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Abstract

In this paper we introduce multi-modal logics of mini-
mal knowledge. Such a family of logics constitutes the
first proposal in the field of epistemic nonmonotonic
logic in which the three following aspects are simul-
taneously addressed: (i) the possibility of formalizing
multiple agents through multiple modal operators; (ii)
the possibility of using first-order quantification in the
modal language; (iii) the possibility of formalizing non-
monotonic reasoning abilities for the agents modeled,
based on the principle of minimal knowledge. We illus-
trate the expressive capabilities of multi-modal logics
of minimal knowledge to provide a formal semantics to
peer-to-peer data integration systems, which constitute
one of the most recent and complex architectures for
distributed information systems.

Introduction

Nonmonotonic modal logics Research in the formaliza-
tion of commonsense reasoning has pointed out the need of
formalizing agents able to reason introspectively about their
own knowledge and ignorance (Moore 1985a; Levesque
1990). Modal epistemic logics have thus been proposed,
in which modalities are interpreted in terms of knowledge
or belief. Generally speaking, the conclusions an introspec-
tive agent is able to draw depend on both what she knows
and what shedoes notknow. Hence, any such conclusion
may be retracted when new facts are added to the agent’s
knowledge. For this reason, manynonmonotonicmodal for-
malisms have been proposed in order to characterize the
reasoning abilities of an introspective agent: among them,
we recall the nonmonotonic modal logics originally pro-
posed by McDermott and Doyle (McDermott & Doyle 1980;
McDermott 1982; Marek & Truszczýnski 1993), Moore’s
autoepistemic logic (Moore 1985b), Lifschitz’s logic of
minimal knowledge and negation as failure MKNF/MBNF
(Lifschitz 1991; 1994), Levesque’s logic of only knowing
(Levesque 1990), and ground nonmonotonic modal logics
(Halpern & Moses 1985; Donini, Nardi, & Rosati 1997;
Tiomkin & Kaminski 1990).
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Modal logics of minimal knowledge Among the non-
monotonic modal logics proposed in the literature, some are
based on the so-called principle ofminimal knowledge. In
particular, Halpern and Moses in (Halpern & Moses 1985)
defined an epistemic logic, based on the modal systemS5,
for modeling knowledge and ignorance of processes in a
distributed computer system, which is based on a very in-
tuitive semantics: consider only the models of the knowl-
edge base (i.e. the epistemic states of the agent modeled) in
which knowledge is minimal (i.e. the ignorance of the agent
is maximal). Hence, this formalism is also known as logic
of minimal epistemic states, and constitutes the basis of sev-
eral nonmonotonic modal formalisms proposed in the liter-
ature, among which (Lifschitz 1991; Lin & Shoham 1992;
Meyer & van der Hoek 1995; Shoham 1987). In particu-
lar, Lifschitz (Lifschitz 1991; 1994) has proposed a bimodal
logic, known as MKNF,1 combining the minimal knowledge
paradigm with the notion of negation as failure in logic pro-
gramming.

Notably, it was shown that the logic of minimal epistemic
states can be given a fixpoint characterization (Tiomkin
& Kaminski 1990) which actually defines a whole fam-
ily of logics of minimal knowledge states, the so-called
ground nonmonotonic modal logics(Truszczýnski 1991;
Schwarz 1992a), obtained by varying the underlying modal
system. Hence, such family of logics can be considered as
obtained through a generalization of the notion of minimal
knowledge, according to the different modal system chosen.

MKNF has been used in order to give a declarative se-
mantics to very general classes of logic programs (Lifs-
chitz & Woo 1992; Schwarz & Lifschitz 1993; Inoue &
Sakama 1994), which generalize the stable model seman-
tics of negation as failure in logic programming (Gelfond
& Lifschitz 1988; 1990; 1991). Also, MKNF can be
viewed as an extension of the theory of epistemic queries
to databases (Reiter 1990), which deals with the problem
of querying a first-order database about its own knowledge.
Due to its ability of expressing many features of nonmono-
tonic logics (Lifschitz 1994; Schwarz & Lifschitz 1993;
Rosati 1999), MKNF is generally considered as a unifying

1Actually, Lifschitz in (Lifschitz 1991) defined the logic
MKNF, while in (Lifschitz 1994) he presented the logic MBNF,
which slightly differs from MKNF.



framework for several nonmonotonic formalisms, includ-
ing default logic, autoepistemic logic, circumscription, epis-
temic queries, and logic programming.

