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ABSTRACT
Security in multiagent systems is commonly defined as the abil-
ity of the system to deal with intentional threats from other agents.
This paper focuses on domains where such intentional threats are
caused by unseen adversaries whose actions or payoffs are un-
known. In such domains, action randomization can effectively de-
teriorate an adversary’s capability to predict and exploit an agent/agent
team’s actions. Unfortunately, little attention has been paid to in-
tentional randomization of agents’ policies in single-agent or de-
centralized (PO)MDPs without significantly sacrificing rewards or
breaking down coordination. This paper provides two key con-
tributions to remedy this situation. First, it provides three novel
algorithms, one based on a non-linear program and two based on
linear programs (LP), to randomize single-agent policies, while at-
taining a certain level of expected reward. Second, it provides
Rolling Down Randomization (RDR), a new algorithm that effi-
ciently generates randomized policies for decentralized POMDPs
via the single-agent LP method.

1. INTRODUCTION
In many adversarial domains, it is crucial for agent and agent

teams based on single-agent or decentralized (PO)MDPs to ran-
domize policies in order to avoid action predictability. Such policy
randomization is crucial for security in domains where we cannot
explicitly model our adversary’s actions and capabilities or its pay-
offs, but the adversary observes our agents’ actions and exploits any
action predictability in some unknown fashion. Consider agents
that schedule security inspections, maintenance or refueling at sea-
ports or airports. Adversaries may be unobserved terrorists with
unknown capabilities and actions, who can learn the schedule from
observations. If the schedule is deterministic, then these adver-
saries may exploit schedule predictability to intrude or attack and
cause tremendous unanticipated sabotage. Alternatively, consider a
team of UAVs (Unmanned Air Vehicles)[2] monitoring a region un-
dergoing a humanitarian crisis. Adversaries may be humans intent
on causing some significant unanticipated harm — e.g. disrupt-
ing food convoys, harming refugees or shooting down the UAVs
— the adversary’s capabilities, actions or payoffs are unknown and
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difficult to model explicitly. However, the adversaries can observe
the UAVs and exploit any predictability in UAV surveillance, e.g.
engage in unknown harmful actions by avoiding the UAVs’ route.

While we cannot explicitly model the adversary’s actions, capa-
bilities or payoffs, in order to ensure security of the agent/agent-
team we make two worst case assumptions about the adversary.
(We show later that a weaker adversary, i.e. one who fails to satisfy
these assumptions, will in general only lead to enhanced security.)
The first assumption is that the adversary can estimate the agent’s
state or belief state. In fully observable domains, the adversary esti-
mates the agent’s state to be the current world state which both can
observe fully. If the domain is partially observable, we assume that
the adversary estimates the agent’s belief states, because: (i) the
adversary eavesdrops or spies on the agent’s sensors such as sonar
or radar (e.g., UAV/robot domains); or (ii) the adversary estimates
the most likely observations based on its model of the agent’s sen-
sors; or (iii) the adversary is co-located and equipped with similar
sensors. The second assumption is that the adversary knows the
agents’ policy, which it may do by learning over repeated observa-
tions or obtaining this policy via espionage or other exploitation.

Thus, we assume that the adversary may have enough informa-
tion to predict the agents’ actions with certainty if the agents fol-
lowed a deterministic policy. Hence, our work maximizes policy
randomization to thwart the adversary’s prediction of the agent’s
actions based on the agent’s state and minimize adversary’s ability
to cause harm1. Unfortunately, while randomized policies are cre-
ated as a side effect [1] and turn out to be optimal in some stochastic
games [10], little attention has been paid to intentionally maximiz-
ing randomization of agents’ policies even for single agents. Obvi-
ously, simply randomizing an MDP/POMDP policy can degrade an
agent’s expected rewards, and thus we face a randomization-reward
tradeoff problem: how to randomize policies with only a limited
loss in expected rewards. Indeed, gaining an explicit understanding
of the randomization-reward tradeoff requires new techniques for
policy generation rather than the traditional single-objective max-
imization techniques. However, generating policies that provide
appropriate randomization-reward tradeoffs is difficult, a difficulty
that is exacerbated in agent teams based on decentralized POMDPs,
as randomization may create miscoordination.

