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Abstract

Decomposition is an important property that
we exploit in order to render problems more
tractable. The decomposability of a problem im-
plies the existence of some “independences” be-
tween relevant variables of the problem under
consideration. In this paper we investigate the
decomposability of functions which take values
into an Abelian Group. Examples of such func-
tions include: probability distributions, energy
functions, value functions, fitness functions, and
relations. For such problems we define a no-
tion of conditional independence between sub-
sets of the problem’s variables. We prove a de-
composition theorem that relates independences
between subsets of the problem’s variables with a
factorization property of the respective function.
As particular cases of this theorem we retrieve
the Hammersley-Clifford theorem for probability
distributions; an Additive Decomposition theo-
rem for energy functions, value functions, fitness
functions; and a relational algebra decomposition
theorem.

1 Introduction

Probabilistic Graphical Models (PGMs) have proved to be
an effective way of representing probability distributions in
a concise and intuitive form. Compact graphical represen-
tations support efficient reasoning and learning algorithms
in many cases that arise in practice [Pearl ’88, Cowell et al
’99, Jordan ’05]. The key idea behind PGMs is the notion
of probabilistic independence. Independence allows us to
“decompose” the probability distribution into smaller parts,
thereby substantially reducing the number of independent
parameters that we need to know in order to specify the
probability distribution.

Given the successful exploitation of independence in
PGMs it is natural to ask whether we can define a more

general case of independence with similar decomposability
properties. Results concerning additive (rather than multi-
plicative) decomposability in various scenarios have been
explored in [Bertelle and Brioschi ’72] [Keeney and Raiffa
’76] [Bacchus and Grove ’95]. Similarly, in the context of
relational databases decomposition results such as MVD
(Multi-Valued Decomposition) were obtained, see [Butz
’00] and references therein.

In this paper, we seek a unifying thread of decomposability
results. More precisely we examine the decomposability of
functions which take values into an Abelian group. Let us
call this class of functionsF·→AG . F·→AG includes as par-
ticular cases: strictly positive probability distributions; ad-
ditive decomposable functions and relations among others.
We show that forF·→AG we can define a general notion of
Conditional Independence that is the natural generalization
of probabilistic Conditional Independence. This General
Conditional Independence will allow us to“decompose”
a functionf from F·→AG in the same way as a proba-
bility distribution can be “decomposed”. More precisely,
we prove a generalization of the well known Hammersley-
Clifford theorem, which holds for arbitrary functions from
F·→AG.

These results, in addition to unifying a broad class of de-
composition results that have been previously proved in
particular cases, should hopefully clear the path for porting
results and techniques developed in settings that represent
particular cases ofF·→AG.

The rest of the paper is organized as follows: In section
2 we introduce some definitions regarding Decomposition
and Independence in a general setting. In section 3 we
shrink our domain of interest and define a General Con-
ditional Independence concept for functions whose ranges
are Abelian Groups:F·→AG. Subsequently, we explore
some of the properties of this generalized independence re-
lation. This section also contains the main result of this
paper: a factorization property consisting in the natural
generalization of the Hammersley-Clifford theorem [Besag
’74] for arbitrary functions fromF·→AG . In section 4 we
present some important particular cases of decomposable



functions which take values into an Abelian Group, such
as: probability distributions, additive decomposable func-
tions and relations. Section 5 concludes with a summary,
discussion, and a brief outline of some directions for fur-
ther research.

2 Decomposition and Independence

Decomposition is an key technique that makes the solution
of otherwise complex problems tractable by the means of
a divide and conquer approach. . Decomposition exploits
the fact that occasionally a problem can be split (decom-
posed) into subproblems which can be solved in isolation
and then the overall solution can be obtained by aggregat-
ing the partial solutions. If such is the case, we say that
the two parts areindependentwith respect to the problem
under consideration.

The subproblems, in practice, are seldom disjoint, but all is
not lost in this case, because we can define a weaker notion
of independence, namely conditional independence, that is
still useful.

Furthermore, if one or more of the subproblems are further
decomposable into smaller parts, we can apply the same
strategy of aggregating partial solutions, recursively. Thus,
in a divide and conquer fashion, we would be able to obtain
a solution for our problem by aggregating it from solutions
of smaller and smaller parts.

In what follows we will try to capture these intuitions un-
derlying Decomposition and Independence with more pre-
cise definitions.

Definition (problem): A problem P is a triple P =
(D,S, solP ) whereD is a set called thedomain set, S is a
set called thesolutions setandsolP : D → S is a function
that maps an elementd from the domain of the problem to
its solutions.

Example: Determinant_Computation(M2, R, det)
whereM2 is the set of all square matrices, anddet is the
function that returns the determinant of a matrix.