Limitations of current proposals Let us now point out
two limitations of the research in nonmonotonic modal log-
ics:

• The vast majority of the studies in nonmonotonic modal
logics in the literature deal withpropositionalmodal log-
ics, while there are very few proposals concerning non-
monotonic extensions of first-order logic.

• Almost all the modal approaches nonmonotonic logic
use a single modality, i.e., they lack the ability of ex-
pressing the knowledge of many agents. In particular,
none of the nonmonotonic formalisms based on the prin-
ciple of minimal knowledge which have been proposed
in the literature ismulti-modal, i.e., is able to express
the different epistemic states of a set of agents. On the
other hand, this aspect has been extensively studied in the
monotonic multi-modal systems for knowledge and be-
lief Kn, Tn, S4n, K45n,KD45n, S5n (see, e.g., (Halpern
& Moses 1992)).

On the other hand, recent developments in the field of
distributed information systems have outlined the need for
a multi-modal, first-order, nonmonotonic logic. In partic-
ular, several recent studies in the formalization of peer-to-
peer distributed systems (Bernsteinet al. 2002; Calvanese
et al. 2003; Franconiet al. 2003; Calvaneseet al. 2004;
2005) have clearly pointed out that the intended semantics
of information in this kind of applications is naturally cap-
tured by an epistemic logic approach based on the principle
of minimal knowledge, in which each system is modeled as
an autonomous epistemic agent, and the exchange of infor-
mation in the system is represented by epistemic sentences
that express the relationships among the epistemic states of
the different agents. Moreover, such studies highlight that,
in order to fully represent the peculiar aspects of such appli-
cation scenarios, we need a logic with first-order quantifica-
tion abilities that is also able to formalize typical nonmono-
tonic reasoning features of the epistemic agents (Calvanese
et al. 2005).

Our contribution The aim of this paper is to provide a
first proposal of multi-modal nonmonotonic logics. In par-
ticular, we define the family of logicsSA

n , which has the
following characteristics:

• each logic in the familySA
n is a nonmonotonic logic based

on the principle of minimal knowledge, in particular it can
be viewed as a generalization of Lifschitz’s logic MKNF;

• each such logic is a multi-modal logic, since it can be
viewed as a nonmonotonic extension of the family of
multi-modal logicsSn (Halpern & Moses 1992);

• each such logic is a modal first-order logic, i.e., it allows
for first-order quantification.

In particular, we point out that the semantic definition
of SA

n is based on a preference order on possible-world

structures, following the studies on a model theory for
nonomotonic modal logics (Shoham 1987; Schwarz 1992b;
Schwarz & Truszczýnski 1994; Donini, Nardi, & Rosati
1997). Also, it can be seen as a generalization of the
possible-world semantics of MKNF and MBNF (Lifschitz
1991; 1994).

Then, to show an example of the representational abilities
of the logicSA

n , we use the logicK45A
n to formalize the be-

haviour of knowledge in distributed, peer-to-peer informa-
tion systems. To our purposes, this kind of application is of
particular interest, since it requires all the three main ingre-
dients of the logicsSA

n , namely, multiple modal operators,
first-order quantification, and nonmonotonic abilities.

In the next section, we recall standard (monotonic) multi-
modal logics. Then, we define syntax and semantics of the
nonmonotonic multi-modal logicsSA

n , and analyze the re-
lationship between the familySA

n and nonmonotonic modal
logics previously defined. In the subsequent section we il-
lustrate the representation abilities of one of these logics
(K45A

n ) in the formalization of knowledge in distributed,
peer-to-peer information systems. Finally, we draw some
conclusions.

Multi-modal logics
In this section we recall multi-modal epistemic logics
(Halpern & Moses 1992). We assume that the reader is fa-
miliar with the basics of modal logic (Chellas 1980).

The languageLk is the usual function-free first-order
multi-modal language, i.e., it is obtained from function-free
first-order logic by adding a setK1, . . . ,Kn of modal oper-
ators, for the forming rule: ifφ is a (possibly open) formula,
then alsoKiφ is so, for1 ≤ i ≤ n for a fixedn. We useψx

c
to denote the formula obtained fromψ by substituting each
free occurrence of the variablex with the constantc.

To define the semantics, we start from first-order interpre-
tations. In particular, we restrict our attention to first-order
interpretations that share a fixed infinite domain∆. We fur-
ther assume that for each domain elementd ∈ ∆, we have
a unique constantcd ∈ Γ that denotes exactlyd, and, vice
versa, that every constantcd ∈ Γ denotes exactly one do-
main elementd ∈ ∆. In other words, the constants inΓ act
asstandard names(Levesque & Lakemeyer 2001).

