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Abstract

We define a class of probabilistic models in terms of an operator algebra of stochastic processes, and
a representation for this class in terms of stochastic parameterized grammars. A syntactic specifica-
tion of a grammar is mapped to semantics given in terms of a ring of operators, so that grammatical
composition corresponds to operator addition or multiplication. The operators are generators for
the time-evolution of stochastic processes. Within this modeling framework one can express data
clustering models, logic programs, ordinary and stochastic differential equations, graph grammars,
and stochastic chemical reaction kinetics. This mathematical formulation connects these apparently
distant fields to one another and to mathematical methods from quantum field theory and operator
algebra.

1 Introduction

Probabilistic models of application domains are central to pattern recognition, machine learning, and scientific mod-
eling in various fields. Consequently, unifying frameworks are likely to be fruitful for one or more of these fields.
There are also more technical motivations for pursuing the unification of diverse model types. In multiscale modeling,
models of the same system at different scales can have fundamentally different characteristics (e.g. deterministic vs.
stochastic) and yet must be placed in a single modeling framework. In machine learning, automated search over a
wide variety of model types may be of great advantage. In this paper we propose Stochastic Parameterized Grammars
(SPG’s) and their generalization to Dynamical Grammars (DG’s) as such a unifying framework. To this end we define
mathematically both the syntax and the semantics of this formal modeling language.

The essential idea is that there is a “pool” of fully specified parameter-bearing terms such as {bacterium(x),
macrophage(y), redbloodcell(z)} where x, y andz might be position vectors. A grammar can include rules such
as

{bacterium(x),macrophage(y)} → macrophage(y) with ρ(‖x− y‖)

which specify the probability per unit time,ρ, that the macrophage ingests and destroys the bacterium as a function of
the distance‖x − y‖ between their centers. Sets of such rules are a natural way to specify many processes. We will
map such grammars to stochastic processes in both continuous time (Section 3.2) and discrete time (Section 3.3), and
relate the two definitions (Section 3.5). A key feature of the semantics maps is that they are naturally defined in terms
of an algebraicring of time evolution operators: they map operator addition and multiplication into independent or
strongly dependent compositions of stochastic processes, respectively.

The stochastic process semantics defined here is a mathematical, algebraic object. It is independent of any particular
simulation algorithm, though we will discuss (Section 3.4) a powerful technique for generating simulation algorithms,
and we will demonstrate (Section 4.2) the interpretation of certain subclasses of SPG’s as a logic programming lan-
guage. Other applications that will be demonstrated are to data clustering ([1]), chemical reaction kinetics (Section
4.1), graph grammars and string grammars (Section 4.3), systems of ordinary differential equations and systems of
stochastic differential equations (Section 4.4). Other frameworks that describe model classes that may overlap with
those described here are numerous and include: branching or birth-and-death processes, marked point processes,



MGS modeling language using topological cell complexes, interacting particle systems, the BLOG probabilistic ob-
ject model, adaptive mesh refinement with rewrite rules, stochastic pi-calculus, and colored Petri Nets. The mapping
Ψc/d to an operator algebra of stochastic processes, however, appears to be novel.

The present paper is an abbreviated summary of [1].

2 Syntax Definition

Consider the rewrite rule

A1(x1), A2(x2), ..., An(xn) → B1(y1), B2(y2), ..., Bm(ym) with ρ({xi} , {yj}) (1)

where theAk andBl denote symbolsτa chosen from an arbitrary alphabet setT = {τa|a ∈ A} of “types”. In addition
these type symbols carry expressions for parametersxi or yj chosen from a base languageLP (i) defined below. The
A’s can appear in any order, as can theB’s. DifferentA’s andB’s appearing in the rule can denote the same alphabet
symbolτa, with equal or unequal parameter valuesxi or yj . ρ is a nonnegative function, assumed to be denoted by an
expression in a base languageLR defined below, and also assumed to be an element of a vector spaceF of real-valued
functions. Informally,ρ is interpreted as a nonnegative probability rate: the independent probability per unit time that
any possible instantiation of the rule will “fire” if its left hand side precondition remains continuously satisfied for a
small time. This interpretation will be formalized in the semantics.