Definition (conditional independence - variable-based)
Given a problemP = (D,S, solP ) we say that,D is de-
composable intoA and B conditioned onC, or equiva-
lently, thatA is independent ofB conditioned onC, both
with respect to the problemP , if D = A × B × C (or
more liberally D is isomorphic withA × B × C) and
there exist two problemsP1 = (A × C,SAC , solP1) and
P2 = (B×C,SBC , solP2) and an operator⊕P1,P2

P : SAC×
SBC → SD such that for alld = (a, b, c) ∈ A×B×C we
have:

solP (d = (a, b, c)) = solP1(a, c)⊕P1,P2
P solP2(b, c)

where⊕P1,P2
P : SAC × SBC → SD. �

The rest of this paper is concerned with variable-based in-
dependence. More precisely, we will consider the particu-
lar case where the operator⊕P1,P2

P is an operator⊕P1,P2
P :

G × G → G . That is, the solutions to the problems
P, P1, P2 are elements from the same setG . Further-
more, we will assume that the operator⊕P1,P2

P does not
depend on the problemsP, P1, P2 and therefore we can
drop them from the notation yielding a single operator:
⊕ : G × G → G. Lastly, we will considerG to be an
Abelian Group for reasons that will become apparent later
on.

3 Independence & Decomposition inF·→AG

In this section we consider Independence and Decom-
posability of functions whose ranges are Abelian Groups:
F·→AG. After defining Abelian Groups (3.1), we introduce
the definition of Conditional Independence with respect to
a functionf , - If (·, ·|·) (3.2) (Note that for probabilistic
independence the functionf is the very probability distri-
bution). We then show thatIf (·, ·|·) satisfies four proper-
ties that are considered as essential/defining for the notion
of independence, see [Pearl ’88] (3.3). These properties
are: trivial independence, symmetry, weak union and in-
tersection. We then recapitulate the main results already
existing in the literature, (e.g., [Geiger and Pearl ’93]),
regarding Conditional Independence relations that satisfy
these four properties (3.4). The main target of these results
is to establish the equivalence between conditional inde-
pendence and graph separability (Note: the graph in ques-
tion is obtained by not drawing an edge between two vari-
ables whenever they are independent of each other given
the rest of the variables, and drawing one otherwise). We
then present the main theorem which allows us to “piece
down” a set of pairwise conditional indepeindependences-
dences of the formIf (A,B|C) into a global decomposition
of the functionf over the maximal cliques of the associ-
ated graph. This theorem is the natural generalization of
the Hammersley-Clifford theorem for probability distribu-
tions, to the more general case ofF·→AG

3.1 Abelian Groups

We start with the definition of Abelian Groups (a.k.a. com-
mutative groups), followed by some illustrative examples.

Definition. (Abelian Group) An Abelian Group is a
quadruple(G,⊕, θ,	) whereG is a nonempty set,⊕ :
G × G → G is a binary operation over elements fromG
that returns an element ofG, θ ∈ G and	 : G → G is
a unary operation over the elements ofG that returns an
element ofG, with the following properties:

1. ⊕ is associative i.e.,∀g1, g2, g3 ∈ G (g1⊕(g2⊕g3)) =
((g1 ⊕ g2)⊕ g3)



2. ⊕ is commutative i.e.,∀g1, g2 ∈ G g1⊕ g2 = g2⊕ g1

3. θ is an identity element i.e.,∀g ∈ G g⊕θ = θ⊕g = g

4. 	 is an inversion operator i.e.,∀g ∈ G ∃!h ∈
G g ⊕ h = h ⊕ g = θ. We will call 	g the unique
h with the previous property. Subsequently, the in-
version property can be written as∀g ∈ G ∃! 	 g ∈
G s.t g ⊕	g = 	g ⊕ g = θ �

Examples: 1. (R,+, 0,−) is a group, where:R is the set
of real numbers;+ is the addition between real numbers;0
is zero; and−is the unary operator minus that returns the
inverse of a real number (e.g.,−(7) = −7 and−(−6) =
6). In more common notation we use− as a binary operator
wherea− b actually stands fora +−b.

2. ((0,∞), ·, 1, −1) is a group, where:· is the multipli-
cation between real numbers;1 is one; and −1is the in-
verse of a real number with respect to multiplication (i.e,
a−1 = 1

a ). In more common notation we use fractions
as binary operators therefore having expressions such asa

b ,
which stands fora · b−1.

3. (R, ·, 1, −1) is not a group. This is because0 has no
inverse.

