
Bounds for Regret-Matching Algorithms

Amy Greenwald amy@brown.edu

Zheng Li zheng@dam.brown.edu

Casey Marks casey@cs.brown.edu

Brown University, Providence, RI 02912

Abstract

We introduce a general class of learning algorithms, regret-matching algorithms, and a regret-based
framework for analyzing their performance in online decision problems. Our analytic framework is based
on a set Φ of transformations over the set of actions. Specifically, we calculate a Φ-regret vector by
comparing the average reward obtained by an agent over some finite sequence of rounds to the average
reward that could have been obtained had the agent instead played each transformation φ ∈ Φ of its
sequence of actions. The regret matching algorithms analyzed here select the agent’s next action based
on the vector of Φ-regrets, along with a link function f . Many well-studied learning algorithms are
seen to be instances of regret matching. We derive bounds on the regret experienced by (f, Φ)-regret
matching algorithms for polynomial and exponential link functions (though we consider polynomial link
functions for p > 1 rather than p ≥ 2). Although we do not improve upon the bounds reported in past
work (except in special cases), our means of analysis is more general, in part because we do not rely
directly on Taylor’s theorem. Hence, we can analyze algorithms based on a larger class of link functions,
particularly non-differentiable link functions. In ongoing work, we are indeed studying regret matching
with alternative link functions, other than polynomial and exponential.

1 Introduction

In this paper, we introduce a general class of learning algorithms, regret-matching algorithms, and a regret-
based framework for analyzing their performance in online decision problems (ODPs). In an ODP, an agent
repeatedly faces some decision. During each round, the agent plays an action and obtains a reward that
depends on its choice of action. The reward function, which governs the relationship between rewards and
actions, may change over the course of the ODP, and the particular reward function that applies at any
given round is not revealed until after the agent has chosen its action for that round.

Online decision problems encompass a wide variety of machine learning settings. Consider an agent
learning in an infinitely repeated one-shot game, for example. If we view this setup as an ODP, the reward
dynamics are jointly determined by the payoff matrix and the behavior of the other agents. If all the agents
are learning simultaneously, these dynamics need not be stationary. The power of regret-matching algorithms
is that bounds on the regret they experience apply to any ODP.

Following Greenwald and Jafari [2003], our analytic framework is based on a set Φ of transformations
over the set of actions. Specifically, we calculate a Φ-regret vector by comparing the average reward obtained
by an agent over some finite sequence of rounds to the average reward that could have been obtained had the
agent instead played each transformation φ ∈ Φ of its sequence of actions. The regret-matching algorithms
analyzed here select the agent’s next action based on the vector of Φ-regrets, along with a link function f .
Many well-studied learning algorithms are seen to be instances of regret matching (e.g., Freund and Schapire
[1996], Foster and Vohra [1999]).

Our work is closely related to that of Cesa-Bianchi and Lugosi [2003]. However, our framework is based
on sets of transformations, rather than pools of experts. The experts framework applies to some settings,
such as “shifting experts” [Freund et al., 1997], where the transformation framework does not, and the

1

transformation framework applies to other settings, such as swap regret [Blum and Mansour, 2005], where
the experts framework does not. 1 The two most common forms of regret, internal (or conditional) regret
[Foster and Vohra, 1995] and external regret [Hannan, 1957], fit into both frameworks.

Like Cesa-Bianchi and Lugosi [2003], we derive bounds on the regret experienced by (f,Φ)-regret-
matching algorithms for polynomial and exponential link functions (though we consider polynomial link
functions for p > 1 rather than p ≥ 2). Although we do not improve upon the bounds reported in past work
(except in special cases), our means of analysis is more general, in part because we do not rely directly on
Taylor’s theorem. Hence, we can analyze algorithms based on a larger class of link functions, particularly
non-differentiable link functions.2 In ongoing work, we are studying regret matching with non-standard link
functions.

2 Regret Analysis

2.1 Online Decision Problem

Formally, an online decision problem is parameterized by a reward system – a pair (A,R), where A is a set of
actions and R is a set of rewards. In this work we consider only ODPs with finite action sets and real-valued
rewards (i.e., |A| ∈ N and R ⊂ R). Further, we restrict our attention to bounded rewards. WLOG, we let
R = [0, 1].

A particular instance of an ODP is described by a reward schedule – a sequence of functions {rt}∞t=1,
where each rt : A→ R. For a ∈ A, rt(a) corresponds to the reward the agent receives for playing action a in
round t. For the remainder of this paper, an ODP will be assumed to be defined with respect to the reward
system (A, [0, 1]) for some finite set A.

We denote by ∆(A) the set of probability distributions over the set A, and we allow the agent to play
mixed strategies, which means that rather than selecting an action a ∈ A to play at each round, the agent
chooses a mixed strategy q ∈ ∆(A). Hence, round t proceeds like so:

1. the agent selects a mixed strategy qt ∈ ∆(A),

2. an action at ∈ A is sampled from qt,

3. the agent receives reward rt(at),

4. the agent is informed of rt.