We now defineLP (i). Each termAi(xi) or Bj(yj) is of typeτa and its parametersxi take values in an associated
(ordered) Cartesian product setVa of da factor spaces chosen (possibly with repetition) from a set of base spaces
D = {Db|b ∈ B}. EachDb is a measure space with measureµb. ParticularDb may for example be isomorphic to the
integersZ with counting measure, or the real numbersR with Lebesgue measure. The ordered choice of spacesDb

in Va =
da∏

k=1

Db=σ(ak) constitutes the type signature{σak ∈ B|1 6 k 6 da} of typeτa. (As an aside, polymorphic

argument type signatures are supported by defining a derived type signature{σakb = (Db ⊆ Dσ(ak)) ∈ {T, F}|1 6
k 6 da, b ∈ B}. For example we can regardZ as a subset ofR.) Correspondingly, parameter expressionsxi are tuples
of lengthda, such that each componentxik is either a constant in the spaceDb=σ(ak), or a variableXc(c ∈ C) that is
restricted to taking values in that same spaceDb(c). The variables that appear in a rule this way may be repeated any
number of times in parameter expressionsxi or yj within a rule, providing only that all componentsxik take values
in the same spaceDb=σ(ak). A substitutionθ : c 7→ Db(c) of values for variablesXc assigns the same value to all
appearances of each variableXc within a rule. Hence each parameter expressionxi takes values in a fixed tuple space
Va under any substitutionθ. This defines the languageLP (i).

We now constrain the languageLR. Each nonnegative functionρ((xi), (yj)) is a probability rate: the independent
probability per unit time that any particular instantiation of the rule will fire, assuming its precondition remains con-
tinuously satisfied for a small interval of time. It is a function only of the parameter values denoted by(xi) and
(yj), and not of time. Eachρ is denoted by an expression in a base languageLR that is closed under addition and
multiplication and contains a countable field of constants, dense inR, such as the rationals or the algebraic numbers.
ρ is assumed to be a nonnegative-valued function in a Banach spaceF(V ) of real-valued functions defined on the
Cartesian product spaceV of all the value spacesVa(i) of the terms appearing in the rule, taken in a standardized order
such as nondeccreasing order of type indexa on the left hand side followed by nondecreasing order of type indexa
on the right hand side of the rule. ProvidedLR is expressive enough, it is possible to factorρr((xi), (yj)) within LR

as a productρr=ρpure
r ((xi))Prr((yj)|(xi)) of a conditional distribution on output parameters given input parameters

Prr((yj)|(xi)) and a total probability rateρpure
r ((xi)) as a function of input parameters only.

With these definitions we can use a more compact notation by eliminating theA’s andB’s, which denote types, in
favor of the types themselves. (The expressionτi(xi) is called a parameterizedterm,which can match to a parameter-
bearingobject or term instancein a “pool” of such objects.) The caveat is that a particular typeτi may appear any
finite number of times, and indeed a particular parameterized termτi(xi) may appear any finite number of times. So
we use multisets{...τa(i)(xi)...}∗ (in which the same objectτa(i)(xi) may appear as the value of several different
indicesi) for both the LHS and RHS (Left Hand Side and Right Hand Side) of a rule:{

τa(i)(xi)|i ∈ IL

}
∗ →

{
τa′(j)(yj)|j ∈ IR

}
∗ with ρr((xi) , (yj)) (2)

Here the same objectτa(i)(xi) may appear as the value of several different indicesi under the mappingsi 7→ (a(i), xi)
and/ori 7→ (a′(i), yi). Finally we introduce the shorthand notationτi = τa(i) andτ ′j = τa′(j), and revert to the
standard notation{} for multisets; then we may write{τi(xi)} → {τ ′j(yj)} with ρr((xi), (yj)).



In addition to thewith clause of a rule following the LHS→RHS header, several other alternative clauses can be
used and have translations intowith clauses. For example, “subject to f(x, y)” is translated into “with δ(f(x, y))”
whereδ is an appropriate Dirac or Kronecker delta function that enforces a contraintf(x, y) = 0. Other examples
are given in [1]. The translation of “solving e” or “ solvee” will be defined in terms ofwith clauses in Section 4.4.
As a matter of definition, Stochastic Parameterized Grammars do not containsolving/solveclauses, but Dynamical
Grammars may include them. There exists a preliminary implementation of an interpreter for most of this syntax in
the form of aMathematicanotebook, which draws samples according to the semantics of Section 3 below.

