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Abstract

In an earlier paper [14], we developed the first algorithm (to our knowledge) for computing
the stochastically stable distribution of a perturbed Markov process. The primary tool was a
novel quotient construction on Markov matrices. In this paper, we show that the ideas and
techniques in that paper arise from a more fundamental construction on Markov chains, and
have much wider applicability than simply to game theory (the application discussed in [14]).
Besides leading to new results, our quotient construction leads to simpler proofs of known results
and to simpler algorithms for known computations. In this paper, we present one example of the
former—we give necessary and sufficient conditions for a Markov matrix to have a unique stable
distribution—and one of the latter—we show that a variant of the algorithm in [14] can be used
to compute the virtual energy levels of a generalized simulated annealing in a straightforward,
recursive manner using basic matrix arithmetic.

1 Introduction

Markov processes are fundamental to a wide variety of techniques in artificial intelligence. Much of
the time, they arise as discrete-time, finite-state, stationary Markov processes (i.e., Markov chains),
which are fully determined by a transition matrix and an initial distribution. For example, in an
earlier paper [14], we analyzed the dynamics of Young’s adaptive learning model in repeated games
[16], which models the behavior of players over time as a Markov chain. In fact, we considered
the more general case of a parameterized family of Markov processes, a so-called perturbed Markov
process (PMP), and developed the first algorithm (to our knowledge) for computing the stochasti-
cally stable distribution of a PMP. The primary tool was a novel quotient construction on Markov
matrices.

In this paper, we show that the ideas and techniques in that paper arise from a more fundamental
construction on Markov chains and have much wider applicability than simply to game theory.
Besides leading to new results, our quotient construction leads to simpler proofs of known results
and to simpler algorithms for known computations. We present one example of the former—we
give necessary and sufficient conditions for a Markov matrix to have a unique stable distribution—
and one of the latter—we present a novel algorithm to compute the virtual energy levels of a
generalized simulated annealing. Along the way, we highlight how several properties of the quotient
construction, such as its naturality and its relationship to random walks, play a fundamental role
in proving the correctness of our algorithm.

In the area of optimization, simulated annealing algorithms [6, 10] depend heavily on the theory
of convergence of Markov processes to justify their usefulness. The analysis of parallelized schemes
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for simulated annealing have led to the study of generalized simulated annealing (GSA) [9, 13].
One fundamental problem in the study of GSA is the computation of virtual energies, given the
transition matrix of the process. While [3] and [13] provide algorithms to compute them, their
algorithms are rather arcane. It turns out that the theory of GSA is very closed related to that
of PMPs. We derive a variant of the algorithm from [14] which computes these energy levels in a
straightforward, recursive manner using basic matrix arithmetic.

A fundamental observation in both the PMP and GSA applications is that both calculations
may be performed on equivalence classes of perturbed matrices. The entries of the transition matrix
of a perturbed Markov process are technically functions of a parameter, which in the former case
is interpreted as an error probability, while in the latter corresponds to a “temperature”. However,
the stochastically stable distribution of a PMP and the virtual energies of a GSA depend only on
certain coefficients of the entries. In particular, we show that the calculations may be carried out
on real-valued matrices.

After establishing some notation and basic definitions in Section 2, in Section 3, we review the
quotient construction for Markov matrices that we developed in [14] and highlight some of its key
properties. In Section 5, we show how this construction arises from a more general construction on
Markov processes, which allows us to prove additional, useful properties of the original construction
on matrices. In Section 6, we apply the construction to PMPs as the basis for our algorithm to
compute the virtual energies of a GSA, highlighting the key role played by the results from Section 5.

2 Markov Matrices

In this section, we establish some notation and review basic definitions associated with Markov
matrices. For this paper, J = [1, . . . , 1] will ambiguously denote a row vector of 1’s of arbitrary
length. If S ⊂ R is a set of scalars, Matn (S) will denote the set of n×n matrices with entries in S.
Sn = {1, . . . , n} will denote the index set for n × n matrices and Bn = {ei | i ∈ Sn} the standard
basis vectors for Rn.

Any M ∈ Matn (R+) (i.e., M ≥ 0) is called Markov iff JM = J , i.e., all columns sum to
1. Likewise, a distribution is a vector v ≥ 0 s.t. Jv = 1. Given a Markov matrix M , a stable
distribution of M is one which is also an eigenvector with eigenvalue 1: i.e., Mv = v. If dim M = n
and ∆ is the standard n-simplex, then the set of stable distributions of M , stab (M) = ker (M − I)∩
∆.

We will say that M2 is D-equivalent to M1 iff there exists an injective mapping D such that:

ker (M1 − I) = D ker (M2 − I) (1)

This equivalence condition says that D maps ker (M2 − I) onto ker (M1 − I), implying that D is
in fact a bijective mapping between the two kernels. Note that, in general, D-equivalence is not
an equivalence relation. It is a partial order, since it is not symmetric, but it is reflexive (choose
D = I) and transitive (if M2 is D-equivalent to M1 and M3 is D′-equivalent to M2, then M3 is
DD′-equivalent to M1). However, this terminology is justified by the observation that, if D ≥ 0
and has a positive left-inverse, D∗(v) = Dv

‖Dv‖1 gives 1-1 correspondence between stab (M2) and
stab (M1).

In other words, if we are only interested in calculating stable distributions, we may work equally
well with either M1 or M2. If we restrict attention to matrices of a fixed dimension, this is, in fact,
an equivalence relation. For example, we may take D to be a diagonal matrix with sufficiently
small, positive entries to “scale” the columns of a Markov matrix as follows, M2 = (M1 − I)D + I.
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More importantly, if we can find a non-square, D which gives such an equivalence, we may reduce
the dimensionality of the problem in our search for stable distributions.