Formulas of Lk are interpreted over Sn-
structures. Given a modal systemS, where
S ∈ {K,T, K4, K45,KD45, S4, S5}, a Sn-structure is
a Kripke structureE of the form (W, {R1, . . . Rn}, V ),
where:

• W is a set whose elements are calledpossible worlds;

• V is a function assigning to eachw ∈ W a first-order
interpretationV (w);

• eachRi, called theaccessibility relationfor the modality
Ki, is a binary relation overW that satisfies the condi-
tions for the modal systemSn described below.

Different multi-modal logics are obtained by imposing
different conditions that each accessibility relationRi has
to satisfy: in particular,

• whenSn = Tn, eachRi is reflexive;



• whenSn = K4n, eachRi is transitive;

• whenSn = K45n, eachRi is transitive and euclidean;

• whenSn = KD45n, eachRi is serial, transitive and eu-
clidean;

• whenSn = S4n, eachRi is reflexive and transitive;

• whenSn = S5n, eachRi is reflexive, transitive and eu-
clidean.

It is well-known that the above four conditions on the ac-
cessibility relation (serial, reflexive, transitive, euclidean) of
Sn-structures correspond respectively to impose validity of
the following axiom schemas:

Kiφ ⊃ ¬Ki¬φ axiom schema D
Kiφ ⊃ φ axiom schema T
Kiφ ⊃ KiKiφ axiom schema 4
¬Kiφ ⊃ Ki¬Kiφ axiom schema 5

A Sn-interpretation is a pair (E,w), where E =
(W, {R1, . . . Rn}, V ) is aSn-structure, andw is a world in
W . A sentence (i.e., a closed formula)φ is true in an inter-
pretation(E,w) (or, is true on worldw ∈ W in E), written
E,w |= φ iff:

• E,w |= P (c1, . . . , cn) iff V (w) |= P (c1, . . . , cn

• E,w |= φ1 ∧ φ2 iff E,w |= φ1 and E, w |= φ2

• E,w |= ¬φ iff E, w 6|= φ

• E,w |= ∃x.ψ iff E,w |= ψx
c for some constant c

• E,w |= Kiφ iff E, w′ |= φ for every w′ such that
(w, w′) ∈ Ri

A Sn-modelfor φ is a Sn-interpretationE, w such that
E,w |= φ.

We say that a sentenceφ is Sn-satisfiableif there exists
aSn-model forφ, unsatisfiableotherwise. ASn-model for
a setΣ of sentences is aSn-model for every sentence inΣ.
A sentenceφ is Sn-entailedby a setΣ of sentences, written
Σ |=Sn φ, if and only if E, w |= φ in everySn-modelE, w
of Σ.

Multi-modal logics of minimal knowledge and
negation as failure

In this section we introduce a nonmonotonic extension of
the multi-modal logics recalled in the previous section. In-
formally, such an extension is obtained by adding a new
set of modal operatorsA1, . . . ,An to the modal language.
Then, following (and generalizing) the semantic construc-
tion of the logic MKNF (Lifschitz 1991), the modal oper-
atorsK1, . . . ,Kn are interpreted as epistemic operators of
minimal knowledge, and the modal operatorsA1, . . . ,An

are interpreted as epistemic operators ofjustified assumption
(Lin & Shoham 1992), which corresponds to the well-known
notion ofnegation as failure(Lifschitz 1994).

Adding modal operators of negation as failure
First, we introduce the languageLA

k , which is an extension
of Lk obtained by adding to the first-order modal language
a new set of modal operators,A1, . . . ,An.

The semantics ofLA
k sentences is formally de-

fined as follows. A SA
n -structure E is a tuple

(W, {R1, . . . , Rn, Ra
1 , . . . , Ra

n}, V ), where:
• W is a set of worlds;

• eachRi and eachRa
i are binary relations overW satisfy-

ing the conditions imposed by the systemSn (described
in the previous section);

• V is a function mapping worlds to first-order interpreta-
tions.
Therefore, with respect toSn-structures,SA

n -structures
haven additional accessibility relationsRa

1 , . . . , Ra
n. Such

relations account for the additional modal operators
A1, . . . ,An.

The notion of truth of aLA
k sentence in a world of aSA

n -
structure is analogous to the notion given in Section forLk,
with the addition of the following rule:
• E, w |= Aiφ iff E,w′ |= φ for eachw′ such that

(w, w′) ∈ Ra
i

Nonmonotonic semantics
So far, the family of logicsSA

n do not appear as a significant
extension of the logicsSn: indeed, according to the above
notion of truth, the new modal operatorsAi are treated just
like anyKi operator inSn, so there is no apparent reason to
distinguish theAi’s operators from theKi’s.