A Stochastic Parameterized Grammar (SPG)Γ consists of (minimally) a collection of such rules with common type
setT , base space setD, type signature specificationσ, and probability rate languageLR. After defining the semantics
of such grammars, it will be possible to define semantically equivalent classes of SPG’s that are untyped or that have
richer argument languagesLP (i).

3 Semantic Maps

We provide a semantics functionΨc(Γ) in terms of an operator algebra that results in astochastic process, if it
exists, or a special “undefined” element if the stochastic process doesn’t exist. The stochastic process is defined by
a very high-dimensional differential equation (the Master Equation) for the evolution of a probability distribution in
continuous time. On the other hand we will also provide a semantics functionΨd(Γ) that results in a discrete-time
stochastic process for the same grammar, in the form of an operator that evolves the probability distribution forward
by one discrete rule-firing event. In each case the stochastic process specifies the time evolution of a probability
distribution over the contents of a “pool” of grounded parameterized termsτa(xa) that can each be present in the pool
with any allowed multiplicity from zero tonmax

a . We will relate these two alternative “meanings” of an SPG,Ψc(Γ)
in continuous time andΨd(Γ) in discrete time.

A state of the “pool of term instances” is defined as an integer-valued functionn: the “copy number”na(xa) ∈
{0, 1, 2, ...} of parameterized termsτa(xa) that are grounded (have no variable symbolsXc), for any combination
(a, xa) ∈ V =

∐
a∈A

a⊗ Va of type indexa ∈ A and parameter valuexa ∈ Va. We denote this state by the “indexed

set” notation for such functions,{na(x)}. Each typeτa may be assigned a maximum valuen
(max)
a for all na(xa),

commonly∞ (no constraint on copy numbers) or 1 (sona(xa) ∈ {0, 1} which means each term-value combination is
simply present or absent). The state of the full system at timet is defined as a probability distribution on all possible
values of this (already large) pool state:Pr({na(xa)|(a, xa) ∈ V}; t) ≡ Pr({na(xa)}; t). The probability distribution
that puts all probability density on a particular pool state{na(xa)} is denoted|{na(xa)}〉.
For continuous-time we define the semanticsΨc(Γ) of our grammar as the solution, if it exists, of the Master Equation
d Pr(t)/dt = H · Pr(t), which can be written out as:

d

dt
Pr({na(x)} ; t) =

∑
{ma(x)}

H{n}{m} Pr({ma(x)} ; t) (3)

and which has the formal solutionPr(t) = exp(tH) · Pr(0).

For discrete-time semanticsΨd(Γ) there is an linear map̂H which evolves unnormalized probabilities forward by one
rule-firing time step. The probabilities must of course be normalized, so that afters discrete time steps the probability
is:

Pr(s) = cnĤs · Pr(0) =
(
Ĥs · Pr(0)

)
/
(
1 · Ĥs · Pr(0)

)
(4)

which, taken over alls > 0 andPr({na(x)}; 0), definesΨd(Γ). In both cases the long-time evolution of the system
may converge to a limiting distributionΨ∗

c(Γ) ·Pr(0) = limt→∞ Pr({na(x)}; t) which is a key feature of the seman-
tics, but we do not define the semanticsΨc/d(Γ) as being only this limit even if it exists. Thus semantics-preserving
transformations of grammars are fixedpoint-preserving transformations of grammars but the converse may not be true.

The Master Equation is completely determined by thegeneratorsH andĤ which in turn are simply composed from
elementary operators acting on the space of such probability distributions. They are elements of the operator polyno-
mial ringR[{Bα}] defined over a set of basis operators{Bα} in terms of operator addition, scalar multiplication, and
noncommutative operator multiplication. These basis operators{Bα} provide elementary manipulations of the copy
numbersna(x).