We can associate a weighted graph G(N) = (V,E) with a square matrix, N , in two ways,
depending on whether N ∈ Matn ([0, 1]) or Matn ([0,∞]). In either case, we take V = Bn. If
N ∈ Matn ([0, 1]), we define the edge set so that (ei, ej) ∈ E iff Nj,i > 0; if N ∈ Matn ([0,∞]),
(ei, ej) ∈ E iff Nj,i < ∞. In either case, we take the weight on edge (ei, ej) to be Nj,i. In the
former case, we interpret the edge weights as probabilities (i.e., we cannot utilize an edge with
0 probability), while in the later, we interpret them as costs (i.e., we cannot utilize an infinitely
expensive edge).

For any graph, G = (V,E), we will call the vertex set of a strongly connected component (SCC)
a communicating class of G. In addition, we will say that a set of vertices, S, is invariant iff S has
no outgoing edges, i.e., ∀ (ei, ej) ∈ E, ei ∈ S ⇒ ej ∈ S. We will call an invariant communicating
class a closed class. Vertices that are not in any closed class are called transient. Any set of vertices
that does not contain a closed class will be called open.

Using the natural correspondence, Sn ↔ V , we may carry over the terminology of communi-
cating classes, closed classes, open, invariant, and transient sets of vertices in G(M) and apply it
to sets of indices of M . Given a set of indices, s ⊂ Sn, we will denote the corresponding set of
vertices, Vs = {ei | i ∈ s}. A Markov matrix is said to be reducible if it possesses more than one
communicating class; otherwise it is said to be irreducible. More generally, since every Markov
matrix has at least one closed class, we will say that it is regular if it possesses exactly one closed
class.

3 The Quotient Construction on Markov Matrices

In this section, we review the quotient construction of [14], which takes a Markov matrix, M , and
an open set of indices, s, to produce an equivalent Markov matrix of strictly smaller dimension.
Given a set of indices s ⊂ Sn we may uniquely enumerate both it and its complement in increasing
order to obtain sequences (si)n−k

i=1 and (si)k
i=1. We may also define matrices, is =

[
es1 · · · esk

]
and πs = its, with corresponding definitions for s. Then Ps =

[
is is

]
is a permutation matrix

such that if j = s(u), Pseu = ej ; likewise, if j = s(u), Psen−k+u = ej .
Given a matrix, M , and a set of indices s, we may form the sub-matrices: M̃ = πsMis,

M = πsMis, N = πsMis, and Ñ = πsMis. Notice then that

(
M̃ N

Ñ M

)
=

[
πs

πs

]
M
[

is is
]

=

P t
sMPs. We will refer to this collection of sub-matrices as a partitioning of M with respect to s.

We state without proof the following basic result characterizing open sets of indices of a Markov
matrix, M , in terms of the corresponding partitioning.

Lemma 3.1 Consider an n× n Markov matrix, M . If M is defined by the partitioning of M with
respect to a set of indices, s ⊂ Sn, then s is open with respect to M iff I −M is invertible. In that

case,
(
I −M

)−1
= limi→∞

∑i−1
j=0 M

j.

If s is open, with k = |s|, we may define the following: a k × n-dimensional matrix

p =
(

I N
(
I −M

)−1
)

P t
s (2)
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and an n× k-dimensional matrix

i = Ps

 I(
I −M

)−1
Ñ

 (3)

Letting M̂ = p(M − I)i + I, we will call the triple, (M̂, p, i), the quotient of M with respect to s.
We will often refer to p and i as the projection and inclusion operators of the quotient (since they
are surjective and injective mappings, respectively), and call simply M̂ the quotient. Notice that,

by multiplying out, M̂ may also be written as M̃ + N
(
I −M

)−1
Ñ .

We will see in Section 5, if we consider a Markov process, X∗, with transition matrix, M , and
any initial distribution, M̂ corresponds to another Markov process, X̂∗, which is just X∗, except
that we pass through states of s without pause. In particular, M̂ is a Markov matrix. In addition,
we may then identify the entries of M̂ as the probability of a random walk on G(M) traversing a
path between vertices in Vs, while only passing through vertices of Vs. We will likewise obtain a
compelling probabilistic interpretation of p.

While there is no obvious such interpretation of i, it possesses the following important properties.
As we showed in [14], this construction “preserves” the set of stable distributions, in the following
sense.

Theorem 3.2 Given a Markov matrix M , M̂ is i-equivalent to M . In particular, i induces a
bijective mapping between the stable distributions of M̂ and those of M via i.

We say that w ∈ Rn is an extension of a vector v ∈ Rk with respect to s iff v = πsw.

Theorem 3.3 Given a Markov matrix M , the eigenvector iv ∈ ker (M − I) is the unique extension
with respect to s of any eigenvector v ∈ ker

(
M̂ − I

)
.

We now observe that this construction gives a simple and direct proof of the uniqueness of stable
distributions in a very general setting, without restrictive assumptions of aperiodicity or ergodicity,
etc.

Corollary 3.4 Every regular Markov matrix M has a unique stable distribution v.

Proof 3.4 Let s = Sn − j, where j is any element of the unique closed class of M , and let M̂
be the quotient of M with respect to s. Since M̂ ∈ Mat1 (R+), M̂ = (1). By Theorem 3.2,
dim ker (M − I) = dim ker

(
M̂ − I

)
= 1. In particular, |stab(M)| = 1.