Actually, for each logicSA
n , the different (nonmonotonic)

meaning of the two sets of modal operators inSA
n with re-

spect toSn is due to the following notion ofSA
n -model for a

sentenceφ, which differs from the (classical) notion ofSn-
model, and is obtained by imposing a preference order over
SA

n -structures satisfyingφ.

Definition 1 Let E = (W, {R1, . . . , Rn, Ra
1 , . . . , Ra

n}, V )
and E′ = (W ′, {R′1, . . . , R′n, Ra

1 , . . . , Ra
n}, V ′) be SA

n -
structures. We say thatE′ is preferred toE if the following
conditions hold:

1. W ′ ⊇ W andV ′(w) = V (w) for everyw ∈ W ,
2. R′i ⊇ Ri, for all i ∈ {1, . . . , n},
3. there existw1 ∈ W , w2 ∈ W ′, i ∈ {1, . . . , n} such that

(w1, w2) ∈ R′i−Ri and there exists now′ ∈ W such that
(w1, w

′) ∈ Ri andV (w′) = V ′(w2).
Intuitively, E′ is preferred toE if E′ is a structure “larger”

than E (conditions 1 and 2) and there exists a worldw1

which is connected inE′ (through the relationR′i) to a larger
set of possible worlds than inE (condition 3), which means
thatw1 in E has “less objective knowledge” than inE′ with
respect to the modalityKi, since adding possible worlds in
a structure reduces the knowledge represented the accessi-
bility relations interpreting theKi’s operators.

For instance, it can be immediately verified that, ifE′ is
preferred toE, then, for each first-order sentenceφ and for
eachw ∈ W , if E′, w |= Kiφ thenE, w |= Kiφ, but not
vice-versa.

Definition 2 Let φ ∈ LA
k , let E =

(W,R1, . . . , Rn, Ra
1 , . . . , Ra

n, V ) be a SA
n -structure,

and letw ∈ W . (E, w) is aSA
n -model forφ if the following

conditions hold:



1. E,w |= φ;
2. Ri = Ra

i for eachi ∈ {1, . . . , n};
3. there exists no SA

n -structure E′ =
(W ′, {R′1, . . . , R′n, Ra

1 , . . . , Ra
n}, V ′) such that E′

is preferred toE, andE′, w |= φ.

A SA
n -model for a setΣ of sentences is aSA

n -model for
every sentence inΣ. A sentenceφ is SA

n -entailedby a setΣ
of sentences, writtenΣ |=SA

n
φ, if and only if E, w |= φ in

everySA
n -modelE, w of Σ.

Let us now try to provide an intuition for the semantics of
the logics in the familySA

n . The above semantics formalizes
the idea of selectingSA

n -structures that satisfy two intuitive
principles:
1. knowledge is minimal, which is realized through the no-

tion of preference between structures;

2. assumptions are justified by knowledge, which is realized
by the fact that, for eachi, the meaning of the operators
Ai andKi is the same, sinceRi = Ra

i .
Such semantic principles of minimal knowledge and jus-

tified assumptions are well-known in nonmonotonic reason-
ing (Lin & Shoham 1992; Lifschitz 1994; Rosati 1999). In
particular, we recall that the principle of justified assumption
exactly corresponds to the semantics of the modal operator
in Moore’s autoepistemic logic (Rosati 1999). Moreover, as
illustrated in (Lifschitz 1991; 1994; Lin & Shoham 1992),
the justified assumption operator exactly formalizes the no-
tion of negation as failurein logic programming under the
stable model semantics.

Remark. From the technical viewpoint, the above prefer-
ence semantics for the logicsSA

n is a non-trivial extension
of analogous semantic constructions underlying other non-
monotonic modal logics. The main difference with respect
to such previous constructions is that here, due to the pres-
ence of multiple modal operators, we cannot impose the con-
dition that the preferred models of a theory always corre-
spond to structures in which each accessibility relation is
total (which have a syntactic counterpart in the so-called
stable setsof modal formulas (Stalnaker 1993)). Conse-
quently, minimality of knowledge in the preferred models
is imposed via a different, although simple, condition (for-
mally stated by Definition 1), which can be seen as a gener-
alization of analogous minimality criteria in previous, sim-
pler nonmonotonic modal formalisms like MKNF (Lifschitz
1991) or ground nonmonotonic modal logics (Donini, Nardi,
& Rosati 1997).