The last step, in which the agent learns what rewards it would have obtained for actions that were not played,
characterizes an informed ODP, which is the subject of the work. Omitting this step, that is, informing the
agent only of rt(at), yields a näıve ODP. See Auer et al. [1995], for example, for consideration of the näıve
setting.

The set of histories of length t is denoted by Ht and is given by At × {r : A→ R}t. An online learning
algorithm is a sequence of functions L = {Lt}∞t=1, where Lt : Ht−1 → ∆(A) so that Lt(h) ∈ ∆(A) corresponds
to the mixed strategy that is played at time t, for h ∈ Ht−1. We define H0 to be a singleton.

2.2 Transformations

Given an action set A, an action transformation is a function φ : A→ ∆(A). We let ΦALL denote the set of
all action transformations over the set A. Following Blum and Mansour [2005], we let ΦSWAP(A) denote the
set of action transformations that map actions to pure strategies (i.e., distributions with all their weight on
a single action). Let δa ∈ ∆(A) denote the distribution with all its weight on a.

1Lehrer’s (2003) setup, which combines history-dependent “replacing schemes” with activation functions, is the most general
of the three, but rather than derive bounds on the regret that is accrued by regret-matching algorithms after finite time t, he
shows that certain such algorithms exhibit no-regret as t→∞.

2There appears to be a problem with Cesa-Bianchi and Lugosi [2003]’s analysis in that they apply Taylor’s theorem to the
polynomial link function even though it is not differentiable at the origin.

2

There are two well-studied subsets of ΦSWAP: external and internal action transformations. An external
transformation is simply a constant transformation, so for a ∈ A,

φ
(a)
EXT : x 7→ δa, for all x ∈ A (1)

Internal transformations behave like the identity, except on one particular input, so for a, b ∈ A

φ
(a,b)
INT : x 7→

{
δb if x = a
δx otherwise (2)

Let ΦEXT(A) denote the set of external transformations and let ΦINT(A) denote the set of internal transfor-
mations. Observe that |ΦSWAP(A)| = |A||A|, |ΦINT(A)| = |A|2, and |ΦEXT(A)| = |A|.

We can extend an action transformation to a strategy transformation. Given an action transformation
φ : A→ ∆(A), let [φ] : ∆(A) → ∆(A) be the linear transformation defined by

[φ](q) =
∑

a

q · φ(a) (3)

2.3 Regret

Given a reward function r : A→ R, an action a ∈ A, and an action transformation φ ∈ ΦALL, the φ-regret is
given by ρφ(r, a) = Ea′∼φ(a)r(a′)− r(a). This quantity is the difference between the rewards that the agent
obtains by playing action a and the rewards that the agent would have expected to obtain by playing the
transformed strategy φ(a). Given a set of action transformations Φ ⊆ ΦALL(A), the Φ-regret vector is given
by ρΦ(r, a) = (ρφ(r, a))φ∈Φ.

Given an ODP over A with reward schedule {rt}, a sequence of actions {at}, and a set Φ ⊂ ΦALL(A),
cumulative Φ-regret at time T is

RΦ
T ({rt}, {at}) =

T∑
t=1

ρΦ(rt, at). (4)

The φ entry in the cumulative regret vector compares the cumulative rewards obtained by an agent at time
T and the rewards that it would have obtained by consistently transforming each of its actions by φ. In
general we are interested in minimizing the maximal element of finite cumulative regret vectors.

We sometimes treat cumulative regret as a function from histories to regret vectors and write RΦ
t (h),

where h ∈ HT for t ≤ T . When considering a particular ODP and learning algorithm we treat cumulative
regret as a random vector over the probability space defined by the reward schedule and the behavior of the
algorithm. In this case we write RΦ

t .
As shorthand we write RALL

T to denote RΦALL
T , and similarly RSWAP

T , REXT
T , and RINT

T .
Since ΦSWAP(A) ⊇ ΦEXT(A),ΦINT(A), it follows that maxΦR

EXT
t ≤ maxΦR

SWAP
t and maxΦR

INT
t ≤

maxΦR
SWAP
t . Additionally, from Marks et al. [2004], we recall that maxφR

EXT
t ≤ (|A| − 1) maxφR

INT
t

and maxφR
SWAP
t ≤ |A|maxφR

INT
t .

A commonly studied property is “no-regret:”

Definition 1 Given an action set A and a set of action transformations Φ ⊆ ΦALL(A), an online learning
algorithm is said to exhibit no-Φ-regret if there exists ε > 0 such that for any ODP (reward schedule {rt}∞t=1),
P (1

t supφ∈ΦR
φ
t > ε) < ε.

3 Regret Matching

In this section, we define a general class of online learning algorithms, which we call regret-matching algo-
rithms,3 that are parameterized by a set of action transformations Φ and a link function4 f : RΦ → RΦ

+.
3We co-opt this terminology from Hart and Mas-Colell [2001], whose regret matching algorithm based on ΦEXT and the

p = 2 polynomial link function is an instance of this class.
4Some authors, such as Cesa-Bianchi and Lugosi [2003], base their analyses on potential functions, while others, such as

Gordon [1999] use link functions. These approaches are equivalent if a link function is considered to be a (sub-)gradient of a

3

Regret matching algorithms satisfy a property closely related to Blackwell’s condition for approachability.
This property is parameterized by a set of transformations Φ and a link function f .