3.1 Operator algebra

The simplest basis operators{Bα} are elementary creation operators{âa(x)|a ∈ A ∧ x ∈ Va} and annihilation
operators{aa(x)|a ∈ A ∧ x ∈ Va} that increase or decrease each copy numberna(x) in a particular way (reviewed
in [2]):

âa(x)| {nb(y)}〉 = | {nb(y) + δK(a, b)δK(x, y)}〉 (5)

aa(x)| {nb(y)}〉 = na(x)| {nb(y)− δK(a, b)δK(x, y)}〉 (6)

whereδK(x, y)is the Kronecker delta function. These two operator types then generateNa(x) = âa(x)aa(x):

Na(x)| {nb(y)}〉 = âa(x)aa(x)| {nb(y)}〉 = na(x)| {nb(y)}〉 .

We can write these operatorsâ, a as finite or infinite dimensional matrices depending on the maximum copy number
n

(max)
a for typeτa. If n

(max)
a =1 (for a fermionic term), and we omit the type which are all assumed equal below, then

â =
(

0 0
1 0

)
, a =

(
0 1
0 0

)
, âa = N ≡

(
0 0
0 1

)
Likewise if n

(max)
a =∞ (for a bosonic term),̂a = δn,m+1 and a = mδn+1,m. By truncating this matrix to finite

sizen(max) < ∞ we may compute that for some polynomialQ(N |n(max)) of degreen(max)-1 in N with rational
coefficients,

[a(x), â(y)] = δ(x− y)[I + NQ(N |n(max))]

whereδ is the Dirac delta (generalized) function appropriate to the (product) measureµ on the relevant value spaceV .
Eg. if n(max)=1 thenQ = −2; if n(max)=∞ thenQ = 0.

3.2 Continuous-time semantics

For a grammar rule number “r” of the form of (Equation 2) we define the operator that first (instantaneously) destroys
all parameterized terms on the LHS and then (immediately and instantaneously) creates all parameterized terms on the
RHS. This happens independently of time or other terms in the pool. Assuming that the parameter expressionsx, y
contain no variablesXc, the effect of this event is:

Ôr = ρr((xi) , (yj))

 ∏
i∈rhs(r)

âa(i)(xi)

  ∏
j∈lhs(r)

ab(j)(yj)

 (7)

If there are variables{Xc}, we must sum or integrate over all their possible values in
⊗
c

Db(c):

Ôr =
∫

Db(1)

...

∫
Db(c)

...

(∏
c

dµb(c)(Xc)

)
ρr((xi({Xc})) , (yj({Xc}))) ∏

i∈rhs(r)

âa(i)(xi({Xc}))

  ∏
j∈lhs(r)

ab(j)(yj({Xc}))

 (8)

Thus, syntactic variable-binding has the semantics of multiple integration. A “monotonic rule” has all its LHS terms
appear also on the RHS, so that nothing is destroyed. UnfortunatelyÔr doesn’t conserve probability because probabil-
ity inflow to new states (described bŷOr) must be balanced by outflow from current state (diagonal matrix elements).
The following operator conserves probability:Or = Ôr − diag(1T · Ôr).

For the entire grammar the time evolution operator is simply a sum of the generators for each rule:

H =
∑

r

Or =
∑

r

Ôr −
∑

r

diag(1T · Õr) = Ĥ −D (9)

This superposition implements the basic principle that every possible rule firing is an exponential process, all hap-
pening in parallel until a firing occurs. Note that (Equation 7), (Equation 8) andĤ =

∑
r

Ôr are encompassed by



the polynomial ringR[{Bα}] where the basis operators include all creation and annihilation operators. Ring addition
(as in Equation 9 or Equation 8) corresponds to independently firing processes; ring operator multiplication (as in
Equation 7) corresponds to obligatory event co-ocurrence of the constituent events that define a process, in immediate
succession, and nonnegative scalar multiplication corresponds to speeding up or slowing down a process. Commuta-
tion relations between operators describe the exact extent to which the order of event occurrence matters.