4. Z2 = ({0, 1},⊗, 0,−) is a group where⊗ stands for the
Exclusive OR (XOR) operation (or equivalently, addition
modulo 2). More exactly:0⊗ 0 = 0; 0⊗ 1 = 1;1⊗ 0 = 1
and1⊗ 1 = 0, and− is the identity operator, that is:−0 =
0; and−1 = 1. �

For the purposes of simplifying notation, for the rest of this
section, we will use as operators the standard operations
of the Additive Abelian Group instead of the fancier ones
that we have introduced in the definition of a group. More
precisely, instead of saying: let(G,⊕, θ,	) be a group ...,
we will say: let (G, +, 0,−) be a group ... . This will
make the definitions and proofs look more familiar since
they are in additive notation. However the only properties
that we will use are those of groups and as a consequence
all the results will hold for arbitrary groups, such as, for
example, the multiplicative or theZ2 group. Additionally,
we will also use the shorthand notation ofa	 b to stand for
a⊕	b, which in our familiar additive notation, to be used
from now on, will be nothing buta − b (which stands for
a +−b).

3.2 Independence with respect to a functionf

We now proceed to define a general notion of Condi-
tional Independence with respect to a functionf , If (·, ·|·).
This independence relation is basically a formalization of
the intuition behind decomposition presented in Section 2:
namely, that independence should allow us to decompose a
problem into subproblems, solve them separately and then
combine the results. We start with some notations, then
present the definition and some illustrative examples.

Notation. Let (Xα)α∈V stand for a collection of variables
that take values into the spaces(Xα)α∈V , whereV is a
set of indices for these variables. For a subsetA of V let
XA = ×α∈AXα and in particular letX stand forXV . The
collection(Xα)α∈V represents the relevant variables per-
taining to our problem.XA will stand for the set of all pos-
sible configurations for the variables indexed byA. Typical
elements ofXA will be denoted asxA = (xα)α∈A. Simi-
larly, XA will stand for(Xα)α∈A andX will stand forXV .
Given sets of variable indicesA,B,C ⊆ V we will assert
conditional independence statements regarding the associ-
ated subsets of variablesXA,XB ,XC such as: the sets of
variablesXA andXB are independent conditioned onXC

and writeI(XA, XB |XC). We will actually use the short-
hand formulation,A and B are independent conditioned
on C, and the shorthand notationI(A,B|C) to stand for
I(XA, XB |XC).

Definition (Conditional Independence with respect to a
function f - If (·, ·|·)): Let (G, +, 0,−) be an Abelian
Group, (Xα)α∈V be a collection of variables indexed by
V andX = ×α∈V Xα be the set of configurations for these
variables. Letf : X → G be a function from the setX to
G. Furthermore, letA,B,C ⊆ V a partition ofV (hence
X = XA×XB×XC). Then we say thatA is independent of
B conditioned onC with respect to the functionf , and we
write If (A,B|C), if there exist two functionsf1, f2 such
that:

f(X) = f(XA, XB , XC) = f1(XA, XC) + f2(XB , XC)

wheref1 : XA ×XC → G andf2 : XB ×XC → G.

Instead of the previous formula we will use the shorthand
notation

f(V ) = f(A,B,C) = f1(A,C) + f2(B,C)

�

Note that in our notion of conditional independence just
defined,A,B,C is necessarily a partition ofV as opposed
to the case of probabilistic independence where it is possi-
ble thatA,B,C do not coverV . In our (general) case, if
A,B, C do not coverV thenf(A,B, C) is not necessar-
ily defined. In the case of probability distribution there is a
natural way to definef(A) whenA $ V based onf(V ).
That is, by the means of marginals. In the more general
cases that we will study, (e.g., additive independence) the
equivalent notion of a marginal is not necessarily present.
As a consequence the theory developed in this context will
be weaker, and hence more general. In the terminology of
[Geiger & Pearl ’93] independence statementsI(A,B|C)
such thatA,B,C coverV , are calledsaturatedindepen-
dence statements.

Examples of Conditional Independence with respect to a
functionf , If (·, ·|·):



Probabilistic: If (·, ·|·): In the case when the group is
((0,∞), ·, 1, −1) and furthermore the functionf : X →
(0,∞) is a probability distribution (that is,

∑
x∈X f(x) =

1, or more generally
∫

X
df =

∫
X

f(x)dx = 1) then our no-
tion of conditional independenceIf (·, ·|·) becomes proba-
bilistic conditional independence. Note that this group in-
cludes strictly positive probabilities only, in order to satisfy
the group property (0 has no inverse element).If (A,B|C)
in this case is equivalent with:

f(A,B, C) = f1(A,C) · f2(B,C)

obtained by substituting in the definition the original+
with the probabilistic group binary operator·. This is an
alternative definition for probabilistic conditional indepen-
dence, see [Lauritzen ’96]. Thus, we have just shown that
probabilistic conditional independence is a particular case
of Conditional Independence with respect to a functionf ,
whenf happens to be a probability distribution.