A useful variant of our quotient construction will be employed in Section 6. Give a quotient
(M̂, p, i), of M , let d be the diagonal matrix such that Jd = Ji: that is, the diagonal entries of d
correspond to the column sums of i. We refer to d as the normalizing matrix of the quotient, and
define the normalized inclusion operator i∗ = id−1, and the normalized quotient, (M̂∗, p, i∗), with
M̂∗ =

(
M̂ − I

)
d−1 + I. Note that Ji∗ = Jid−1 = Jdd−1 = J , that is, the columns of i∗ sum to 1.

By definition, the normalized quotient is the result of “scaling” the columns of the quotient by
D = d−1. Thus, the analog of Theorem 3.2 holds for normalized quotients. Moreover, if s is a
maximal, open subset of indices, we can show that the columns of i∗ give the vertices of stab(M).
It then follows easily that the converse of Corollary 3.4 holds as well.

We conclude by stating a useful geometric property of the quotient construction. Intuitively, it
says that the “quotient” of an open set is open.

Theorem 3.5 If s is an open set of indices of M and M̂ is the quotient of M with respect to s,
and s ∪ s′ is open with respect to M , then s−1 (s′) is open with respect to M̂ . In particular, if M
is regular, then M̂ is regular. Likewise, if M is irreducible, then M̂ is irreducible.
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4 Markov Chains

In this section, we will review the basic definitions regarding finite-state, stationary, Markov chains,
assuming the reader is familiar with basic probability and measure theory. A discrete-time stochastic
process (or chain) is a sequence of random variables, {Xt}∞t=0, i.e., real-valued measurable functions
on some shared probability space, (Ω, µ). As is common, we will write Pr[ω] for the probability
of a measurable subset ω ⊂ Ω. Likewise, given a random variable, X, we will write Pr[X ∈ σ]
for Pr[X−1(σ)], assuming that σ ∈ B, the so-called Borel sets of R. In this way, we avoid explicit
reference to Ω and µ. Likewise, if {x} ∈ B, we will write Pr[X = x] for Pr[X ∈ {x}]. The support,
suppX , of a random variable, X, is the smallest Borel set, σ, such that Pr[X ∈ σ] = 1. in this
paper, we will restrict attention to those chains whose state space, S =

⋃
i suppXi

, is a finite set.
A chain, {Xt}∞t=0, is Markov iff for all t and s0, . . . , st, st+1 ∈ S, such that Pr[Xt = st, . . . , X0 =

s0] 6= 0, Pr[Xt+1 = st+1 | Xt = st, . . . , X0 = s0] = Pr[Xt+1 = st+1 | Xt = st]. This so-called Markov
property (sometimes called the memoryless property) implies that the probability of transitions to
future states, such as st+1, depend only on the present state st, and so are independent of the
remote past, namely st−1, . . . , s0.

A Markov chain is stationary iff Pr[Xt+1 = st+1 | Xt = st] is constant over {t | Pr [Xt = st] > 0}.
Since ∀s ∈ S, ∃ts ≥ 0 such that Pr [Xts = s] > 0, given a labeling of the state space, i.e., a bijection
ι : Sn → S, there is a unique matrix, M , such that Pr[Xt+1 = ι(i) | Xt = ι(j)] = Mi,j = et

iMej ,
whenever Pr [Xt = ι(j)] > 0. We will refer to M as the transition matrix of the chain consistent
with ι.

Notice that if M1 and M2 are two transition matrices, consistent with ι1 and ι2, respectively,
then M2 = P−1M1P , where P is the permutation matrix such that Pi,j = 1 iff ι1(i) = ι2(j). In
particular, there is a unique ι-consistent transition matrix for which ι is an increasing function.
Notice also that for every sequence, i∗, of length k + 1 taking values in Sn,

Pr [Xj = ι (i0) , . . . Xj+k = ι (ik)] = Mi∗ Pr[Xj = ι (i0)] (4)

where Mi∗ =
∏k−1

t=0 Mit+1,it . We will refer to such a sequence as a walk of length k.
It is often helpful to view a stationary Markov chain with transition matrix M as a random

walk on the weighted graph G(M), where the state, ι(i), corresponds to the vertex, ei. We may
sample from this random walk by first choosing an initial vertex according to the initial distribution
(i.e., the distribution of X0), and then choosing each successive vertex according to the distribution
given by the weights of the edges originating at the current vertex. Such a random path of length
N gives a sample from the joint distribution of {Xt}N

t=0. This sequence of joint distributions is
sufficient to uniquely characterize the chain, up to relabeling of the states. By Equation 4, these
distributions in turn are uniquely characterized by its transition matrix and the distribution of X0.
Conversely, it is well-known that given any Markov matrix, M ∈ Matn(R), and initial distribution,
v0 ∈ Rn, we may construct an associated chain, {Xt}∞t=0 taking values in {1, . . . , n} (cf. [2, p.
231-3]), with transition matrix, M , such that Pr [X0 = i] = vi.

As before, we may carry over the terminology of communicating classes, closed classes, invariant
and transient sets of vertices in G(M) from Section 2 and apply it to sets of states of a stationary
Markov process. Notice that a subset of states is invariant iff the probability of ever transitioning
away from the set is 0. Likewise, any transient state has a positive probability of transitioning
away from it without ever returning.
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5 The Quotient Construction on Markov Chains

We now show how the construction of Section 3 corresponds to a quotient construction on finite-
state, stationary Markov chains. Given a chain, {Xt}∞t=0, and a Borel set, σ ∈ B, we may define a
new chain,

{
X̃t

}∞
t=0

, where we “collapse” the time spent in σ. To make this precise, let κσ(t, ω) =
| {k | Xk(ω) 6∈ σ} |, and, τσ,k(ω) = min {t | κσ(t, ω) > k}, where τσ,k(ω) = ∞ if this set is empty. In
other words, τσ,k is the k + 1st “hitting time” for σ. This is a Markov time, since {τσ,k = t} may
be expressed solely in terms of X0, . . . , Xt.