The logicsSA
n vs. nonmonotonic modal logics

We now analyze more in detail the relationship between the
family of logicsSA

n and previous nonmonotonic modal log-
ics. In particular, we want to point out the following deep
correspondences between the logicsSA

n and some well-
known nonmonotonic modal logics:

• Correspondence between MKNF andS5A
n . First, we an-

alyze the relationship between the logicS5A
n and Lifs-

chitz’s logic MKNF. More precisely, we start by recall-
ing that the language of MKNF makes use of two modal

operatorsK andnot. Now, given an MKNF theoryΣ, it
can be proved that the MKNF-models ofΣ coincide with
theS5A

n -models of the theoryΣ′ obtained fromΣ by re-
placing each occurrence of the modal operatorK with the
modalityK1, and replacing each occurrence of the modal
operatornot with the modality¬A1. Therefore, the logic
S5A

n can be viewed as the multi-modal generalization of
MKNF, and, more generally, the whole family of logics
SA

n can be seen as a generalization of the semantic con-
struction underlying the logic MKNF.

• Correspondence between autoepistemic logic andS5A
n .

As a consequence of the previous correspondence, and
since in turn MKNF constitutes a generalization of
Moore’s autoepistemic logic (Rosati 1999), it follows that
an analogous precise correspondence holds between the
logic S5A

n and Moore’s autoepistemic logic, which allows
us to also interpretS5A

n as a multi-modal generalization
of Moore’s autoepistemic logic.

• Correspondence between ground logicS5G and S5A
n .

The family of ground nonmonotonic modal logicsstud-
ied in (Tiomkin & Kaminski 1990; Truszczýnski 1991;
Schwarz 1992a; Donini, Nardi, & Rosati 1997) is also
deeply related to the logicsSA

n . More precisely, it can be
shown that the ground nonmonotonic modal logic based
on the modal systemS5 and known asS5G (Donini,
Nardi, & Rosati 1997) corresponds to the logicS5A

n , in the
sense that, given a unimodal theoryΣ, theS5G-models of
Σ coincide with theS5A

n -models of the theoryΣ′ obtained
from Σ by replacing each occurrence of the modal opera-
tor with the modalityK1.

Modeling knowledge in a P2P system
In this section we show the representational abilities of the
multi-modal logicsSA

n . In particular, we use one of such
logics,K45A

n , to provide a formal semantics topeer-to-peer
(P2P) data integration systems, which constitute one of the
most recent and complex architectures in the field of dis-
tributed information systems.

For a detailed introduction to P2P data integration sys-
tems, we refer the reader to (Halevyet al. 2003), and for
more details on the formalization presented in this section,
we refer to (Calvaneseet al. 2005). In the following, we as-
sume that the reader is familiar with the basics of relational
database theory (Abiteboul, Hull, & Vianu 1995).

P2P data integration systems
We refer to a fixed, infinite, denumerable setΓ of constants.
Such constants are shared by all peers, and denote the data
items managed by the P2P data integration system (denoted
by P2PDIS in the following). Moreover, given a relational
alphabetA, we denote withLA the set of function-free first-
order logic (FOL) formulas whose relation symbols are inA
and whose constants are inΓ.

A P2P data integration systemP = {P1, . . . , Pn} is con-
stituted by a set ofn peers. Each peerPi ∈ P (cf. (Halevy
et al. 2003)) is defined as a tuplePi = (id , G, S, L, M,L),
where:



• id is a symbol that identifies the peerPi within P, called
the identifier ofPi.

• G is theschemaof Pi, which is a finite set of formulas of
LAG

(representing local integrity constraints), whereAG

is a relational alphabet (disjoint from the other alphabets
in P) called thealphabetof Pi. We assume that the lan-
guageLAG

of peerPi includes the special sentence⊥i

that is false in every interpretation forLAG
. Intuitively,

the peer schema provides an intensional view of the infor-
mation managed by the peer.

• S is the (local) source schemaof Pi, which is simply a
finite relational alphabet (again disjoint from the other
alphabets inP), called thelocal alphabetof Pi. Intu-
itively, the source schema describes the structure of the
data sources of the peer (possibly obtained by wrapping
physical sources), i.e., the sources where the real data
managed by the peer are stored.