In this paper we consider two well-known classes of link functions: the polynomial link function, fi(x) =
(x+

i)p−1 for some p > 1, and the exponential link function, fi(x) = eηxi for some η > 0. (Here x+
i =

max{xi, 0}.)

3.1 Preliminaries

Given two sets X and Y , we denote by XY the set of functions {f : X → Y }. In particular, if Y is a finite
set then RY is isomorphic to R|Y |. We denote the positive orthant of Rn by Rn

+ ≡ {~x ∈ Rn : xi ≥ 0 ∀i}.

3.2 Regret Matching Property

We define the regret matching property, which is inspired by Blackwell’s approachability condition (1956)
and related to Hart and Mas-Colell’s Λ-strategy property (2001).

Definition 2 (Regret Matching) Given a finite set of action transformations Φ ⊂ ΦALL(A), and a func-
tion f : RΦ → RΦ

+, a learning algorithm L is called an (f,Φ)-regret-matching algorithm if for all reward
functions r, for all times T , for all histories h ∈ HT−1,

f(RΦ
t−1(h)) · Ea∼Lt(h)[ρΦ

t (a, r)] ≤ 0. (5)

Given a finite set Φ ⊆ ΦALL(A) of action transformations, Blackwell’s condition (1956) for a regret vector
to approach the negative orthant is equivalent to the existence of an (f,Φ)-regret-matching algorithm with
the p = 2 polynomial link function. An immediate consequence of this observation is that such an algorithm
exhibits no-Φ-regret [Greenwald and Jafari, 2003].

The bounds derived in Section 5 suggest that the polynomial Φ-regret-matching algorithms exhibit no-
Φ-regret for all p > 1 and for any set of action transformations Φ. Such an analysis is the subject of future
work.

We rely on the following observation in Section 5.

Observation 3 Let f, f ′ be link functions, mapping RΦ to RΦ
+. If there exists a function ψ : RΦ → R+

such that ψ(x)f(x) = f ′(x) and ‖f(x)‖ > 0 ⇒ ψ(x) > 0 for all x ∈ RΦ, then a learning algorithm is an
(f,Φ)-regret-matching algorithm if and only if it is an (f ′,Φ)-regret matching algorithm.

3.3 Regret Matching Algorithms

Given a set of action transformations Φ, a link function f : RΦ → RΦ
+, and a history h of length t− 1, apply

the link function to the cumulative regret vector RΦ
t−1(h), yielding a vector Yt ≡ f(RΦ

t−1(h)) ∈ RΦ
+. Then

define a strategy transformation Mt by taking a convex combination of strategy transformations weighted
by Yt as follows:

Mt(h) =

∑
φ∈Φ(Yt)φ[φ]∑

φ∈Φ(Yt)φ
. (6)

We prove that a learning algorithm that plays a fixed point ofMt at every round t such thatMt is well-defined
(i.e., whenever Yt is not the zero vector) is a regret-matching algorithm. Formally,

Theorem 4 (Regret Matching Theorem) Given a finite set of action transformations Φ ⊂ ΦALL(A),
and a function f : RΦ → RΦ

+, a learning algorithm L that for all times t, for all histories h ∈ Ht−1 such
that Mt is well-defined, satisfies Lt(h) = Mt(Lt(h)) (where Mt : ∆(A) → ∆(A) is defined in Equation 6) is
an (f,Φ)-regret-matching algorithm.

potential function.

4

Proof Define q ≡ Lt(h), Yt ≡ f
(
RΦ

t−1

)
, and Mt as in Equation 6. We need to show that

Yt · Ea∼q[ρΦ
t (a, r)] ≤ 0. (7)

If Yt is the zero vector, the conclusion follows immediately. Otherwise,

Yt · Ea∼q[ρΦ
t (a, r)] =

∑
φ∈Φ

(Yt)φ Ea∼q[ρ
φ
t (a, r)] (8)

=
∑
φ∈Φ

(Yt)φ r · ([φ](q)− q) (9)

= r ·
∑
φ∈Φ

(Yt)φ ([φ](q)− q) (10)

= r ·

∑
φ∈Φ

(Yt)φ [φ](q)−
∑
φ∈Φ

(Yt)φ q

 (11)

=

∑
φ∈Φ

(Yt)φ

 r · (Mt(q)− q) (12)

=

∑
φ∈Φ

(Yt)φ

 r · (q − q) (13)

= 0 (14)

Line (12) follows because Lt(h) is a fixed point of Mt(h).

Because Mt is a linear transformation on a finite-dimensional simplex, by Brouwer’s fixed point theorem
it has a fixed point. In an informed setting, the agent is able to compute RΦ

t−1 and therefore construct
Mt before choosing its mixed strategy qt. Thus a learning algorithm which computes and plays the fixed
point of Mt at every iteration (such that Mt exists) is a regret-matching algorithm. The pseudocode for this
algorithm is shown in Algorithm 1.