For completeness, we prove the following basic characterization of open sets of states.

Lemma 5.1 A set of states, σ, of a finite-state, stationary Markov process, {Xt}∞t=0, is open iff
Pr
[⋂

r≥j X−1
r (σ)

]
= 0,∀j. In particular, if σ is open, τσ,0 < τσ,1 < · · · < ∞ are stopping times.

Proof 5.1 Assume that the process is ι-consistent with a matrix, M with state space, S, and let s =
ι−1(σ). Let I denote the set of all sequences of length q+1 taking values in S|s|. Partition this set ac-
cording to the starting and ending values of each sequence, so that Iu,v = {i∗ ∈ I | i0 = u, iq = v}.
Then

Pr

j+q⋂
r=j

X−1
r (σ)

 = Pr [Xj ∈ σ, . . . ,Xj+q ∈ σ] = Pr [Xj ∈ σ ∩ S, . . . , Xj+q ∈ σ ∩ S]

=
∑
i∗∈I

Pr
[
Xj = ι (si0) , . . . Xj+q = ι

(
siq

)]
=
∑
i∗∈I

Mi∗ Pr [Xj = ι (si0)]

=
∑
u,v

∑
i∗∈Iu,v

Msi∗ Pr [Xj = ι (si0)] =
∑
u,v

∑
i∗∈Iu,v

M i∗ Pr [Xj = ι (si0)]

=
∑
u,v

et
vM

q
eu Pr [Xj = ι(su)] =

∑
u

JM
q
eu Pr [Xj = ι(su)]

which is a sum of positive terms. For each u, there is some j for which Pr [Xj = ι(su)] > 0. In
particular, if σ is open, we must have limq→∞ JM

q
eu = 0 for all u, so that limq→∞ M

q = 0, and
conversely.

By definition, τσ,t(ω) < τσ,t+1(ω), unless both equal ∞. However, if σ is open, this occurs with
probability 0. In particular, Pr[τσ,t < ∞] = 1, so that τσ,t is a stopping time.

It is well-known that evaluating a Markov chain at a stopping time is a random variable (cf.
[12]). Thus, if σ is open, we may define X̃t = πσ,t (X∗) = Xτσ,t (where we define X̃t arbitrarily when
τσ,t = ∞). We will show that πσ,∗ is an operator on Markov chains and corresponds directly to our
earlier quotient construction on Markov matrices. It is easy to see that, for almost every element,
ω ∈ Ω, the sequence X̃∗(ω) is the result of deleting elements in σ from X∗(ω). This implies that
this quotient operator is “natural” in the following sense:

Theorem 5.2 Given a Markov chain, {Xt}∞t=0, and open Borel sets, σ = σ1 ∪ σ2, πσ,t (X∗) =
πσ1,tπσ2 (X∗) almost everywhere.

In order to motivate our main Theorem, consider a transition matrix, M , which is ι-consistent
with a stationary, Markov chain, any set of states, σ ⊂ S, corresponds to a set of indices, s = ι−1(σ).
If we partition M with respect to s, as in Section 3,

• M̃ corresponds to the transitions among the states in σ;

• M corresponds to the transitions among the states in σ;
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• N corresponds to the transitions out of the states in σ into the states in σ; and

• Ñ corresponds to the transitions out of the states in σ into the states in σ.

For example, if 1 ≤ i ≤ k and 1 ≤ j ≤ n − k, then ι(sj) ∈ σ, ι(si) ∈ σ, and Ñi,j = et
iÑej =

et
iπsMisej = esiMesj = Msi,sj = Pr[Xt+1 = ι(si) | Xt = ι(sj)]. Notice that we have employed the

enumerations, s∗, and s∗ of the sets s and s, respectively.

Now observe that we may interpret the equation M̂ = M̃ +N
(
I −M

)−1
Ñ as saying the entries

of M̂ correspond to paths between states of σ passing through an arbitrary number of states of σ.
This suggests the following theorem.

Theorem 5.3 Using the notation introduced above, if {Xt}∞t=0 is a finite state, stationary Markov
chain which is ι-consistent with transition matrix, M , and σ is open, then {πσ,t (X∗)}∞t=0 is a
stationary Markov chain ι′-consistent with transition matrix, M̂ = p (M − I) i + I, where ι′(k) =
ι (sk). Moreover, the projection, p, maps the distribution of X0 to that of πσ,0 (X∗), i.e.,

Pr
[
πσ,0 (X∗) = ι′(k)

]
=
∑
j

pk,j Pr [X0 = ι(j)]

Proof 5.3 For convenience, define X̃t = πσ,t (X∗). By construction, the state space for {X̃t}∞t=0 is
contained in S̃ = S − σ. By our notational conventions introduced earlier, s and s are increasing
sequences so that ι(s∗) enumerates σ and ι(s∗) enumerates S̃.