This paper provides two key contributions to remedy this situa-
tion. First, we provide novel techniques that enable policy random-
ization in single agents, while attaining a certain expected reward
threshold. We measure randomization via an entropy-based met-
ric (although our techniques are not dependent on that metric). In
particular, we illustrate that simply maximizing entropy-based met-
rics introduces a non-linear program that does not guarantee poly-

1Note that randomization in this paper assumes true randomization,
e.g. using white noise.



nomial run-time. Hence, we introduce our CRLP (Convex com-
bination for Randomization) and BRLP (Binary search for Ran-
domization) linear programming (LP) techniques that randomize
policies in polynomial time with different tradeoffs as explained
later. The second part of the paper provides a new algorithm, RDR
(Rolling Down Randomization), for generating randomized poli-
cies for decentralized POMDPs, given a threshold on the expected
team reward loss. RDR starts with a joint deterministic policy
for decentralized POMDPs, then iterates, randomizing policies for
agents turn-by-turn, keeping policies of all other agents fixed. A
key insight in RDR is that given fixed randomized policies for other
agents, we can generate a randomized policy via CRLP or BRLP,
i.e., our efficient single-agent methods.

The motivation for use of entropy-based metrics to randomize
our agents’ policies stems from information theory. It is well known
that the expected number of probes (e.g., observations) needed to
identify the outcome of a distribution is bounded below by the en-
tropy of that distribution [15]. Thus, by increasing policy entropy,
we force the opponent to execute more probes to identify the out-
come of our known policy, making it more difficult for the oppo-
nent to anticipate our agent’s actions and cause harm. In particular,
in our (PO)MDP setting, the conflict between the agents and the
adversary can be interpreted as a game, in which the agents gener-
ate a randomized policy above a given expected reward threshold;
the adversary knows the agent’s policy and the adversary’s action
is to guess the exact action of the agent/agent-team by probing. For
example, in the UAV setting, given our agent’s randomized pol-
icy, the adversary generates probes to determine the direction our
UAV is headed from a given state. Thus, in the absence of specific
knowledge of the adversary, we can be sure to increase the average
number of probes the adversary uses by increasing the lower bound
given by the entropy of the policy distribution at every state.

2. RANDOMIZATION: SINGLE AGENTS
Before considering agent teams, we focus on randomizing single

agent MDP policies, e.g. a single MDP-based UAV agent is moni-
toring a troubled region, where the UAV gets rewards for surveying
various areas of the region, but as discussed above, security requires
it to randomize its monitoring strategies to avoid predictability.

An MDP is denoted as a tuple:〈S,A, P,R〉. S is a set of world
states{s1, . . . , sm},A the set of actions{a1, . . . , ak}, P the set of
tuplesp(s, a, j) representing the transition function and R the set of
tuplesr(s, a) denoting the immediate reward. Ifx(s, a) represents
the number of times the MDP visits states and takes actiona and
αj represents the number of times that the MDP starts in each state
j ∈ S, then the optimal policy, maximizing expected reward, is
derived via the following linear program [4]:

max
∑
s∈S

∑
a∈A

r(s, a)x(s, a)

s.t.
∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj

∀j ∈ S
x(s, a) ≥ 0 ∀s ∈ S, a ∈ A

(1)

If x∗ is the optimal solution to (1), optimal policyπ∗ is given by
(2) below, whereπ∗(s, a) is the probability of taking action a in
state s. It turns out thatπ∗ is deterministic and uniformly optimal
regardless of the initial distribution{αj}j∈S [4] i.e., π∗(s, a) has
a value of either 0 or 1. However, such deterministic policies are
undesirable in domains like our UAV example.

π∗(s, a) =
x∗(s, a)∑

â∈A x
∗(s, â)

. (2)

2.1 Randomness of a policy
We borrow from information theory the concept of entropy of a

set of probability distributions to quantify the randomness, or in-
formation content, in a policy of the MDP. For a discrete probabil-
ity distributionp1, . . . , pn the only function, up to a multiplicative
constant, that captures the randomness is the entropy, given by the
formulaH = −

∑n
i=1 pi log pi [15]. We introduce aweighted en-

tropy function to quantify the randomness in a policyπ of an MDP
and express it in terms of the underlying frequencyx. Note from
the definition of a policyπ in (2) that for each states the policy de-
fines a probability distribution over actions. The weighted entropy
is defined by adding the entropy for the distributions at every state
weighted by the likelihood the MDP visits that state, namely

HW (x) = −
∑
s∈S

∑
â∈A x(s, â)∑

j∈S αj

∑
a∈A

π(s, a) log π(s, a)

= −
1∑

j∈S αj

∑
s∈S

∑
a∈A

x(s, a) log

(
x(s, a)∑

â∈A x(s, â)

)
.