3.3 Discrete-time SPG semantics

The operatorĤ describes the flow of probability per unit time, over an infinitesimal time interval, into new states
resulting from a single rule-firing of any type. If we condition the probability distribution on a single rule having fired,
setting aside the probability weight for all other possibilities, the normalized distribution isc1Ĥ · p0 = (Ĥ · p0)/(1 ·
Ĥ ·p0) . Iterating, the state of the discrete-time grammar afters rule firing steps isΨd as given by (Equation 4), where
Ĥ =

∑
r

Ôr as before. The normalization can be state-dependent and hence dependent ons, socs 6= cs. This is a

critical distinction between stochastic grammar and Markov chain models, for whichcs = cs. An execution algorithm
is directly expressed by (Equation 4).

3.4 Time-ordered product expansion

An indispensible tool for studying such stochastic processes in physics is the time-ordered product expansion [3]. We
use the following form:

exp(tH) · p0 = exp(t (H0 + H1)) · p0

=
∞∑

n=0

[∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn exp((t− tn)H0)H1 exp((tn − tn−1) H0) · · ·H1 exp(t1H0)

]
· p0 (10)

whereH0 is a solvable or easily computable part ofH, so the exponentialsexp(tH0) can be computed or sampled
more easily thanexp(tH). This expression can be used to generate Feynman diagram expansions, in whichn denotes
the number of interaction vertices in a graph representing a multi-object history. If we apply (Equation 10) with
H1 = Ĥ andH0 = −D, we derive the well-known Gillespie algorithm for simulating chemical reaction networks [4],
which can now be applied to SPG’s. However many other decompositions ofH are possible, one of which is used
in Section 4.4 below. Because the operatorsH can be decomposed in many ways, there are many valid simulation
algorithms for each stochastic process. The particular formulation of the time-ordered product expansion used in
(Equation 10) has the advantage of being recursively self-applicable.

Thus, (Equation 10) entails a systematic approach to the creation of novel simulation algorithms.

3.5 Relation between semantic maps

Proposition.Given the stochastic parameterized grammar (SPG) rule syntax of Equation 2,

(a) There is a semantic functionΨc mapping from any continuous-time, context sensitive, stochastic parameterized
grammarΓ via a time evolution operatorH(Ĥ(Γ)) to a joint probability density function on the parameter values and
birth/death times of grammar terms, conditioned on the total elapsed time,t.

(b) There is a semantic functionΨd mapping any discrete-time, sequential-firing, context sensitive, stochastic param-
eterized grammarΓ via a time evolution operator̂H(Γ) to a joint probability density function on the parameter values
and birth/death times of grammar terms, conditioned on the total discrete time defined as number of rule firings,s.

(c) The short-time limit of the densityΨc(Γ) conditioned ont → 0 and conditioned ons is equal toΨd(Γ).

Proof: (a): Section 3.2. (b): Section 3.3. (c) Equation 10 (details in [8], [1]).

3.6 Discussion: Transformations of SPG’s

Given a new kind of mathematical object (here, SPG’s or DG’s) it is generally productive in mathematics to consider
the transformations of such objects (mappings from one object to another or to itself) that preserve key properties. Ex-
amples include transformational geometry (groups acting on lines and points) and functors acting on categories. In the



case of SPG’s, two possibilities for the preserved property are immediately salient. First, an SPG syntactic transfor-
mationΓ → Γ′ could preserve the semanticsΨ(Γ) = Ψ(Γ′) either fully or just in fixed point form:Ψ∗(Γ) = Ψ∗(Γ′).
Preserving the full semantics would be required of a simulation algorithm. Alternatively, an inference algorithm could
preserve a joint probability distribution on unobserved and observed random variables, in the form of Bayes’ rule,

PrΓ(out, internal|in)Pr(in) = Pr(in, internal, out) = PrInference(in, internal|out)Pr(out)
where(in, internal, out) are collections of parameterized terms that are inpuuts to, internal to, and outputs from the
grammarΓ respectively..

4 Examples and Reductions

A number of other frameworks and formalisms can be expressed or reduced to SPGs as just defined. For example,
data clustering models are easily and flexibly described [1]. We give a sampling here.