Define Im,l,k,j as the set of all walks of length m+ l, such that exactly m+1 values coincide with
values of s (and l values are thus in s) with final value, sk and initial value j, Im,l,k =

⋃
j Im,l,k,j ,

and Im,k =
⋃

l Im,l,k. Then

Pr
[
X̃t = ι′(u)

]
=

∑
l

∑
w∗∈It,l,u

Pr [X0 = ι (w0) , . . . Xt+l = ι (wt+l)]

=
∑

l

∑
w∗∈It,l,u

Mw∗ Pr [X0 = ι (w0)] =
∑
j

∑
l

∑
w∗∈It,l,u,j

Mw∗ Pr [X0 = ι(j)]

Notice that for any state ι′(u) ∈ S̃, there is some t for which Pr [Xt = ι′(u)] > 0, and hence
there is some k ≤ t and w∗ ∈ Ik,t−k,u such that Pr [X0 = ι (w0) , . . . Xt = ι (wt)] > 0, so that
Pr
[
X̃k = ι′(u)

]
> 0. In particular, S̃ is the state space for {X̃t}∞t=0.

If j ∈ s, I0,l,u,j = ∅, unless l = 0 and j = su, in which case I0,l,u,j contains the single walk of
length 0 with i0 = j. Then Pseu = ej and∑

l

∑
w∗∈I0,l,u,j

Mw∗ Pr [X0 = ι(j)] = Pr [X0 = ι(j)] = et
u eu Pr [X0 = ι(j)] = et

u P t
s ej Pr [X0 = ι(j)]

= et
u p ej Pr [X0 = ι(j)] = pu,j Pr [X0 = ι(j)]

Otherwise, if j = sv,∑
l

∑
w∗∈I0,l,u,j

Mw∗ Pr [X0 = ι(j)] =
∑

l

(
N M

l
)

u,v
Pr [X0 = ι(j)] =

∑
l

et
u N M

l
ev Pr [X0 = ι(j)]

= et
u N

(∑
l

M
l

)
ev Pr [X0 = ι(j)]

= et
u N

(
I −M

)−1
ev Pr [X0 = ι(j)]

= et
u p Ps en−k+v Pr [X0 = ι(j)] = et

u p ej Pr [X0 = ι(j)]
= pu,j Pr [X0 = ι(j)]
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Thus,

Pr
[
X̃0 = ι′(u)

]
=
∑
j

∑
l

∑
w∗∈I0,l,u,j

Mw∗ Pr [X0 = ι(j)] =
∑
j

pu,j Pr [X0 = ι(j)]

as desired.
More generally, if k > 0, partition Ik,l,u,j according to the the kth value in s; specifically, let

Ik,l,u,j,v be the set of all walks in Ik,l,u,j whose kth value in s is sv. Then if t > 0, then

Pr
[
X̃t = ι′(u), X̃t−1 = ι′(v)

]
=

∑
j,l

∑
w∗∈It,l,u,j,v

Mw∗ Pr [X0 = ι(j)]

=
∑
j,l

∑
m≤l

∑
w′
∗∈I1,m,u,sv

∑
w′′
∗∈It−1,l−m,v,j

Mw′
∗Mw′′

∗ Pr [X0 = ι(j)]

=
∑
j,q,m

∑
w′
∗∈I1,m,u,sv

∑
w′′
∗∈It−1,q,v,j

Mw′
∗Mi′′∗ Pr [X0 = ι(j)]

=
∑
m

∑
w′
∗∈I1,m,u,sv

Mw′
∗

∑
j,q

∑
w′′
∗∈It−1,q,v,j

Mw′′
∗ Pr [X0 = ι(j)]

=
∑
m

∑
w′
∗∈I1,m,u,sv

Mw′
∗ Pr

[
X̃t−1 = ι′(v)

]

Thus, if Pr
[
X̃t−1 = ι′(v)

]
> 0,

Pr
[
X̃t = ι′(u) | X̃t−1 = ι′(v)

]
=

∑
m

∑
w′
∗∈I1,m,u,sv

Mw′
∗

=
∑

w′
∗∈I1,0,u,sv

Mw′
∗ +

∑
m≥1

∑
w′
∗∈I1,m,u,sv

Mw′
∗

= et
u M̃ ev +

∑
m≥1

et
u N M

m−1
Ñ ev

= et
u M̃ ev +

∑
m≥1

et
u N

(
I −M

)−1
Ñ ev = et

u M̂ ev

Thus,
{
X̃t

}∞
t=0

is a stationary Markov chain ι′-consistent with transition matrix, M̂ .

Theorem 5.3 allows us to easily show that the quotient construction on matrices of Section 3 is
“natural”, as well.

Theorem 5.4 If M ∈ Matn(R) is Markov, s = s1 ∪ s2 is open with respect to M , (M1, p1, i1) is
the quotient of M with respect to s1, (M2, p2, i2) is the quotient of M1 with respect to s′2 = s−1

1 (s2),
and

(
M̂, p, i

)
is the quotient of M with respect to s, then M2 = M̂ , p = p2p1, and i = i1i2.

Proof 5.4 First, notice that, by Theorem 3.5, s′2 is open with respect to M1, so that the state-
ment of the Theorem makes sense. If ι is the identity on Sn, and v is some n-dimensional distri-
bution, we may define a chain, {Xt}∞t=0, which is ι-consistent with M such that Pr[XM

0 = j] =
vj ,∀j ∈ Sn. By Theorem 5.3, M1 is ι1-consistent with X∗ = πs1 (X∗) and Pr

[
X0 = ι1(j)

]
=

(p1v)j , where ι1 = s1. Likewise, M2 is ι2-consistent with X̃∗ = πι1(s′2)
(
X∗
)

= πs1∩s2

(
X∗
)

and

Pr
[
X̃0 = ι2(j)

]
= (p2p1v)j , where ι2 = ι1s

′
2 = s. Thus, if we let X̂∗ = πs (X∗), by Theorem 5.2,
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X̃∗ = πs1∩s2 (πs1 (X∗)) = πs (X∗) = X̂∗ almost everywhere. Since X̃∗ is ι2-consistent with M2, and
X̂∗ is ι2-consistent with M̂ , M̂ = M2.