We note that the randomization approach we propose works for
alternative functions of the randomness yielding similar results. For
example we can define anadditive entropytaking a simple sum of
the individual state entropies as follows:

HA(x) = −
∑
s∈S

∑
a∈A

π(s, a) log π(s, a)

= −
∑
s∈S

∑
a∈A

x(s, a)∑
â∈A x(s, â)

log

(
x(s, a)∑

â∈A x(s, â)

)
,

We now present three algorithms to obtain random solutions that
maintain an expected reward of at leastEmin (a certain fraction
of the maximal expected rewardE∗ obtained solving (1)). These
algorithms result in policies that, in our UAV-type domains, enable
an agent to get a sufficiently high expected reward, e.g. surveying
enough area, using randomized flying routes to avoid predictability.

2.2 Maximal entropy solution
We can obtain policies with maximal entropy but a threshold ex-

pected reward by replacing the objective of Problem (1) with the
definition of the weighted entropyHW (x). The reduction in ex-
pected reward can be controlled by enforcing that feasible solu-
tions achieve at least a certain expected rewardEmin. The follow-
ing problem maximizes the weighted entropy while maintaining the
expected reward aboveEmin:

max − 1∑
j∈S αj

∑
s∈S

∑
a∈A

x(s, a) log

(
x(s, a)∑

â∈A x(s, â)

)
s.t.

∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj

∀j ∈ S∑
s∈S

∑
a∈A

r(s, a)x(s, a) ≥ Emin

x(s, a) ≥ 0 ∀s ∈ S, a ∈ A

(3)

Emin is an input domain parameter (e.g. UAV mission specifica-
tion). Alternatively, ifE∗ denotes the maximum expected reward
from (1), then by varying the expected reward thresholdEmin ∈
[0,E∗] we can explore the tradeoff between the achievable expected
reward and entropy, and then select the appropriateEmin. Note
that forEmin = 0 the above problem finds the maximum weighted
entropy policy, and forEmin = E∗, Problem (3) returns the maxi-
mum expected reward policy with largest entropy. Solving Problem



(3) is our first algorithm to obtain a randomized policy that achieves
at leastEmin expected reward (Algorithm 1).

Algorithm 1 MAX -ENTROPY(Emin)

1: Solve Problem (3) withEmin, let xEmin be optimal solution
2: return xEmin (maximal entropy, expected reward≥ Emin)

Unfortunately entropy-based functions likeHW (x) are neither
convex nor concave inx, hence there are no complexity guarantees
in solving Problem (3), even for local optima [16]. This negative
complexity motivates the polynomial methods presented next.

2.3 Efficient single agent randomization
The idea behind these polynomial algorithms is to efficiently

solve problems that obtain policies with a high expected reward
while maintaining some level of randomness. (A very high level of
randomness implies a uniform probability distribution over the set
of actions out of a state, whereas a low level would mean determin-
istic action being taken from a state). We then obtain a solution that
meets a given minimal expected reward value by adjusting the level
of randomness in the policy. The algorithms that we introduce in
this section consider two inputs: a minimal expected reward value
Emin and a randomized solution̄x (or policy π̄). The inputx̄ can
be any solution with high entropy and is used to enforce some level
of randomness on the high expected reward output, through linear
constraints. For example, one such high entropy input for MDP-
based problems is the uniform policy, whereπ̄(s, a) = 1/|A|. We
enforce the amount of randomness in the high expected reward so-
lution that is output through a parameterβ ∈ [0, 1]. For a given
β and a high entropy solution̄x, we output a maximum expected
reward solution with a certain level of randomness by solving (4).

max
∑
s∈S

∑
a∈A

r(s, a)x(s, a)

s.t.
∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj

∀j ∈ S
x(s, a) ≥ βx̄(s, a) ∀s ∈ S, a ∈ A .

(4)

which can be referred to in matrix shorthand as

max rTx
s.t. Ax = α

x ≥ βx̄ .

As the parameterβ is increased, the randomness requirements
of the solution become stricter and hence the solution to (4) would
have smaller expected reward and higher entropy. Forβ = 0 the
above problem reduces to (1) returning the maximum expected re-
ward solutionE∗; and forβ = 1 the problem obtains the maximal
expected reward (denotedE) out of all solutions with as much ran-
domness as̄x. If E∗ is finite, then Problem (4) returns̄x for β = 1
andE =

∑
s∈S

∑
a∈A r(s, a)x̄(s, a).

Our second algorithm to obtain an efficient solution with a ex-
pected reward requirement ofEmin is based on the following result
which shows that the solution to (4) is a convex combination of the
deterministic and highly random input solutions.