4.1 Biochemical reaction networks

Given the chemical reaction network syntax{
m(r)

a Aa|1 6 a 6 Amax

}
k(r)−→

{
n

(r)
b Ab|1 6 a 6 Amax

}
, (11)

define an index mappinga(i) =
Amax∑
c=1

cΘ(
c−1∑
d=1

m
(r)
d < i 6

c∑
d=1

m
(r)
d ) and likewise forb(j) as a function of{n(r)

b }.

Then (Equation 11) can be translated to the following equivalent grammar syntax for the multisets of parameterless
terms {

τa(i)|0 < i 6
Amax∑
c=1

m(r)
c

}
∗

→

{
τa′(j)|0 < j 6

Amax∑
c=1

n(r)
c

}
∗

with k(r)

whose semantics is the time-evolution generator

Ôr = k(r)

 ∏
i∈rhs(r)

âa(i)

  ∏
j∈lhs(r)

ab(j)

 . (12)

This generator is equivalent to the stochastic process model of mass-action kinetics for the chemical reaction network
(Equation 11).

4.2 Logic programs

Consider a logic program (e.g. in pure Prolog) consisting of Horn clauses of positive literals
p1 ∧ ... ∧ pn ⇒ q, n > 0.

Axioms haven = 0. We cantranslateeach such clause into a monotonic SPG rule
p1, ..., pn → q, p1, ..., pn (13)

where each different literalpior q denotes an unparameterized typeτa with na ∈ {0, ...nmax
a } = {0, 1} . Since there

is nowith clause, the fule firing rates default toρ = 1. The corresponding time-evolution operator is

Ĥ =
∑

r

Ôr =
∑

r

 ∏
i∈rhs(r)\lhs(r)

âa(i)

  ∏
j∈lhs(r)

Nb(j)

 (14)

The semantics of the logic program is its least model or minimal interpretation. It can be computed (Knaster-Tarski
theorem) by starting with no literals in the “pool” and repeatedly drawing all their consequences according to the logic
program. This is equivalent to converging to a fixed pointΨ∗(Γ) · |0〉 of the grammar consisting of rules of (Equation
13).

More general clauses include negative literals¬r on the LHS, asp1 ∧ ...pn ∧¬r1 ∧ ...¬rm ⇒ q, or even more general
cardinality constraint atoms0 6 l 6 |Z| =

∑
i∈A Θ(pi) 6 u 6 ∞ [5]. These constraints can be expressed in

operator algebra by expanding the basis operator set{Bα} beyond the basic creation and annihilation operators [1].
Finally, atoms with function symbols may be admitted using parameterized termsτa(x).



4.3 Graph grammars

Graph grammars are composed of local rewrite rules for graphs (see for example [6]). We now express a class
of graph grammars in terms of SPG’s. The following syntax introduces Object Identifier (OID) labelsLi for each
parameterized term, and allows labelled terms to point to one another through a graph of such labels . The graph is
related to two subgraphs of neighborhood indicesN(i, σ) andN ′(j, σ) specific to the input and output sides of a rule.
Like types or variables, the label symbols appearing in a rule are chosen from an alphabet{Lλ|λ ∈ Λ}. Unlike types
but like variablesXc, the label symbolsLλ(i)actually denote nonnegative integer values - unique addresses or object
identifiers.

A graph grammar rule is of the form, for some nonnegative-integer-valued functionsλ(i) , λ′(j), N(i, σ), N ′(j, σ)
for which (λ(i) = λ(j)) ⇒ (i = j), (λ′(i) = λ′(j)) ⇒ (i = j):{

Lλ(i) := τi(xa(i);
(
LN(i,σ)|σ ∈ 1..σmax

a(i)

)
)|i ∈ I

}
→
{
Lλ(i)|i ∈ I1 ⊆ I

}
∪
{

Lλ′(j) := τj(x′a′(j);
(
LN ′(j,σ)|σ ∈ 1..σmax

a′(j)

)
)|j ∈ J

}
with ρr(

{
x′a′(j)

}
|
{
xa(i)

}
) (15)