For any k ∈ Sn, if v = ek, then (p2p1ek)j = Pr
[
X̃0 = s(j)

]
= Pr

[
X̂0 = s(j)

]
= (pek)j , so that

p = p2p1. Finally, by Theorem 3.2, i(v) is the unique extension of an eigenvector v ∈ ker
(
M̂ − I

)
to

an eigenvector in ker (M − I). Likewise, i1i2(v) is an extension of an eigenvector v ∈ ker (M2 − I)
first to an eigenvector in ker (M1 − I), and then to an eigenvector in ker (M − I). Therefore, since
M̂ = M2, by uniqueness, i1i2(v) = i(v).

6 Calculating the Energy of a Generalized Simulated Annealing

In this section, we introduce the notion of a perturbed Markov matrix and show how this includes
that of a generalized simulated annealing. We then present a high-level view of our algorithm to
compute the energy level of each state in a GSA, followed by a discussion of two crucial subroutines.
We conclude by discussing some subtle points regarding the implementation.

6.1 Perturbed Markov Matrices

We will say that f converges exponentially (cf. [15]) iff f(ε) = εr(f)c(ε) for some positive con-
stant, r(f), and some function, c(ε), which is continuous for ε ≥ 0 with c(0) 6= 0. This constant,
r(f), is called the resistance of f . By convention ε∞ = 0, so that r(0) = ∞. We define a per-
turbed matrix, Mε, as a matrix whose entries are positive, exponentially convergent functions of
ε. For any perturbed matrix Mε, we may define the associated resistance matrix, R (Mε), where
R (Mε)i,j = r

(
(Mε)ij

)
. When the perturbed matrix is clear from the context, we will simply write

R for R (Mε). For example, Mε =

(
4ε2 − 3ε5 − sin(ε)
5 cos(ε) 0

)
is a perturbed matrix with associated

resistance matrix, R =

(
2 1
0 ∞

)
, where we use the Taylor expansion of each entry of Mε to

identify its resistance as the exponent of its most significant term.
A perturbed Markov matrix is a perturbed matrix Mε such that, for ε ≥ 0, Mε is a Markov matrix

and is regular for ε > 0. Under the change of variable ε = e−
1
T , an irreducible, perturbed Markov

matrix corresponds precisely to an admissible Markov kernel of [13]. We will define the graph of the
perturbed matrix to be G (R). Notice that for each ε > 0, G (R) = G (Mε), as unweighted graphs.
That is, the definition of a perturbed matrix fixes the geometry of its graph independently of ε.
When Mε is a perturbed Markov matrix, Ri,j is also called the resistance of edge (i, j) in G (Mε).
In the GSA literature, this is referred to as the “communication cost” of the transition.

For each ε > 0, let vε = stab (Mε) denote the unique stable distribution of Mε. We now state a
generalization of a result proven by Freidlin and Wentzell [5] for perturbed Markov matrices. For
1 ≤ i ≤ n define

Ti = {σ : Sn → Sn | σ(i) = i and σ(j) 6= j, ∀j 6= i}

Each such mapping may be viewed as the successor relation of 1-regular1 graph on n vertices with
exactly one self-loop at i. By dropping the self-loop, such a graph is just a directed spanning tree
rooted at i. For any σ ∈ Ti, we then define the resistance of σ in Mε as r (σ,Mε) =

∑
j 6=i Rσ(j),j ,

i.e., the weight of the spanning subtree of G (Mε) corresponding to σ.
1That is, all vertices have out-degree 1.
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While [5] proves Theorem 6.1 for irreducible perturbed Markov matrices, the following more
general result holds, as well.

Theorem 6.1 If Mε is a perturbed Markov matrix, then the entries of vε converge exponentially.
If ri = minσ∈Ti r (σ,Mε), we may calculate the resistance of eahc coordinate of vε as r ((vε)i) =
ri −minj rj.

The virtual energy2 of each index of Mε is the resistance of the corresponding entry of vε, which
by Theorem 6.1 is well-defined. The indices with virtual energy 0 are called the ground states of
Mε. By restricting attention to a sequence εt = e

− 1
Tt for some sequence Tt → 0, for any given

initial distribution, a perturbed Markov matrix defines an inhomogenous Markov chain, {Xt}∞t=0,
of a generalized simulated annealing (GSA) (cf. [13] and [4]) with transition matrix, Mεt , at time
t.

If Tt → 0 slowly enough, Desai, et al. [4] describe the resulting process as “quasi-statically
cooled.” This is intended to connote that, in some sense, the limiting distribution of this pro-
cess equals the limit of the stable distributions, vεt , as t → ∞. Specifically, assume that the
resistance matrix corresponds to the energy differences of a potential function, U(i), so that
Ri,j = (U(i)− U(j))+. Such a potential is defined up to an additive constant and there is a
unique choice with minimum value 0. Under certain conditions, the virtual energies defined above
will agree with such a potential. To be precise, Trouvé [13] shows that this holds iff Hajek’s “weak
reversability” condition [7] is satisfied. For example, it suffices for the unweighted resistance graph
to be undirected; i.e., Ri,j < ∞ iff Rj,i < ∞.

We may generalize the notion of equivalence from Section 2. We will say that two matrices, Mε

and M ′
ε, are Dε-equivalent and write Mε ∼Dε M ′

ε iff

• Dε has exponentially convergent entries,

• f(ε) stab (Mε) = Dε stab (M ′
ε) with f(ε) 6= 0 for ε > 0, and

• r (f(ε)) = 0.