• L is a set of(local) mapping assertionsbetweenG and
S. Each local mapping assertion is an expression of the
form cqS ; cqG, wherecqS andcqG are two conjunc-
tive queries of the same arity, respectively over the source
schemaS and over the peer schemaG. The local map-
ping assertions establish the connection between the ele-
ments of the source schema and those of the peer schema
in Pi. In particular, an assertion of the formcqS ; cqG
specifies that all the data satisfying the querycqS over the
sources also satisfy the concept in the peer schema rep-
resented by the querycqG. In the terminology used in
data integration, the combination of peer schema, source
schema, and local mapping assertions constitutes a GLAV
data integration system(Lenzerini 2002) managing a set
of sound data sourcesS defined in terms of a (virtual)
global schemaG.

• M is a set ofP2P mapping assertions, which specify the
semantic relationships that the peerPi has with the other
peers. Each assertion inM is an expression of the form
cq ′ ; cq , wherecq , called theheadof the assertion, is
a conjunctive query over the peer (schema of)Pi, while
cq ′, called thetail of the assertion, is a conjunctive query
of the same arity ascq over (the schema of) one of the
other peers inP. A P2P mapping assertioncq ′ ; cq
from peerPj to peerPi expresses the fact that thePj-
concept represented bycq ′ is mapped to thePi-concept
represented bycq . From an extensional point of view, the
assertion specifies that every tuple that can be retrieved
from Pj by issuing querycq ′ satisfiescq in Pi.

• L is a relational query language specifying the class of
queries that the peerPi can process. We assume thatL
is any fragment of FOL that accepts at least conjunctive
queries and the sentence⊥i. We say that the queries inL
are thoseaccepted byPi. Notice that this implies that, for
each P2P mapping assertioncq ′ ; cq from another peer
Pj to peerPi in M , we have thatcq ′ is accepted byPj .

An extensionfor a P2PDISP = {P1, . . . , P2} is a set
D = {D1, . . . , Dn}, where eachDi is an extension of the
predicates in the local source schema of peerPi.

A P2PDIS, together with an extension, is intended to be
queried by external users. A user enquires the whole system
by accessing any peerP of P, and by issuing aqueryq to P .
The queryq is processed byP if and only if q is expressed
over the schema ofP and is accepted byP .

Example 3 Let us consider the P2PDIS in Figure 1, in
which we have 4 peersP1, P2, P3, andP4 (in the follow-
ing, we assume that each peerPi is identified byi).

The global schema of peerP1 is formed by a re-
lation schemaPerson1(name, livesIn, citizenship), where
name is the key (we underline the key of a relation).
P1 contains a local sourceS1(name, livesIn), mapped to
the global view by the assertion{x, y | S1(x, y)} ;

{x, y | ∃z.Person1(x, y, z)}. Moreover, it has a P2P map-
ping assertion{x, z | ∃y.Citizen2(x, y, z)} ; {x, z |
∃y.Person1(x, y, z)} relating information in peerP2 to
those in peerP1.

P2 hasCitizen2(name, birthDate, citizenship) as global
schema, and a local sourceS2(name, birthDate, citizenship)
mapped to the global schema through the local mapping
{x, y, z | S2(x, y, z)} ; {x, y, z | Citizen2(x, y, z)}. P2

has no P2P mappings.
P3 has Person3(name, livesIn, citizenship) as global

schema, contains no local sources, and has a P2P mapping
{x, y, z | Person1(x, y, z)} ; {x, y, z | Person3(x, y, z)}
with P1, and a P2P mapping{x, y, z | Citizen4(x, y, z)} ;

{x, y, z | Person3(x, y, z)} with P4.
P4 has Citizen4(name, livesIn, citizenship) as global

schema, and a local sourceS4(name, livesIn, citizenship)
mapped to the global schema through the local mapping
{x, y, z | S4(x, y, z)} ; {x, y, z | Citizen4(x, y, z)}. P4

has no P2P mappings.
Finally, Figure 1 shows also an extension of the P2P data

integration system, which includesS1("Joe" , "Rome" ),
S2("Joe" , "24/12/70" , "Canadian" ), and
S4("Joe" , "Rome" , "Italian" ).

Formalization of P2P systems inK45A
n

In order to logically formalize a P2PDIS, several aspects of
the intended meaning of information in such a system must
be taken into account. Due to lack of space,2 here we only
focus oninconsistency tolerance, which is the characteristic
that enforces the need of a nonmonotonic logic for the above
purpose. Informally, inconsistency tolerance corresponds to
the ability of providing a semantics to the system even in the
presence of contradicting information (e.g., data contradict-
ing integrity constraints on the peer schemas).