Additive: If (·, ·|·): In the case the group is(R,+, 0,−)
and we have a functionf : X → R we obtain the notion of
Additive Independence i.e.:

f(A,B,C) = f1(A,C) + f2(B,C)

Relational: If (·, ·|·): In the case the group isZ2 =
({0, 1},⊗, 0,−) and we have a functionf : X → Z2

(a.k.a. relation) we obtain:

f(A,B,C) = f1(A,C)⊗ f2(B,C)

3.3 Properties ofIf (·, ·|·)

In this section we prove some properties associated with
If (·, ·|·). These are general properties that researchers
[Pearl and Paz ’87, Pearl ’88 Geiger and Pearl ’93, Cowell
et. al. ’ 99] have identified as desirable for any conditional
independence relation because they capture some intuitive
notions that pertain to independence. We will show that the
our Conditional Independence relation with respect a func-
tion f - If (·, ·|·) satisfies these properties, thus providing
supporting evidence that this is the “right” concept .

Theorem 1 (independence properties):Let (G, +, 0,−)
be an Abelian Group,(Xα)α∈V be a collection of variables
indexed byV , f : X → G be a function from the setX
to the groupG, and A,B,C, D be subsets ofV . Then
the Conditional Independence relation with respect tof ,
If (·, ·|·) has the following properties:

1. (Trivial Independence) If (A, ∅|B) - ∀A,B a parti-
tion of V .

2. (Symmetry) If (A,B|C) iff If (B,A|C) - ∀A,B,C
a partition of V .

3. (Weak Union) If (A,B ∪D|C) ⇒ If (A,B|C ∪D)
- ∀A,B,C, D a partition of V .

4. (Intersection) If (A,B|C∪D) & If (D,B|C∪A) ⇒
If (A ∪D,B|C) - ∀A,B,C, D a partition of V . �

Proof. See the extended version of the paper [Silvescu and
Honavar ’05].�

In order to prove Trivial Independence we need the identity
element property of the Abelian group(G, +, 0,−). To
prove Symmetry we needed commutativity. And to prove
Intersection we needed associativity and most importantly
the inverse operator. So it seems that we “need” all the
Abelian Group properties.

3.4 Markovian Properties of Independence

We start with a survey some known results regarding
Conditional Independence relations satisfying the above-
mentioned four properties [Geiger and Pearl ’93]. We
first introduce some graph terminology, then define differ-
ent types of Markov properties and subsequently, estab-
lish their equivalence. We end with a theorem that states
the equivalence between graph separability and conditional
independence. All results hold under the assumptions of:
trivial independence, symmetry, weak union and intersec-
tion.

Graph notions: A graph is a pairG = (V,E) whereV is
a finite set of vertices andE is a set of edges. That is,E
is set of pairs of verticesE ⊆ V × V . A graph is called
undirectedif it has the property that for everyα, β ∈ V
(α, β) ∈ E if and only if (β, α) ∈ E. Thus for the case of
undirected graphs there is no distinction between the edges
(α, β) and(β, α) and we will use them interchangeably to
mean the same thing, namely an undirected edge between
α andβ. In what follows we will only consider undirected
graphs.

A graphG = (V,E) is called complete iff there is an edge
between all of its vertices. Asubgraphof a graphG =
(V,E) associated with set of verticesV ′, V ′ ⊆ V , is a
graphG′ = (V ′, E′) such thatE′ = E∩(V ′×V ′). A set of
verticesC ⊆ V is called aclique in the graphG = (V,E)
if the subgraph ofG associated withC is a complete graph.
That is, there is an edge between every two vertices inC in
the graphG. A cliqueC is called amaximal cliqueof G if
there is no other cliqueC ′ in the graphG such thatC ⊂ C ′.
Given a graphG = (V,E) we will useMaxCliques(G) to
denote the set of maximal cliques ofG.

Given a setA ⊆ V we denote byN (A) and callneigh-
bourhood of A the set of vertices fromV \A that share
at least one edge with an element inA. More precisely,
N (A) = {β|β /∈ A and ∃α ∈ A such that (α, β) ∈ E}.

Given two verticesα, β ∈ V we say that there exists apath
betweenα andβ if there exists a set of verticesγ1, ..., γk,



k ≥ 0 such that(α, γ1), (γi, γi+1), (γk, β) ∈ E ∀1 ≤
i < k. We will call the sequenceα, γ1, ..., γk, β the path
from α to β. Furthermore, given three subsets of vertices
A,B,C ⊆ V we say thatC separatesA from B in the
graphG = (V,E) if there is no path between a vertex inA
to a vertex inB that does not contain vertices fromC. We
will use SepG(A,B|C) to denote the fact thatC separates
A from B in the graphG = (V,E).