Because the geometry of G (Mε) is independent of ε, if a set of states is open for any ε, it is true for
all ε > 0. Thus, we may also apply the quotient construction for each ε > 0 to a perturbed Markov
process. Moreover, Theorem 3.2 generalizes so that Mε ∼iε M̂ε. This means that we may recover
the virtual energies of the original matrix from any quotient.

6.2 Computing Virtual Energies

By Theorem 6.1, we see that virtual energy levels of a GSA depends only on the collection of minimal
directed subtrees of its resistance graph. One might suspect that, as in Kruskal’s algorithm for
undirected graphs, one may proceed inductively by starting with the edges of minimal weight. Our
algorithm, Algorithm 1, may be viewed in this light. We proceed by analyzing the unperturbed
matrix, given by M0, which corresponds to the subgraph of 0-resistance edges. By applying our
quotient construction, we may then “factor out” these edges to focus attention on the contribution
of higher resistance edges. While we never actually calculate such subtrees, the normalized quotient
construction does this is implicitly, since the columns of the normalized inclusion operator are stable
distributions, which by Theorem 6.1 encode a summary of certain minimal resistance subtrees.

Because we are working with directed graphs, we must be a bit careful. Fortunately, if we operate
on one communicating class at a time, this approach works. Specifically, one can show that the

2Desai, et. al. [4] call this the “stationary order”.
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intersection of a minimal spanning tree with a communicating class, C, of the minimum-edge-weight
subgraph must be a spanning tree of the subgraph on C.

Using naturality of the quotient construction, we may in fact analyze all communicating classes
simultaneously. More precisely, we examine all non-trivial (i.e., containing more than one element)
communicating classes of M0. While this intuition suggests Algorithm 1, its correctness is based
on the two theorems given below.

Algorithm 1 To Compute the Virtual Energies of a GSA.
1: function v0 = virtualEnergy (Mε)
2: if (dim Mε == 1)
3: return(1);
4: /* Calculate the communicating classes of M0,
5: marking each as closed, transient, and/or trivial. */
6: C = commClasses(M0);
7: D = I;
8: if (C.nonTrivial == 0) {
9: (Mε, D) = nonUniformScale (Mε, C);

10: return(D (virtualEnergy (Mε)));
11: }
12:

(
M̂∗

ε , i∗
)

= quotient (Mε, C);

13: return
(
Di∗

(
virtualEnergy

(
M̂∗

ε

)))
;

For this approach to make progress, the unperturbed component, M0, must possess at least one
non-trivial communicating class, which is not always the case for an arbitrary perturbed Markov

matrix, Mε. For example, we could have Mε =

 1− 2ε− 3ε2 2ε2 1/2
3ε2 1− ε− 2ε2 ε
2ε ε 1/2− ε

. However,

in this case we may transform Mε to a closely related perturbed Markov matrix. By the following
Theorem, we may always guarantee that Mε always possesses a non-trivial communicating class,
as long as we keep track of the corresponding shift in virtual energies.

Theorem 6.2 Given any n × n irreducible, perturbed Markov matrix, Mε, if M0 possesses more
than one closed class and n > 1, there is an iε-equivalent perturbed Markov matrix, M ′

ε, where
iε ∈ Matn (C+) is a diagonal matrix, M ′

0 possesses a non-trivial communicating class, and M ′
ε is

irreducible.

This Theorem forms the basis for Algorithm 2.
Applying Theorem 6.2 to the example given above would yield

M ′
ε =

 1/2− 3ε/4 ε/2 1/2
3ε/4 3/4− ε/2 ε
1/2 1/4 1/2− ε

 with iε =

 1 0 0
0 1 0
0 0 4ε


Notice that M ′

ε = (Mε − I) Dε + I, where Dε = (4ε)−1iε. In effect, we have divided through by the
greatest common factor (i.e., ε) of the off-diagonal entries in the non-transient columns (i.e., columns
1 and 2), with an additional factor (in this case, 4) to guarantee that the result is Markov. Notice
that every non-transient index is closed and the exponent of this greatest common factor is just the
minimum resistance. This is why the key function in Algorithm 2 is called minClosedResistance.
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Algorithm 2 To Perform a Non-Uniform Scaling Transformation of a GSA.
1: function (Mε, i) = nonUniformScale (Mε, C)
2: (Dε, iε) = minClosedResistance (Mε, C);
3: M ′

ε = (Mε − I) Dε + I;
4: return(M ′

ε, iε);

One should be concerned, however, about the computational complexity of applying the quotient
construction directly to a perturbed matrix, since this would involve inverting a matrix whose
entries are functions. Fortunately, by exploiting the description of our quotient construction in
terms of projection and inclusion operators, we may avoid this difficulty. If we choose s0 to be the
complement of a set of representatives of the communicating classes of the unperturbed matrix, M0,
we may apply the corresponding projection and inclusion operators of the associated normalized
quotient of M0 to Mε. Using the path interpretation of the quotient from Theorem 5.3, we may show
that this yields a result equivalent to the quotient construction applied directly to Mε. Specifically,

Theorem 6.3 If Mε is a perturbed Markov matrix and s0 contains all indices but one representative
of each communicating class in M0, let

(
M̂∗

0 , p0, i
∗
0

)
be the normalized quotient with respect to s0

of M0. Then Mε ∼i∗0
p0 (Mε − I) i∗0 + I.

This Theorem forms the basis for Algorithm 3.