More specifically, we want the P2PDIS to be
inconsistency-tolerant in the following sense:

1. When a peer islocally inconsistent, i.e., data at the
sources inPi contradict, via the local mapping, the peer
schema, making the whole peer inconsistent, the P2PDIS
should be equivalent to the one obtained by eliminating

2For a detailed description of the intended semantics of infor-
mation in a P2PDIS we refer to (Halevyet al. 2003; Calvaneseet
al. 2005).



Citizen4(name, livesIn, citizenship)

S4(name, livesIn, citizenship)

("Joe" , "Rome" , "Italian" )

Person3(name, livesIn, citizenship)
P1

Person1(name, livesIn, citizenship)

S1(name, livesIn)

("Joe" , "Rome" )

P2
Citizen2(name, birthDate, citizenship)

S2(name, birthDate, citizenship)

("Joe" , "24/12/70" , "Canadian" )

P3

P4

Figure 1: A P2P data integration system

the peerPi from the system. In other words, an inconsis-
tent peer should be “isolated” from the other peers: in this
way, a local inconsistency does not affect the overall con-
sistency (and meaning) of the system. The choice of iso-
lating locally inconsistent peers is motivated by the modu-
larity of P2PDISs pursued by our approach, in which each
peer is considered as a black box. Of course, the study of
inconsistency might be also interesting in an alternative
setting not focused on modularity. However, this is out-
side the scope of the present paper.

2. In the presence ofP2P inconsistency, i.e., when in a peer
Pi the data coming from another peerPj (through a P2P
mapping) contradict the local data ofPi (or the data com-
ing to Pi from another peerPk), the peerPi should not
reach an inconsistent state: rather, it should discard amin-
imal amount of the data retrieved from the other peers in
order to preserve consistency.

Due to the characteristics mentioned above,K45A
n is well-

suited to formalize P2PDISs. LetP = {P1, . . . , Pn} be
a P2PDIS in which each peerPi has identifieri. We use
the modal operatorsKi andAi to model the peeri. More
precisely, for each peerPi = (i, G, S, L, M,L) we define
the theoryTK(Pi) in K45A

n as the union of the following
sentences:
• Global schemaG of Pi: for each sentenceφ in G, we

have
Kiφ

Observe thatφ is a first-order sentence expressed in the
alphabet ofPi, which is disjoint from the alphabets of all
the other peers inP.

• Local mapping assertionsL betweenG and the local
source schemaS: for each mapping assertion{x |
∃y. bodycqS

(x,y)} ; {x | ∃z. bodycqG
(x, z)} in L, we

have
Ki(∀x.∃y. bodycqS

(x,y) ⊃ ∃z. bodycqG
(x, z))

• P2P mapping assertionsM : for each P2P mapping asser-
tion {x | ∃y. bodycqj

(x,y)} ; {x | ∃z. bodycqi
(x, z)}

between the peerj and the peeri in M , we have
∀x.¬Aj⊥j ∧Kj(∃y. bodycqj

(x,y))∧
¬Ai(¬∃z. bodycqi

(x, z)) ⊃
Ki(∃z. bodycqi

(x, z))
(1)

Informally, the above sentence specifies the following
rule: for each tuple of valuest, if peer j is locally con-
sistentand knows the sentence∃y. bodycqj

(t,y), and the
sentence∃z. bodycqi

(t, z) is consistent with what peeri
knows, then peeri knows the sentence∃z. bodycqi

(t, z).
In other words, information flows from peerj to peeri
through a P2P mapping assertion only ifj is locally con-
sistent and if adding such information to peeri does not
give rise to a P2P inconsistency in peeri. More precisely,
the meaning of the above sentence inK45A

n is that exactly
a maximalamount of information (i.e., a maximal set of
tuples) consistent with peeri flows from peerj to peer
i through the P2P mapping assertion. Moreover, under
such a formalization the P2PDIS is tolerant to local in-
consistency, in the sense that the peers that are locally in-
consistent are “isolated” from the rest of the system (i.e.,
thay cannot propagate information).

We denote byTK(P) the theory corresponding to the
P2PDISP, i.e.,TK(P) =

⋃
i=1,...,n TK(Pi).

The extensionD = {D1, . . . , Dn} of a P2PDISP
is modeled as a sentence constituted by the conjunc-
tion of all facts corresponding to the tuples stored in the
sources, i.e.,DB(D) =

∧n
i=1 DB(Di) whereDB(Di) =

Ki(
∧

t∈rDi r(t)).
A client of the P2PDIS interacts with one of the peers,

say peerPi, posing aquery to it. A query q is an open
formula q(x) with free variablesx expressed in the lan-
guage accepted by the peerPi (we recall that such a lan-
guage is a subset of first-order logic). The semantics of a
queryq ∈ L posed to a peerPi = (i, G, S, L, M,L) of P
with respect to an extensionD is defined as the set of tu-
ples {t | TK(P) ∪ DB(D) |=K45A

n
Kiq(t)}, whereq(t)

denotes the sentence obtained from the open formulaq(x)
by replacing all occurrences of the free variables inx with
the corresponding constants int.