Definition (Markov properties): [Pearl ’88, Lauritzen
’96] Let G = (V,E) be an undirected graph whereV is a
set of indices into a collection of variables(Xα)α∈V . Then
we say that the conditional independence relation has the
following properties relative to the graphG iff:

1. (P) Pairwise Markov Propertyrelative to G iff
(α, β) /∈ E ⇒ I(α, β|V \{α, β}) .

2. (L) Local Markov Propertyrelative toG iff ∀α ∈
V I(α, V \({α} ∪ N (α)))|N (α)) .

3. (G) Global Markov Propertyrelative toG iff for any
two setsA,B ⊆ V such thatV \(A ∪ B) separatesA
andB in the graphG we haveI(A,B|V \(A∪B)). �

It turns out that the previous three relations are equivalent
for any independence relation satisfying properties 1-4 of
the previous section (trivial independence, symmetry, weak
union and intersection).

Theorem 2 (Markov properties equivalence):[Pearl and
Paz ’87] (G)⇔ (L) ⇔ (P) for any conditional indepen-
dence relationI(·, ·|·) that satisfiesTrivial independence,
Symmetry, Weak unionand Intersection. �

Proof. This theorem has been proved by [Pearl and Paz
’87] and can also be found in [Pearl ’88, Lauritzen ’96, Jor-
dan ’05]. Note that the Global Markov property is slightly
weaker in our case because we have only saturated inde-
pendence and hence we cannot pick arbitrary sets that sep-
arateA andB instead of justX\(A∪B) . Nevertheless the
equivalence still holds. See the longer version of this paper
[Silvescu & Honavar ’05] for a complete proof.�

Corollary. In particular: (G)⇔ (L) ⇔ (P) for If (·, ·|·). �

Definition (closure): Let (Xα)α∈V be a collection of vari-
ables indexed byV , Σ be an arbitrary set of independence
statements of the formI(A,B|C), whereA,B,C is a par-
tition of V , andA a set of axioms. We denote byΣ+ the set
of all independence statements that can be inferred from the
independence statements inΣ in a finite number of steps by
using only axioms from the setA. If such is the case, we
call Σ+ the closure ofΣ under the axiomsA.�

Definition (associated dependence graph): Given a
set Σ of pairwise conditional independence statements
I(α, β|V \{α, β}), a graphG(Σ) = (V,E) is called
the associated dependence graphif (α, β) /∈ E ⇔

I(α, β|V \{α, β}) ∈ Σ. In genera,l given a setΣ of not
necessarily pairwise conditional independence statements
we define the setΣpairwise as the set of of all pairwise
independence statements that can be inferred fromΣ us-
ing theTrivial independence, Symmetry, Weak unionand
Intersectionaxioms (i.e., all pairwise Independence state-
ments from the closure ofΣ, - Σ+ ). Furthermore we define
the associated dependence graphG(Σ) of such a general set
of conditional independence statementsΣ as the associated
dependence graph ofΣpairwise. �

Theorem 3 (separability⇔ conditional independence):
[Geiger and Pearl ’93]LetΣ be a set of saturated indepen-
dence statements over a finite set of variables(Xα)α∈V

indexed by elements fromV . Let Σ+ be the closure ofΣ
with respect to saturated trivial independence, symmetry,
intersection and weak union. And letG(Σ+) the depen-
dence graph associated with set of pairwise independence
statements inΣ+. Then for anyA,B,C partition of V we
have:

SepG(Σ+)(A,B|C) ⇔ I(A,B|C) ∈ Σ+

Proof. See [Geiger and Pearl ’93] Theorem 13 for a proof
of this theorem.�

Corollary: In particularIf (·, ·|·) satisfies the equivalence
between graph separability and Conditional Independence
stated in the previous theorem.

So far we have seen that any setΣ of Conditional Inde-
pendence statements produces a graphG(Σ+) such that
separability in this graph is equivalent to Conditional In-
dependence in the closure ofΣ. If the Independence re-
lation in question isIf (·, ·|·) we have furthermore that
SepG(Σ+)(A,B|C) ⇔If (A,B|C) ∈ Σ+⇔f(A,B, C) =
f1(A,C) + f2(B,C). We will next prove the main result
of the paper, namely, a theorem that will allow us to “com-
pile” pairwise decompositions that are implied by condi-
tional independence statements between two sets of vari-
ables conditioned on a third one, of the formIf (A,B|C) ∈
Σ+⇒f(A,B, C) = f1(A,C) + f2(B,C) into a “finer”
decomposition over the maximal cliques of the associated
graphG(Σ+). In other words, this theorem shows that if
the four properties are satisfied, we can “boil down” a set of
pairwise decompositions to one “wholisticholistic” decom-
position over the maximal cliques of the associated graph
G(Σ+).