(compare to (Equation 2) ). Note that the fanout of the graph is limited byσcur
i 6 σmax

a(i) . Let I1andI2 be mutually
exclusive and exhaustive, and the same forJ1andJ2. DefineJ1 = {j ∈ J ∧ (∃i ∈ I2|λ(i) = λ′(j)}, J2 = {j ∈
J ∧ (@i ∈ I2|λ(i) = λ′(j)}, andI3 = {i ∈ I2 ∧ (@j ∈ J1|λ(i) = λ′(j)} ⊆ I2). Then the graph syntax may be
translated to the following ordinary non-graph grammar rule (where NextOID is a variable, and OIDGen and Null are
types reserved for the translation):{

τa(i)(Lλ(i), xa(i),
(
LN(i,σ)|σ ∈ 1..σcur

i

)
)|i ∈ I

}
,OIDGen(NextOID)

→
{
τa(i)(Lλ(i), xa(i),

(
LN(i,σ)|σ ∈ 1..σcur

i

)
)|i ∈ I1

}
∪
{

τa′(j)(Lλ′(j), x
′
a′(j),

(
LN ′(j,σ)|σ ∈ 1..σcur

j

)
)|j ∈ J1 ∧ (i ∈ I2) ∧ (λ(i) = λ′(j))

}
∪
{

τa′(j)(Lλ′(j), x
′
a′(j),

(
LN ′(j,σ)|σ ∈ 1..σcur

j

)
)|j ∈ J2

}
∪
{
Null(Lλ(i))|i ∈ I3

}
∪ {OIDGen(NextOID + |J |)}

with ρr(
{

x′a′(j)

}
|
{
xa(i)

}
)
∏

j∈J2

δK(Lλ′(j),NextOID + j − 1)

which already has a defined semanticsΨc/d. Note that all set membership tests can be done at translation time because
they do not use information that is only available dynamically during the grammar evolution. Optionally we may also
add a rule schema (one rule per type,τa) to eliminate any dangling pointers [1].

Strings may be encoded as one-dimensional graphs using either a singly or doubly linked list data structure. String
rewrite rules are emulated as graph rewrite rules, whose semantics are defined above. This form is capable of handling
many L-system grammars [7].

4.4 Stochastic and ordinary differential equations

There are SPG rule forms corresponding to stochastic differential equations governing diffusion and transport. Given
the SDE or equivalent Langevin equation (which specializes to a system of ordinary differential equations when
η(t) = 0 ):

dxi = vi({xk})dt + σ({xk})dW or (16)

dxi

dt
= vi({xk}) + ηi(t) (17)

under some conditions on the noise termη(t) the dynamics can be expressed [3] as a Fokker-Planck equation for the
probability distributionP ({x}, t):

∂P ({x} , t)
∂t

= −
∑

i

∂

∂xi
vi({x})P ({x} , t) +

∑
i

∂2

∂xi∂xj
Dij({x})P ({x} , t) (18)



LetP ({y}, t|{x}, 0) be the solution of this equation given initial conditionP ({y}, 0) = δ({y}−{x}) =
∏
k

δ(yk−xk)

(with Dirac delta function appropriate to the particular measureµ used for each component). Then att = 0,

∂P ({y} , 0| {x} , 0)
∂t

≡ ρ({yi} | {xi}) = −
∑

i

∂

∂yi
vi({x})δ({y} − {x}) +

∑
i

∂2

∂yi∂yj
Dij({x})δ({y} − {x})

Thus the probability rateρ({yi}|{xi}) is given by a differential operator acting on a Dirac delta function. By (Equation
8) we construct the evolution generator operatorsOFP = Odrift + Odiffusion, where

Odrift = −
∫

d {x}
∫

d {y} â({y})a({x})

(∑
i

∇yi
vi({y})

∏
k

δ(yk − xk)

)

Odiffusion =
∫

d {x}
∫

d {y} â({y})a({x})

∑
ij

∇yi
∇yj

Dij({y})
∏
k

δ(yk − xk)


The second order derivative terms give diffusion dynamics and also regularize and promote continuity of probability
in parameter space both along and transverse to any local drift direction. Calculations with such expressions are shown
in [1].

Diffusion/drift rules can be combined with chemical reaction rules to describe reaction-diffusion systems [2]. The
foregoing approach can be generalized to encompass partial differential equations and stochastic partial differential
equations[1].