THEOREM 1. Consider a solution̄x, which satisfiesAx̄ = α
andx̄ ≥ 0. Letx∗ be the solution to (1) andβ ∈ [0, 1]. If xβ is the
solution to (4) thenxβ = (1− β)x∗ + βx̄.
proof: We reformulate problem (4) in terms of the slackz = x −
βx̄ of the solutionx overβx̄ leading to the following problem :

βrT x̄ + max rT z
s.t. Az = (1− β)α

z ≥ 0 ,

The above problem is equivalent to (4), where we used the fact that
Ax̄ = α. Let z∗ be the solution to this problem, which shows that
xβ = z∗ + βx̄. Dividing the linear equationAz = (1 − β)α, by
(1−β) and substitutingu = z/(1−β) we recover the deterministic
problem (1) in terms of u, withu∗ as the optimal deterministic
solution. Renaming variable u to x, we obtain1

1−β
z∗ = x∗, which

concludes the proof.
Sincexβ = (1 − β)x∗ + βx̄, we can directly find a random-

ized solution which obtains a target expected reward ofEmin. Due
to the linearity in relationship betweenxβ andβ, a linear relation-
ship exists between the expected reward obtained byxβ (i.e rTxβ)

andβ. In fact settingβ = rT x∗−Emin
rT x∗−rT x̄

makesrTxβ = Emin.
We now present below algorithm CRLP based on the observations
made aboutβ andxβ .

Algorithm 2 CRLP(Emin, x̄)

1: Solve Problem (1), letx∗ be the optimal solution

2: Setβ = rT x∗−Emin
rT x∗−rT x̄

3: Setxβ = (1 − β)x∗ + βx̄
4: return xβ (expected reward= Emin, entropy based onβx̄)

Algorithm CRLP is based on a linear program and thus obtains,
in polynomial time, solutions to problem(4) with expected reward
valuesEmin ∈ [E,E∗]. Note that Algorithm CRLP might unnec-
essarily constrain the solution set as Problem(4) implies that at least
β

∑
a∈A x̄(s, a) flow has to reach each states. This restriction may

negatively impact the entropy it attains, as experimentally verified
in Section 5. This concern is addressed by a reformulation of Prob-
lem (4) replacing the flow constraints by policy constraints at each
stage. For a givenβ ∈ [0, 1] and a solution̄π (policy calculated
from x̄), this replacement leads to the following linear program

max
∑
s∈S

∑
a∈A

r(s, a)x(s, a)

s.t.
∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj , ∀j ∈ S

x(s, a) ≥ βπ̄(s, a)
∑
b∈A

x(s, b), ∀s ∈ S, a ∈ A .

(5)
Forβ = 0 this problem reduces to (1) returningE∗, for β = 1

it returns a maximal expected reward solution with the same policy
asπ̄. This means that forβ at values 0 and 1, problems (4) and (5)
obtain the same solution if policȳπ is the policy obtained from the
flow function x̄. However, in the intermediate range of 0 to 1 for
β, the policy obtained by problems (4) and (5) are different even if
π̄ is obtained fromx̄. Thus, theorem 1 holds for problem (4) but
not for (5). Table 1, obtained experimentally, validates our claim
by showing the maximum expected rewards and entropies obtained
(entropies in parentheses) from problems (4) and (5) for various
settings ofβ, e.g. forβ = 0.4, problem (4) provides a maximum
expected reward of 26.29 and entropy of 5.44, while problem (5)
provides a maximum expected reward of 25.57 and entropy of 6.82.

Beta .2 .4 .6 .8

Problem(4) 29.14 (3.10) 26.29 (5.44) 23.43 (7.48) 20.25 (9.87)
Problem(5) 28.57 (4.24) 25.57 (6.82) 22.84 (8.69) 20.57 (9.88)

Table 1: Maximum expected rewards(entropies) for variousβ

Table 1 shows that for the same value ofβ in Problems (4) and
(5) we get different maximum expected rewards and entropies im-
plying that the optimal policies for both problems are different,
hence Theorem 1 does not hold for (5). Indeed, while the expected



reward of Problem (4) is higher for this example, its entropy is
lower than Problem (5). Hence to investigate another randomization-
reward tradeoff point, we introduce our third algorithm BRLP, which
uses problem (5) to perform a binary search to attain a policy with
expected rewardEmin ∈ [E,E∗], adjusting the parameterβ.