3.5 The factorization theorem

We now proceed to prove the theorem that ties the Con-
ditional Independence relation with respect to a function
f , If (·, ·|·), with a factorization property of the functionf
over the maximal cliques of the associated graph.

Definition (factorization property) : Let G = (V,E) be
an undirected graph, let(G, +, 0,−) be a group,(Xα)α∈V



be a collection of variables indexed byV andf : X →
G be a function from the setX to the groupG. We say
that f satisfies the factorization property (F) with respect
to the graphG iff there exist a collection of functions{fC :
XC → G}C∈MaxCliques(G)

(F ) f(V ) =
∑

C∈MaxCliques(G)

fC(C)

Theorem 4 (factorization): Let G = (V,E) be an undi-
rected graph,(G, +, 0,−) be an Abelian Group,(Xα)α∈V

be a collection of variables indexed byV , f : X → G
be a function from the setX to the groupG. Let If (·, ·|·)
conditional independence relation induced by the function
f . Then(G) ⇔ (L) ⇔ (P)⇔ (F), where all the Markov
properties are with respect toIf (·, ·|·). �

Proof. We will prove (F)⇒ (G) and (P)⇒ (F) and this will
be enough to prove the theorem because the other equiva-
lences follow from theMarkov propertiestheorem in the
previous section.

(F) ⇒ (G) Let G = (V,E) be a graph andf : X → G
be a function that satisfies the factorization property with
respect toG. Then it follows that:

f(V ) =
∑

C∈MaxCliques(G)

fC(C)

Now let A, B be two sets such thatV \(A ∪ B) separates
A andB in the graphG. Then

f(V ) =
∑

C∈MaxCliques(G) & C∩A 6=∅

fC(C)

+
∑

C∈MaxCliques(G) & C∩A=∅

fC(C)

Let f1(V \B) =
∑

C∈MaxCliques(G) & C∩A 6=∅ fC(C) and

f2(V \A) =
∑

C∈MaxCliques(G) & C∩A 6=∅ fC(C). To show
that f1 andf2 are well defined we have to show that the
right hand sides of their definitions contain only variables
from V \B andV \A respectively. Obviouslyf2 contains
only variables that are not fromA. We will show thatf1

has variables fromV \B only, by contradiction.

Supposef1 contains variables fromB. Then it follows that
there exists a cliqueC such thatC ∈ MaxCliques(G),
C ∩ A 6= ∅ and alsoC ∩ B 6= ∅. Let α ∈ C ∩ A andβ ∈
C ∩ B. But sinceC is a clique inG it follows that (α, β)
is an edge inG, which contradicts the fact thatV \(A ∪B)
separatesA andB in the graphG.

Now given thatf1 andf2 are well defined we can write:

f(V ) = f1(V \A) + f2(V \B)
= f1(A, V \(A ∪B)) + f2(B, V \(A ∪B))

Which implies, by definition, thatIf (A,B|V \(A ∪B)) .

(P)⇒ (F) In order to prove this implication we will use the
following helpful lemma:

Lemma (Moebius inversion): Let f and g be two func-
tions defined on the set of all subsets of a finite setV
of variable indices, taking values into an Abelian Group
(G, +, 0,−) . Then the following two statements are equiv-
alent:

(1) for all A ⊆ V : g(A) =
∑

B:B⊆A f(B)

(2) for all A ⊆ V : f(A) =
∑

B:B⊆A(−1)|A\B|g(B)

where, by(−1)k we mean− if k is odd and+ if k is even.
(Note that we need this explicitation because multiplication
is not necessarily defined over the elements of G)

Proof. A proof of this lemma can be found in [Griffeath’76,
Lauritzen ’96, Jordan ’05]. See also the longer version of
this paper [Silvescu & Honavar ’05].�

We are now ready to prove the (P)⇒ (F) implication from
thefactorization theorem.

Let f : X → G be the function, which induces an Inde-
pendence relationIf (·, ·|·) over the variables indexed byV
andG = (V,E) the graph with respect to whichIf (·, ·|·)
has the Pairwise Markov property (P). Letx∗ ∈ X be an
arbitrary, but fixed, element ofX . We define for allA ⊆ V
the function

gA(x) = f(xA, x∗AC )

where(xA, x∗AC ) is an elementy with yγ = xγ if γ ∈ A
andyγ = x∗γ if γ /∈ A. Sincex∗ is fixed,gA depends onx
throughxA only. Now, for allA ⊆ V , let

fA(x) =
∑

B:B⊆A

(−1)|A\B|gB(x)

This formula implies thatfA(x) depends onx throughxA

only.