3.4 Complexity

Maintaining a cumulative regret vector and computing Yt has time cost O(|Φ|) at each iteration (assuming
the complexity of f is linear in |Φ|, as it is for the link functions we consider here). If we represent the
strategy transformations [φ] as |A| × |A| matrices, then the matrix for Mt can computed one entry at a time
from Yt in O(|A|2) time. Finding the fixed point of that matrix can be accomplished via Gaussian elimination
in O(|A|3) time. Thus we have an (f,Φ)-regret-matching algorithm which has complexity O(max{|A|3, |Φ|}).
For both internal and external regret matching this simplifies to O(|A|3) complexity.

However, for external regret matching we present an O(|A|) regret-matching algorithm which does not
require matrix manipulation. Observe that for Φ = ΦEXT(A), for any q ∈ ∆(A),

Mt(h)(q) : a 7→ fa(REXT
t (h))∑

a′∈A fa′(REXT
t (h))

. (15)

Thus the (unique) fixed-point of the linear transformation can be computed as an O(|A|) operation.

4 General Bounding Theorem

The theorem presented in this section is inspired by unpublished work due to Geoffrey Gordon.

5

Algorithm 1 (f,Φ)-RegretMatchingAlgorithm
1: initialize R0 = 0
2: initialize q1 ∈ ∆(A) arbitrarily
3: for t = 1, . . . ,∞ do
4: sample pure action at from qt
5: observe reward function rt
6: for all φ ∈ Φ do
7: compute instantaneous regret ρΦ(at, rt)
8: update cumulative regret vector RΦ

T = RΦ
T−1 + ρΦ(at, rt)

9: end for
10: let Y = f(RΦ

T)
11: if Y = 0 then
12: choose qt+1 ∈ ∆(A) arbitrarily
13: else
14: let M =

∑
φ∈Φ Yφ[φ]/

∑
φ∈Φ Yφ

15: let qt+1 be a fixed point of M
16: end if
17: end for

Definition 5 (Gordon Triple) For a positive integer d, Let G : Rd → R, g : Rd → Rd
+, γ : Rd → R satisfy

G(x+ y) ≤ G(x) + g(x) · y + γ(y) (16)

for all x, y ∈ Rd. We call the triple 〈G, g, γ〉 a Gordon triple.

The function G is a potential function and the function g will be the gradient or sub-gradient of G.
When applied to regret-matching algorithms, g will also be a link function. The following theorem bounds
the growth of the potential function:

Theorem 6 For a positive integer d, let x1, x2, . . . be a sequence of random vectors taking values in Rd. Let
Xt =

∑t
τ=1 xτ . Let 〈G, g, γ〉 be a Gordon triple. Additionally let C : N → R satisfy

Et−1 [g(Xt−1) · xt] + Et−1 [γ(xt)] ≤ C(t) a.s. (17)

Then

E [G(Xt)] ≤ G(0) +
t∑

τ=1

C(τ) (18)

Proof Proof by induction. For t = 0,
E [G(0)] = G(0) (19)

Assume (18) holds for a particular t ≥ 0.

G(Xt+1) = G(Xt + xt+1) (20)
≤ G(Xt) + g(Xt) · xt+1 + γ(xt+1) (21)

Take conditional expectations on both sides:

Et [G(Xt+1)] ≤ G(Xt) + C(t+ 1) a.s. (22)

6

Now take expectations on both sides, and apply the law of iterated expectations on the left-hand side:

E [G(Xt+1)] ≤ E [G(Xt)] + C(t+ 1) (23)

≤ G(0) +
t∑

τ=1

C(τ) + C(t+ 1) (24)

= G(0) +
t+1∑
τ=1

C(τ) (25)

thus completing the induction.

Corollary 7 Let 〈G, g, γ〉 be a Gordon triple. Given a reward system and a g,Φ-regret-matching algorithm
L, the cumulative Φ regret experienced by playing according to L will be bounded by

E
[
G(RΦ

t)
]
≤ G(0) + tmax

r,a
γ(ρΦ(r, a)) (26)

for any reward schedule.

Proof Apply Theorem 6 with d = |Φ|, xt = ρΦ(rt, at), so Xt = RΦ
t . Playing according to L means that

Pt(at = a′) = Lt(h)(a′), so from the regret matching property we get

Et−1

[
ρΦ(rt, at) · g(RΦ

t−1)
]

= 0 (27)

for all t and any rt. Thus we choose C(t) = maxr,a γ(ρΦ(r, a)).

5 Bounds for Specific Link Functions

We now derive regret bounds for polynomial and exponential regret-matching algorithms by applying Corol-
lary 7 with particular Gordon triples.

5.1 Polynomial Link Functions

We divide our analysis of the polynomial link function, fi(x) = (x+
i)p−1, into two cases: p ≥ 2 and 1 < p ≤ 2.

In both cases we rely on the following lemmas:

Lemma 8 If x is a random vector taking values in Rn, then (E[maxi xi])
q ≤ E

[
‖x+‖q

p

]
for all p > 0 and

q ≥ 1.