These operator expressions all correspond to natural extended-time processes given by the evolution of continuous
differential equations. The operator semantics of the differential equations is given in terms of derivatives of delta
functions. A special “solve” or “ solving” keyword may be used to introduce such ODE/SDE rule clauses in the
SPG syntax. This syntax can be eliminated in favor of a “with ” clause by using derivatives of delta functions in
the rate expressionρDE({yi}|{xi}), provided that such generalized functions are in the Banach spaceF(V ) as a
limit of functions. If a grammar includes such DE rules along with non-DE rules, a solver can be used to compute
exp((tn+1 − tn)OFP) in the time-ordered product forexp(tH) as a hybrid simulation algorithm for discontinuous
(jump) stochastic processes combined with stochastic differential equations.

4.5 Discussion: Relevance to artificial intelligence and computational science

The relevance of the modeling language defined here toartificial intelligenceincludes the following points. First,
pattern recognition and machine learning both benefit foundationally from better, more descriptively adequate prob-
abilistic domain models. As an example, [1] exhibits hierarchical clustering data models expressed very simply in
terms of SPG’s and relates them to recent work. Graphical models are probabilistic domain models with a fixed
structure of variables and their relationships, by contrast with the inherently flexible variable sets and dependency
structures resulting from the execution of stochastic parameterized grammars. Thus SPG’s, unlike graphical models,
are Variable-Structure Systems (defined in [8]), and consequently they can support compositional description of com-
plex situations such as multiple object tracking in the presence of cell division in biological imagery [9]. Second, the
reduction of many divergent styles of model to a common SPG syntax and operator algebra semantics enables new
possibilities for hybrid model forms. For example one could combine logic programming with probability distribution
models, or discrete-event stochastic and differential equation models as discussed in Section 4.4 in possibly new ways.

As a third point of AI relevance, from SPG probabilistic domain models it is possible to derivealgorithmsfor simula-
tion (as in Section 3.4) and inference either by hand or automatically. Of course, inference algorithms are not as well
worked out yet for SPG’s as for graphical models. SPG’s have the advantage that simulation or inference algorithms
could be expressed again in the form of SPG’s, a possibility demonstrated in part by the encoding of logic programs as
SPG’s. Since both model and algorithm are expressed as SPG’s, it is possible to use SPG transformations that preserve
relevant quantities (Section 3.6) as a technique for deriving such novel algorithms or generating them automatically.
For example we have taken this approach to rederive by hand the Gillespie simulation algorithm for chemical kinetics.
This derivation is different from the one in Section 3.4. Because SPG’s encompass graph grammars it is even possible
in principle to express families of valid SPG transformations as meta-SPG’s. All of these points applya fortiori to
Dynamical Grammars as well.

The relevance of the modeling language defined here tocomputational scienceincludes the following points.
First, as argued previously, multiscale models must encompass and unify heterogeneous model types such as dis-



crete/continuous or stochastic/deterministic dynamical models; this unification is provided by SPG’s and DG’s. Sec-
ond, a representationally adequate computerized modeling language can be of great assistance in constructing mathe-
matical models in science, as demonstrated for biological regulatory network models by Cellerator [10] and other cell
modeling languages. DG’s extend this promise to more complex, spatiotemporally dynamic, variable-structure system
models such as occur in biological development. Third, machine learning techniques could in principle be applied to
find simplified approximate or reduced models of emergent phenomena within complex domain models. In that case
the forgoing AI arguments apply to computational science applications of machine learning as well.

Both for artificial intelligence and computational science, future work will be required to determine whether the
prospects outlined above are both realizable and compelling. The present work is intended to provide a mathematical
foundation for achieving that goal.

5 Conclusion

We have established a syntax and semantics for a probabilistic modeling language based on independent processes
leading to events linked by a shared set of objects. The semantics is based on a polynomial ring of time-evolution
operators. The syntax is in the form of a set of rewrite rules. Stochastic Parameterized Grammars expressed in
this language can compactly encode disparate models: generative cluster data models, biochemical networks, logic
programs, graph grammars, string rewrite grammars, and stochastic differential equations among other others. The
time-ordered product expansion connects this framework to powerful methods from quantum field theory and operator
algebra.
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