Example 4 We are now able to provide the formal-
ization of the P2PDIS of Example 3. The theories
TK(P1), . . . , TK(P4) modeling the four peers are reported
in Figure 2.

It can be shown (see (Calvaneseet al. 2005) for details)
that the above formalization inK45A

n provides a formal se-



K1(∀x, y, y′, z, z′.Person1(x, y, z) ∧ Person1(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K1(∀x, y.S1(x, y) ⊃ ∃z.Person1(x, y, z))
∀x, z.¬A2⊥2 ∧K2(∃y.Citizen2(x, y, z)) ∧ ¬A1¬(∃y.Person1(x, y, z)) ⊃ K1(∃y.Person1(x, y, z))

theoryTK(P1)

K2(∀x, y, y′, z, z′.Citizen2(x, y, z) ∧ Citizen2(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K2(∀x, y, z.S2(x, y, z) ⊃ Citizen2(x, y, z))

theoryTK(P2)

K3(∀x, y, y′, z, z′.Person3(x, y, z) ∧ Person3(x, y′, z′) ⊃ y = y′ ∧ z = z′)
∀x, y.¬A1⊥1 ∧K1(∃z.Person1(x, z, y)) ∧ ¬A3¬(∃z.Person3(x, z, y)) ⊃ K3(∃z.Person3(x, z, y))
∀x, y, z.¬A4⊥4 ∧K4(Citizen4(x, y, z)) ∧ ¬A3¬Person3(x, y, z) ⊃ K3Person3(x, y, z)

theoryTK(P3)

K4(∀x, y, y′, z, z′.Citizen4(x, y, z) ∧ Citizen4(x, y′, z′) ⊃ y = y′ ∧ z = z′)
K4(∀x, y, z.S4(x, y, z) ⊃ Citizen4(x, y, z))

theoryTK(P4)

Figure 2: TheoriesTK(P1), . . . , TK(P4) modeling the P2P system of Figure 1 inK45A
n



mantics to P2PDISs that, besides other things, exactly cap-
tures the two notions of inconsistency tolerance above de-
fined. Indeed, from the above formalization it follows that:

• when inconsistency arises between local data and non-
local data in a peer, i.e., when data coming from the peer
sources through the local mapping contradicts the data re-
trieved by a peer through a P2P mapping, then the peer
always prefers the local data. Formally, in this case there
is oneK45A

n -model for the P2PDIS, which represents the
situation in which non-local data is discarded;

• when inconsistency arises between two different pieces
of non-local data, i.e., when a piece of data retrieved by
a peer through a P2P mapping contradicts another piece
of data retrieved through the P2P mappings, then no pref-
erence is made between these two pieces of information,
in the sense that in this case there are twoK45A

n -models
for the P2PDIS, each of which represents the situation in
which one of the two pieces of data is discarded.

Conclusions
In this paper we have proposed a first attempt to define a
multi-modal, first-order, nonmonotonicfamily of logics. In
particular, the logicsSA

n presented in this paper general-
ize recent approaches in epistemic logic and nonmonotonic
modal logics in many respects.

We have also illustrated the need for multi-modal non-
monotonic logics in the field of distributed systems. Interest-
ingly, the possibility of modeling knowledge in distributed
systems was also the initial motivation behind one of the
first nonmonotonic modal logics, i.e., Halpern and Moses’
logic of minimal knowledge (Halpern & Moses 1985).

An interesting extension of the present work is towards
reasoning in the logicsSA

n . The first results in this direction
appear in (Calvaneseet al. 2005), in which an algorithm
is presented for reasoning in the restricted fragment of the
logic K45n which is able to logically modal information in
P2P systems.

Finally, it would be very interesting to investigate whether
the logicsSA

n can be characterized by fix-point semantics, in
a way analogous to other families of nonmonotonic modal
logics (Tiomkin & Kaminski 1990; Marek & Truszczyński
1993; Schwarz 1992b).
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Truszczýnski, M. 1991. Modal nonmonotonic logic with
restricted application of the negation as failure to prove
rule. Fundamenta Informaticae14:355–366.