Proof Apply Jensen’s inequality and the fact that ‖x‖∞ ≤ ‖x+‖p.

Given a set of actions A and a set of action transformations Φ ⊆ ΦALL(A), the maximal activation,
denoted µ(Φ), is computed by maximizing, over all actions a ∈ A, the number of transformations φ that
alter action a: i.e.,

µ(Φ) = max
a∈A

|{φ ∈ Φ : φ(a) 6= a}| (28)

Clearly, µ(Φ) ≤ |Φ|. In addition, observe that µ(ΦEXT(A)) = µ(ΦINT(A)) = |A| − 1.

Lemma 9 Given an ODP over action set A and a set of action transformations Φ ⊆ ΦALL(A), ‖ρΦ(r, a)‖p ≤
p
√
µ(Φ) for any action a and reward function r.

7

Proof Rewards are bounded in [0, 1], so regrets are bounded in [−1, 1].

‖ρΦ(r, a)‖p = p

√∑
φ∈Φ

(ρφ(r, a))p (29)

≤ p

√∑
φ∈Φ

1φ(a) 6=a (30)

≤ p
√
µ(Φ) (31)

Lemma 10 For p ≥ 2, define G(x) = ‖x+‖2p,

gi(x) =

{
0 if x = 0,
2(x+

i)p−1

‖x‖p−2
p

otherwise,

and γ(x) = (p− 1)‖x‖2p. Then 〈G, g, γ〉 is a Gordon triple.

Proof See appendix.

Theorem 11 Given an action set A and a finite set of action transformations Φ ⊆ ΦALL(A), define f : RΦ →
RΦ by fi(x) = (x+

i)p−1, for 2 ≤ p <∞. At all times t, an (f,Φ)-regret-matching algorithm guarantees

E
[
max
φ∈Φ

1
t
Rφ

t

]
≤
√
p− 1
t

p
√
µ(Φ) (32)

for any reward schedule {rt}∞t=1.

Proof Let 〈G, g, γ〉 be the Gordon triple defined in Lemma 10. By Lemma 3, an (f,Φ)-regret-matching
algorithm is also a (g,Φ)-regret-matching algorithm. Now,(

E
[
max
φ∈Φ

Rφ
t

])2

≤ E
[
‖(RΦ

t)+‖2p
]

(33)

= E
[
G(RΦ

t)
]

(34)

≤ G(0) + tmax
r,a

γ(ρΦ(r, q)) (35)

≤ t(p− 1)
(

p
√
µ(Φ)

)2

(36)

Line (33) follows by Lemma 8. Line (35) follows by Corollary 7. Line (36) follows by Lemma 9. Finally, the
conclusion follows by taking square roots and dividing by t on both sides.

Lemma 12 For p ≤ 2, define G(x) = ‖x+‖p
p, gi(x) = p(x+

i)p−1, and γ(x) = ‖x‖p
p. Then 〈G, g, γ〉 is a

Gordon triple.

Proof See appendix.

Theorem 13 Given an action set A and a finite set of action transformations Φ ⊆ ΦALL(A), define f :
RΦ → RΦ by fi(x) = (x+

i)p−1, for 1 < p ≤ 2. At all times t, an (f,Φ)-regret-matching algorithm guarantees

E
[
max
φ∈Φ

1
t
Rφ

t

]
≤ t(

1
p−1) p

√
µ(Φ) (37)

for any reward schedule {rt}∞t=1.

8

Proof Let 〈G, g, γ〉 be the Gordon triple defined in Lemma 12. By Lemma 3, an (f,Φ)-regret-matching
algorithm is also a (g,Φ)-regret-matching algorithm. Now,(

E
[
max
φ∈Φ

Rφ
t

])p

≤ E
[∥∥∥(RΦ

t

)+∥∥∥p

p

]
(38)

= E
[
G
(
RΦ

t

)]
(39)

≤ G(0) + tmax
r,a

γ(ρΦ(r, q)) (40)

≤ t µ(Φ) (41)

Line (38) follows by Lemma 8. Line (40) follows by Corollary 7. Line (41) follows by Lemma 9. Finally, the
conclusion follows by taking p-roots and dividing by t on both sides.

5.2 Exponential Link Functions

Lemma 14 Define G(x) = 1
η ln (

∑
i e

ηxi), gi(x) = eηxiP
j eηxj , and γ(x) = η

2‖x‖
2
∞. Then 〈G, g, γ〉 is a Gordon

triple.

Proof See appendix.

Theorem 15 Given an action set A and a finite set of action transformations Φ ⊆ ΦALL(A), define f :
RΦ → RΦ by fi(x) = eηxi , for η > 0. At all times t, an (f,Φ)-regret-matching algorithm guarantees

E
[
max
φ∈Φ

1
t
Rφ

t

]
≤ lnm

ηt
+
η

2
(42)

for any reward schedule {rt}∞t=1.