By applying the Moebius inversion lemma to the functions
f andg we get:

f(x) = gV (x) =
∑

A:A⊆V

fA(x)

We will show next thatfA(x) ≡ 0 wheneverA is not a
clique of G. This fact, along with absorbingfA into fM

wheneverA is not a maximal clique and whereA ⊂ M ∈
MaxCliques(G) , will prove our factorization property (F)
over the maximal cliques of the graphG. (absorption: if
A ⊂ M ∈ MaxCliques(G) we can redefinef ′M (x) =
fM (x) + fA(x) andf ′A(x) ≡ 0).

To show thatfA(x) ≡ 0 wheneverA is not a clique ofG,
let α, β ∈ A such that(α, β) /∈ E and letC = A\{α, β}.



Then we have

fA(x) =
∑

B:B⊆C

(−1)|C\B| { gB(x)− gB∪{α}(x)

− gB∪{β}(x) + gB∪{α,β}(x)}

We now want to show thatgB(x) − gB∪{α}(x) −
gB∪{β}(x)+gB∪{α,β}(x) ≡ 0 for all B ⊆ C = A\{α, β},
which will prove our claim. (α, β) /∈ E implies that
If (α, β|V \{α, β}) (by (P)), so there existf1, f2 such that

f(V ) = f1(α, V \{α, β}) + f2(β, V \{α, β})

i.e.,

f(xV ) = f1(xα, xV \{α,β}) + f2(xβ , xV \{α,β}) ∀xV ∈ X

by consideringxV of the form (xB , xα, xβ , x∗R) ∀xB ∈
XB , xα ∈ Xα, xβ ∈ Xβ whereR = V \(B ∪ {α, β}) we
get

gB∪{α,β}(x) = f(xB , xα, xβ , x∗R)
= f1(xB , xα, x∗R) + f2(xB , xβ , x∗R) (f1)

for all xB ∈ XB , xα ∈ Xα, xβ ∈ Xβ . By instantiatingxβ

in the formula(f1) with x∗β we get

gB∪{α}(x) = f(xB , xα, x∗β , x∗R)
= f1(xB , xα, x∗R) + f2(xB , x∗β , x∗R)

for all xB ∈ XB , xα ∈ Xα. Similarly by instantiatingxα

in in the formula(f1) with x∗α we get

gB∪{β}(x) = f(xB , x∗α, xβ , x∗R)
= f1(xB , x∗α, x∗R) + f2(xB , xβ , x∗R)

for all xB ∈ XB , xβ ∈ Xβ . And finally, by instantiating
bothxα andxβ with x∗α andx∗β respectively, in the formula
(f1) we get

gB(x) = f(xB , x∗α, x∗β , x∗R)
= f1(xB , x∗α, x∗R) + f2(xB , x∗β , x∗R)

for all xB ∈ XB . Now computing the formula(∗) =
gB(x)−gB∪{α}(x)−gB∪{β}(x)+gB∪{α,β}(x) with these
alternative expansions we get

(∗) = f1(xB , x∗α, x∗R) + f2(xB , x∗β , x∗R)
−f1(xB , xα, x∗R)− f2(xB , x∗β , x∗R)
−f1(xB , x∗α, x∗R)− f2(xB , xβ , x∗R)
+f1(xB , xα, x∗R) + f2(xB , xβ , x∗R)

= 0

�

In the particular case whenf is a probability distrib-
ution the last implication in the previous theorem ((P)
→(F)) is known as the Hammersley-Clifford theorem [Be-
sag ’74]. The proof technique based on the Moebius Inver-
sion Lemma was first used for proving the Hammersley-
Clifford theorem for probabilities in [Griffeath ’76] , see
also [Lauritzen ’96, Jordan ’05]. To the best of our knowl-
edge, the proof presented is the first proof that holds for the
general case of conditional independence with respect to a
functionf which takes values into an Abelian Group.

4 Particular Cases

We now review some important examples of functions over
particular Abelian Groups and the associated factorization
theorems.

Probability Theory In the case when we consider
functions f : X → (0,∞) where the group is
((0,∞), ·, 1, −1) and additionally we impose the con-
straint that

∑
x∈X f(x) = 1, or more generally

∫
X

df =∫
X

f(x)dx = 1, we obtain strictly positive probability dis-
tributions and the notion of conditional independence be-
comes probabilistic conditional independence. By the fac-
torization theorem with respect to an associated graphG
we can decompose the probability distribution in terms of
clique potentialsfC as:

f(V ) =
∏

C∈MaxCliques(G)

fC(C)

This is precisely the Hammersley-Clifford theorem [Besag
’74, Griffeath ’76, Lauritzen ’96, Jordan ’05] .

