domains.
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