Proof Let 〈G, g, γ〉 be the Gordon triple defined in Lemma 12. By Lemma 3, an (f,Φ)-regret-matching algo-
rithm is also a (g,Φ)-regret-matching algorithm. Note that G(0) = 1

η lnm and γ(ρΦ(r, q)) = η
2‖ρ

Φ(r, q)‖2∞ ≤
η
2 . Also observe that

max
i

xi = max
i

ln exi (43)

= lnmax
i

exi (44)

≤ ln
∑

i

exi . (45)

Now we have

E
[
1
t

max
φ∈Φ

Rφ
t

]
≤ 1

t
E

1
η

ln
∑
φ∈Φ

eηRφ
t

 (46)

=
1
t

E
[
G(RΦ

t)
]

(47)

≤ 1
t

(
G(0) + tmax

r,a
γ(ρΦ(r, q))

)
(48)

≤ lnm
ηt

+
η

2
(49)

Line (48) follows by Corollary 7.

9

fi(x) Condition Bound for finite Φ ⊆ ΦALL Bound for ΦEXT,ΦINT

(x+
i)p−1 p ≥ 2

√
p−1

t
p
√
m

√
p−1

t
p
√
n− 1

(x+
i)p−1 1 < p ≤ 2 t(

1
p−1) p

√
m t(

1
p−1) p

√
n− 1

eηxi η > 0 ln m
ηt + η

2
ln m
ηt + η

2

Table 1: Bounds for polynomial and exponential regret-matching algorithms (n = |A| and m = |Φ|).

5.3 Summary of Bounds

We have considered two classes of algorithms, polynomial and exponential regret matching, each of which has
a single parameter, p and η, respectively. Table 1 summarizes the bounds we derived on E

[
maxφ∈Φ

1
tR

φ
t

]
.

Our two analyses of polynomial Φ-regret matching (Theorems 11 and 13) agree when p = 2. In addition, for
finite Φ ⊆ ΦALL, our bounds on polynomial Φ-regret matching for p ≥ 2 agree with Cesa-Bianchi and Lugosi
[2003]. For polynomial external and internal regret matching, however, we improve on the bounds that can
be immediately derived from their results. Though the improvement is small for external regret matching
(from a bound proportional to p

√
n to a bound proportional to p

√
n− 1, where n = |A|), it is more significant

for internal regret matching (from n(2/p) to (n− 1)(1/p)).
Finally, observe that for any finite Φ ⊆ ΦALL, polynomial regret matching has the property that

lim
t→∞

E
[
max
φ∈Φ

1
t
Rφ

t

]
= 0 (50)

while exponential Φ-regret matching has the property that

lim
t→∞

E
[
max
φ∈Φ

1
t
Rφ

t

]
=
η

2
(51)

In particular, the bound for any polynomial algorithm is eventually better than the bound than for expo-
nential algorithm.

5.4 Optimal Parameters

In this section, we consider the task of setting the parameters in both the polynomial and exponential
regret-matching algorithms.

The bound for polynomial regret matching derived in Theorem 13 for 1 < p ≤ 2 is strictly decreasing in
p; hence p = 2 is the optimal setting. By considering the partial derivative with respect to p of the bound
derived in Theorem 11 for p ≥ 2, we find that we can minimize this bound by setting p = p∗(Φ), where

p∗(Φ) = lnµ(Φ) +
√

ln2 µ(Φ)− 2 lnµ(Φ) for µ(Φ) ≥ e2, and p∗(Φ) = 2 otherwise. Combining these results,
we see that in fact p = p∗(Φ) is optimal for all p > 1.5 Cesa-Bianchi and Lugosi [2003] suggest setting
p = 2 ln |Φ|, which is suboptimal even when µ(Φ) = |Φ|. Still, if we choose p = 2 lnµ(Φ), although this
choice is suboptimal, as Gentile [2003] observes, it yields a simpler bound, which differs from the optimal
only by lower order terms.

Considering the partial derivative with respect to the parameter η of the bound for exponential regret
matching derived in Theorem 15, we find that the optimal setting of η depends on the time t at which we
want to optimize the bound. The best bound at time t∗ is obtained by setting η = η∗(Φ, t∗), where

η∗(Φ, t) =

√
2 ln |Φ|
t

. (52)

5This result is very similar to the optimal parameter for the p-norm regression algorithm calculated by Gentile [2003].

10

Plugging η∗(Φ, t∗) into Equation 42 we find that an optimized exponential regret-matching algorithm guar-
antees

E
[
max
φ∈Φ

1
t
Rφ

t∗

]
≤
√

2 ln |Φ|
t∗

. (53)

(This result was obtained by Cesa-Bianchi and Lugosi [2003].) For large enough action sets (|A| ≥ 4 for
ΦEXT, |A| ≥ 13 for ΦINT), an η∗(Φ, t∗) exponential algorithm will have a lower bound than any polynomial
algorithm at t = t∗. For small action sets, however, an optimal polynomial algorithm will have a lower bound
than any exponential algorithm for all t.

6 Future Work

In ongoing work, we are exploring alternative link functions. For example, we are studying a class of link
functions that constitute a spectrum from the polynomial to the exponential. We also hope to further
generalize our framework to accommodate both link functions and transformations that vary over time.
Finally, we plan to investigate regret-matching algorithms for näıve online decision problems.