Algorithm 3 To Compute the Quotient of a GSA.
1: function (Mε, i

∗) = quotient (Mε, C)
2: /* Let s0 be the union of all but one representative from each communicating
3: class, where the representative is taken to be the first element of each class */
4: s0 = C[0].rest();
5: for (j = 1; j < C.nonTrivial; j++)
6: s0 = append(s0, C[j].rest());
7:

(
M̃, N,M, Ñ , P

)
= partition (M0, s0);

8: i∗ = normalize

P

 I(
I −M

)−1
Ñ

;

9: p =
(

I N
(
I −M

)−1
)

P .transpose();

10: Mε = p (Mε − I) i∗ + I;
11: return(Mε, i

∗);

6.3 Representing Perturbed Matrices

Even avoiding the problem of matrix inversion, storing and manipulating matrices whose entries
are functions is computationally intensive. However, in principle, Theorem 6.1 suggests that we
should only need to work with the associated resistance matrix and not the full transition matrix
of a GSA. Thus, we will represent such transition matrices simply by their associated resistance
matrices. Specifically, we will introduce an equivalence relation on perturbed matrices and observe
that all necessary operations preserve this relation. Note: We refered to this equivalence relation
implicitly in the comments preceding Theorem 6.3.
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We will say that two perturbed matrices, Mε and M ε are weakly equivalent and write Mε ^ M ε

iff R (Mε) = R
(
M ε

)
. By Theorem 6.1, the virtual energy of a perturbed Markov matrix only

depends on its weak equivalence class. Moreover, it is easy to show that matrix addition and
multiplication factor to operations on such equivalence classes.

Lemma 6.4 Assume that Mε, M ε, and M̃ε are pertubed matrices, where the dimensions of the
first two are n×m and the last is m× p.

1. R
(
Mε + M ε

)
i,j

= min
{

R (Mε)i,j , R
(
M ε

)
i,j

}
.

2. R
(
MεM̃ε

)
i,j

= mink

{
R (Mε)i,k + R

(
M̃ε

)
k,j

}
.

In particular, addition and multiplication of perturbed matrices preserve weak equivalence.

With some care, we can show that the quotient construction of Section 5 generalizes so that
we may apply it to weak-equivalence classes of perturbed Markov matrices. Specifically, if Mε is a
perturbed Markov matrix:

• if for each ε, M̂ε is the quotient of Mε with respect to s, where s is an open subset of indices,
M̂ε is a perturbed Markov matrix;

• if Mε ^ M ′
ε, then M̂ε ^ M̂ ′

ε.

Thus, while it is conceptually useful to think of the algorithm in terms of operations on perturbed
matrices and vectors, for efficiency they should be represented internally simply by the corre-
sponding resistance matrices and, by Lemma 6.4, computations may be performed directly on such
resistances.

This simplifies a number of the calculations. For example, in the scaling operation of Algo-
rithm 2, we do not need to bother with the constant factor, since this does not affect the resistance.
Likewise, in Algorithm 3, we do not need to actually invert I − M . By construction, all entries
of I − M have either resistance 0 or ∞ (corresponding to non-zero or zero entries, respectively).

Thus,
(
I −M

)−1
^

∑n−1
t=0 M

t; that is, we only need to determine which pairs of vertices are
path-connected.

7 Summary and Future Work

In this paper, we have presented a novel quotient construction on Markov chains. We have shown
that it generalizes the quotient construction on Markov matrices of [14]. We have pointed out how
this construction may be applied to perturbed Markov matrices both to compute the stochastically
stable distribution of a PMP as well as the virtual energy levels in a GSA. We also indicated
how many basic facts about Markov matrices may be deduced using this construction, such as
the necessary and sufficient conditions for a Markov matrix to have a unique stable distribution.
We are currently exploring other applications of our quotient construction, in areas ranging from
Decision Theory to Information Retrieval.
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8 Appendix

For completeness, we include the details of the algorithm from [14]. As with Algorithm 1, all com-
putations are performed on equivalence classes of perturbed Markov matrices. However, because
the stochastically stable distribution is a more detailed invariant than the virtual energy levels, we
must utilize a weaker notion of equivalence which takes into account the leading coefficients of the
transition matrices, as well. This requires a bit more care when computing quotients; in particular,
we must work one communicating class at a time. Conceptually, however, the algorithms are quite
similar.

Algorithm 4 To Compute the Stochastically Stable Distribution of a PMP.
1: function v0 = stochasticallyStableDistribution (Mε)
2: C = commClasses (M0);
3: D = I;
4: if ((C.nonTrivialClosed == 0) && (C.numClosed > 1))
5: (Mε, D) = nonUniformScale (Mε, C);
6: if (C.numClosed == 1)
7: return(normalize (D stab (M0)));
8: i = I;
9: while (C.nonTrivialClosed > 0)

10: (Mε, i, C) = quotient (Mε, i, C);
11: return(normalize (Di (stochasticallyStableDistribution (Mε))));

Algorithm 5 To Compute the Quotient of a PMP.
1: #define uniformScale(M) (hasZeroOnDiagonalP (M) : (I + M)/2 ? M)
2: function (Mε, i, C) = quotient (Mε, i, C)
3: Mε = uniformScale (Mε);
4: /* Select the largest closed class, c ∈ C;
5: return s = c.rest() and C with c replaced by {c.first()} */
6: (C, s) = pickLargestClosed (C);
7:

(
M̃ε, N ε,M ε, Ñε, P

)
= partition (Mε, s);

8: Mε = M̃ε + N ε

(
I −M0

)−1
Ñε;

9: i = iP

 I(
I −M0

)−1
Ñ0

;

10: return(Mε, i, C);
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