Additive Decomposability / Value Theory When we
consider functionsf : X → R where the group is
(R,+, 0,−) we obtain an additive decomposition of the
functionf over the maximal cliques of the associated graph
G.

f(V ) =
∑

C∈MaxCliques(G)

fC(C)

This decomposition theorem can be used to decompose
value functions or fitness functions. A set of theorems in
the same spirit, while not in the same framework are the
utility decomposition theorems. See [Bacchus and Grove
’95] and references therein.

Relational Algebra A relation is a functionr : X →
{0, 1}. If we consider the groupZ2 = ({0, 1},⊗, 0,−) we
can decompose any relationr in terms of smaller relations
defined over subsets ofV . In this case the factorization
theorem with respect to an associated graphG will be:

r(V ) =
⊗

C∈MaxCliques(G)

rC(C)



5 Summary and Discussion

In this paper, we have introduced a general notion of Con-
ditional Independence/Decomposability. Following the in-
tuitions derived from the general case, we introduced the
notion of Conditional Independence relative to a functionf
which takes values into an Abelian Group, -If (·, ·|·). We
then proved thatIf (·, ·|·) satisfies the following four prop-
erties: trivial independence, symmetry, weak union and in-
tersection, which are held to be essential properties for the
notion of independence [Pearl ’88]. As a consequence, we
obtained the equivalence of the Global, Local and Pairwise
Markov Properties forIf (·, ·|·), as well as the equivalence
between Conditional Independence and Graph Separability
in the associated graph, based on well known results e.g.,
[Geiger and Pearl ’93]. We then proved the main theorem
of this paper, which allows us to “lift up” a set of pairwise
Conditional Independences and consequently pairwise fac-
torizations of the functionf to a global factorization of
f over the maximal cliques of the associated dependence
graph. This theorem is the natural generalization of the
Hammersley-Clifford theorem which holds for probability
distributions, to the more general case of functions that take
values into an Abelian Group. The theory developed in this
paper subsumes: factorization of probability distributions,
additive decomposable functions and decomposable rela-
tions, as particular cases of functions over Abelian Groups.

In contrast with the more traditional framework for prob-
abilistic independence i.e., graphoids [Pearl ’88], our
notion of independence does not support contraction
[I(A,D|C) & I(A,B|C ∪ D) ⇒ If (A,B ∪ D|C)] and
decomposition [I(A,B∪D|C) ⇒ I(A,B|C)]. Decompo-
sition is essentially a way to support non-saturated indepen-
dence statements and hence it requires marginals, but mar-
ginals are not generally available since they appear to be an
idiosyncratic feature of probability distributions. Thus it is
understandable that we have to drop decomposition in our
quest for generality. Contraction had to be dropped as well
because one of its premises contains a non-saturated state-
ment. A weaker version however, called Weak Contraction
[If (A∪B,D|C) & If (A,B|C ∪D) ⇒ If (A,B ∪D|C)]
that was used in [Geiger and Pearl ’93] does not require
non-saturated statements and is satisfied by our indepen-
dence relationIf (·, ·|·). This follows from the observa-
tion that Weak Union and Intersection imply Weak Con-
traction. The Intersection property is sometimes dropped
from probabilistic independence axioms in order to obtain
semi-graphoids [Pearl ’88]. Both the graphoid and semi-
graphoid sets of axioms however have been shown to be
incomplete for non-saturated probabilistic conditional in-
dependence statements [Studeny ’92]. In fact [Studeny ’92]
shows that any finite set of axioms is an incomplete char-
acterization of non-saturated probabilistic conditional inde-
pendence statements. In our case, since we use only satu-
rated independence statements due to the unavailability of

marginals in the general case, a completeness theorem can
be proved. In a longer version of this paper [Silvescu and
Honavar ’05] we prove a completeness theorem that states
that the axioms oftrivial independence, symmetry, inter-
section and weak unionare a complete characterisation of
Conditional Independences for functions over an Abelian
Group G . This theorem is a natural generalization, for
functions over Abelian groups, of a completeness theorem
for positive probability distributions and the four above-
mentioned axioms in a saturated probabilistic conditional
independence.(which was previously obtained by [Geiger
and Pearl ’93]). This is one more important piece of evi-
dence in support of the fact that these four properties in the
saturated setup, as our case is, are indeed an axiomatic core
for Conditional Independence.
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