Appendix

Lemma 16 Let p ≥ 2, and suppose x, y ∈ Rn such that ~0 does not lie on the line segment between them
(inclusive). Then (16) is satisfied by G(x) = ‖x+‖2p,

gi(x) =

{
0 if x = ~0
2(x+

i)p−1

‖x‖p−2
p

otherwise
(54)

and γ(x) = (p− 1)‖x‖2p. 6

Proof Let U be an open convex set containing x and x+ y but not ~0 (e.g., take the union of small enough
open balls along the line segment between them). Observe that G is twice continuously differentiable on U
and ∇G = g. By Taylor expansion,

G(x+ y) = G(x) + g(x) · y +
1
2

∑
i,j

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj (55)

for some u.
By calculation

∂2G

∂xi∂xj

∣∣∣∣
u

= 2(2− p)(u+
i)p−1(u+

j)p−1‖(u)+‖2−2p
p for i 6= j (56)

and
∂2G

∂x2
i

∣∣∣∣
u

= 2(2− p)(u+
i)2p−2‖(u)+‖2−2p

p + 2(p− 1)(u+
i)p−2‖(u)+‖2−p

p (57)

6Cesa-Bianchi and Lugosi [2003] fail to consider that G(x) = ‖x+‖2p is not differentiable at ~0 and therefore Taylor’s theorem

does not apply when ~0 lies between x and y.

11

Then

1
2

∑
i,j

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj =
∑
i,j

(2− p)(u+
i)p−1(u+

j)p−1‖u+‖2−2p
p yiyj

+
∑

i

(p− 1)(u+
i)p−2‖u+‖2−p

p y2
i (58)

= (2− p)‖u+‖2−2p
p (

∑
i

(u+
i)p−1yi)2

+(p− 1)
∑

i

(u+
i)p−2‖u+‖2−p

p y2
i (59)

≤ (p− 1)‖u+‖2−p
p

∑
i

(u+
i)p−2y2

i (60)

≤ (p− 1)‖u+‖2−p
p

(∑
i

((
u+

i

)p−2
) p

p−2

) p−2
p
(∑

i

|yi|p
)2/p

(61)

= (p− 1)‖y‖2p (62)

Line (58) follows from equations (56) and (57). Line (60) follows because p ≥ 2. For p > 2, line (61) follows
from Hölder’s inequality, and then line (62) follows algebraically. For p = 2, line (62) follows directly from
line (60).

Lemma 10 For p ≥ 2 define G(x) = ‖x+‖2p,

gi(x) =

{
0 if x = 0,
2(x+

i)p−1

‖x‖p−2
p

otherwise,

and γ(x) = (p− 1)‖x‖2p. Then 〈G, g, γ〉 is a Gordon triple.

Proof If ~0 does not lie on the line segment between x and z = x + y, then apply Lemma 16. Otherwise
∃λ ∈ [0, 1] such that λx+ (1− λ)z = ~0

• Case 1: z ∈ Rm
≤0.

Then G(x+ y) = G(z) = G(~0) = 0. It suffices to prove that

||x+||2p + (p− 1)||y||2p + 2
(x+)p−1 · y
||x||p−2

p

≥ 0 (63)

which we can reduce to

||x+||pp + (p− 1)||y||2p||x||p−2
p + 2(x+)p−1 · y ≥ 0 (64)

By Holder’s inequality
||y||2p||x||p−2

p ≥
∑

i

|yi|2 · |xi|p−2 (65)

So it suffices to prove for any a, b ∈ R

(a+)p + (p− 1)b2 · |a|p−2 + 2(a+)p−1 · b ≥ 0 (66)

12

In fact we have

(a+)p + (p− 1)b2 · |a|p−2 + 2(a+)p−1 · b (67)
≥ (a+)p + (p− 1)b2 · (a+)p−2 + 2(a+)p−1 · b (68)
= (a+)p−2((a+)2 + (p− 1)b2 + 2a+ · b) (p > 2) (69)
≥ (a+)p−2((a+)2 + b2 + 2a+ · b) (70)
= (a+)p−2(a+ + b)2 (71)
≥ 0 (72)

• Case 2: z ∈ Rm
≥0.

Then x ∈ Rm
≤0, so G(x) = 0 and g(x) = ~0. Also G(x+ y) ≤ G(y) ≤ (p− 1)‖y‖2p

• Case 3: z 6∈ Rm
≥0 ∪ Rm

≤0.
Observe x 6∈ Rm

≥0 ∪Rn
≤0, so ~0 does not lie between x+ and z. Now we can apply Lemma 16 to x+ and

z − x+, yielding
G(z) ≤ G(x+) + g(x+) · (z − x+) + γ(z − x+) (73)

G(x+) = G(x). Also, for j such that x+
j 6= xj , xj ≤ 0 so gj(x+) = gj(x) = 0. Thus gj(x+)(zj − x+

j) ≤
gj(x)(zj − xj) and g(x+) · (z − x+) = g(x) · y. Additionally yj = zj − xj ≥ zj − x+

j for all j so
‖z − x+‖ ≤ ‖y‖. We get

G(x+) + g(x+) · (z − x+) + γ(z − x+) ≤ G(x) + g(x) · y + γ(y) (74)

which gives us the desired result.

Lemma 12 For 1 < p ≤ 2 define G(x) = ‖x+‖p
p, gi(x) = p(x+

i)p−1, and γ(x) = ‖x‖p
p. Then 〈G, g, γ〉 is a

Gordon triple.

Proof Because ‖x+‖p
p =

∑
i

(
x+

i

)p
, it suffices to show that for any a, b ∈ R, ((a+b)+)p ≤ (a+)p+p(a+)p−1b+

|b|p and obtain the desired result from a component-wise proof.

• Case 1: b ≥ 0. Define the function hc(z) = zp + p(c+)p−1z + p(c+) − ((c + z)+)p for any fixed c.
Then h′c(z) = pzp−1 + p(c+)p−1 − p((c+ z)+)p−1. We use the basic inequality xα + yα ≥ (x+ y)α for
x > 0, y > 0, 0 ≤ α ≤ 1. For z ≥ 0 the inequality yields h′c(z) ≥ 0, so hc is a non-decreasing function
on [0,∞) and ha(b) ≥ ha(0). The conclusion follows.

• Case 2: b ≤ 0. If suffices to prove that ((a − d)+)p ≤ (a+)p − p(a+)p−1d + dp for d ≥ 0. We define
hc(z) = zp − p(c+)p−1z + (c+)p− ((c− z)+)p and proceed as in case 1.

Lemma 14 For η > 0 define G(x) = 1
η ln (

∑
i e

ηxi), gi(x) = eηxiP
j eηxj , and γ(x) = η

2‖x‖
2
∞. Then 〈G, g, γ〉 is

a Gordon triple.

Proof We use the same technique as in the proof of Lemma 10. Observe that G is smooth and ∇G = g.
By Taylor expansion,

G(x+ y) = G(x) + g(x) · y +
1
2

∑
i,j

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj (75)

for some u.

13

By calculation we obtain
∂2G

∂xi∂xj

∣∣∣∣
u

= − ηeηuieηuj

(
∑

i e
ηui)2

for i 6= j (76)

and
∂2G

∂x2
i

∣∣∣∣
u

= − ηeηuieηui

(
∑

i e
ηui)2

+
ηeηui∑

i e
ηui

(77)

then

1
2

∑
i,j

∂2G

∂xi∂xj

∣∣∣∣
u

yiyj =
∑
i,j

− ηeηuieηuj

(
∑

i e
ηui)2

yiyj +
∑

i

ηeηui∑
i e

ηui
y2

i

= −η
(∑

i e
ηuiyi∑

i e
ηui

)2

+
∑

i

ηeηui∑
i e

ηui
y2

i

≤
∑

i

ηeηui∑
i e

ηui
y2

i

≤
∑

i

ηeηui∑
i e

ηui
‖y‖2∞

= η‖y‖2∞

Acknowledgements

We thank David Gondek for insightful discussions.

References

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: The adversarial
multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, pages 322–331. ACM Press, November 1995.

David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 6:
1–8, 1956.

Avrim Blum and Yishay Mansour. From internal to external regret. In COLT ’05: Proceedings of the
Eighteenth Annual Conference on Computational Learning Theory, 2005.

Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line prediction and game theory.
Machine Learning, 51(3):239–261, 2003.

D. Foster and R. Vohra. Regret in the on-line decision problem, 1995.

Dean Foster and Rakesh Vohra. Regret in the on-line decision problem. Games and Economic Behavior, 29:
7–35, 1999.

Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. In Computational
Learing Theory, pages 325–332, 1996.

Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. Using and combining predictors
that specialize. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,
pages 334–343, 1997.

14

Claudio Gentile. The robustness of the p-norm algorithms. Machine Learning, 53(3):265–299, 2003.

Geoffrey J. Gordon. Regret bounds for prediction problems. In COLT ’99: Proceedings of the Twelfth
Annual Conference on Computational Learning Theory, pages 29–40, New York, NY, USA, 1999. ACM
Press. ISBN 1-58113-167-4. doi: http://doi.acm.org/10.1145/307400.307410.

Amy Greenwald and Amir Jafari. A general class of no-regret algorithms and game-theoretic equilibria. In
Proceedings of the 2003 Computational Learning Theory Conference, pages 1–11, August 2003.

J. Hannan. Approximation to Bayes risk in repeated plays. In M. Dresher, A.W. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, volume 3, pages 97–139. Princeton University Press, 1957.

Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strategies. Journal of Economic Theory, 98
(1):26–54, 2001.

Ehud Lehrer. A wide range no-regret theorem. Games and Economic Behavior, 42(1):101–115, 2003.

Casey Marks, Amy Greenwald, and David Gondek. Varieties of regret in online prediction. Technical Report
CS-04-09, Department of Computer Science, Brown University, July 2004.

15