Algorithm 3 BRLP(Emin, x̄)

1: Setβl = 0, βu = 1, andβ = 1/2.
2: Obtainπ̄ from x̄
3: Solve Problem (5), letxβ andE(β) be the optimal solution and ex-

pected reward value returned
4: while |E(β) − Emin| > ε do
5: if E(β) > Emin then
6: Setβl = β
7: else
8: Setβu = β

9: β = βu+βl
2

10: Solve Problem (5), letxβ andE(β) be the optimal solution and
expected reward value returned

11: return xβ (expected reward= Emin ± ε, entropy related toβx̄)

Given inputx̄, algorithm BRLP runs in polynomial time, since at
each iteration it solves an LP and for tolerance ofε, it takes at most

O
(

E(0)−E(1)
ε

)
iterations to converge (E(0) and E(1) expected re-

wards correspond to 0 and 1 values ofβ).

2.4 Incorporating models of the adversary
Throughout this paper, we setx̄ based on uniform randomization

π̄ = 1/|A|. By manipulatingx̄, we can accommodate the knowl-
edge of the behavior of the adversary. For instance, if the agent
knows that a specific states cannot be targeted by the adversary,
thenx̄ for that state can have all values 0, implying that no entropy
constraint is necessary. In such cases,x̄ will not be a complete so-
lution for the MDP but rather concentrate on the sets of states and
actions that are under risk of attack. Forx̄ that do not solve the
MDP Theorem 1 does not hold and therefore Algorithm CRLP is
not valid. In this case, a high-entropy solution that meets a target
expected reward can still be obtained via Algorithm BRLP.

Before turning to agent teams next, we quickly discuss applying
these algorithms in single agent POMDPs. For single-agent finite-
horizon POMDPs with known starting belief states[12], we convert
the POMDP to (finite horizon)belief MDP, allowing BRLP/CRLP
to be applied; returning a randomized policy. However, addressing
unknown starting belief states is an issue for future work.

3. FROM SINGLE AGENT TO AGENT TEAMS
The logical first step in moving to agent teams would be to start

with multiagent MDPs, where a centralized planner provides poli-
cies to multiple agents in a fully observable setting. However, such
multiagent MDPs are equivalent to single agent MDPs [14]. In-
deed, assuming a shared, observable random device — justified,
given a fully observable setting — our BRLP/CRLP algorithms can
already generate randomized policies for such multiagent MDPs.
Hence, this section focuses on the more general decentralized POMDPs,
that are not equivalent to single agent POMDPs [3].

3.1 MTDP: A Decentralized POMDP model
We use notation from MTDP (Multiagent Team Decision Prob-

lem) [14] for our decentralized POMDP model; other models are
equivalent [3]. Given a team ofn agents, an MTDP is defined
as a tuple:〈S,A, P,Ω, O,R〉. S is a finite set of world states
{s1, . . . , sm}. A = ×1≤i≤nAi, whereA1, . . . , An, are the sets of
action for agents 1 ton. A joint action is represented as〈a1, . . . , an〉.

P (si, 〈a1, . . . , an〉, sf ), the transition function, represents the prob-
ability that the current state issf , if the previous state issi and the
previous joint action is〈a1, . . . , an〉. Ω = ×1≤i≤nΩi is the set
of joint observations whereΩi is the set of observations for agents
i. O(s, 〈a1, . . . , an〉, ω), the observation function, represents the
probability of joint observationω ∈ Ω, if the current state iss
and the previous joint action is〈a1, . . . , an〉. We assume that ob-
servations of each agent are independent of each other’s observa-
tions, i.e.O(s, 〈a1, . . . , an〉, ω) = O1(s, 〈a1, . . . , an〉, ω1) · . . . ·
On(s, 〈a1, . . . , an〉, ωn). The agents receive a single, immediate
joint rewardR(s, 〈a1, . . . , an〉). For deterministic policies, each
agenti chooses its actions based on its policy,Πi, which maps its
observation history to actions. Thus, at timet, agenti will perform
actionΠi(~ω

t
i) where~ωt

i = ω1
i , ....., ω

t
i . Π = 〈Π1, .....,Πn〉 refers

to the joint policy of the team of agents. In this model, execution is
distributed but planning is centralized; and agents don’t know each
other’s observations and actions at run time.

Unlike previous work, in our work, policies are randomized and
hence agents obtain a probability distribution over a set of actions
rather than a single action. Furthermore, this probability distribu-
tion is indexed by a sequence of action-observation tuples rather
than just observations, since observations do not map to unique
actions. Thus in MTDP, a randomized policy mapsΨt

i to a prob-
ability distribution over actions, whereΨt

i = 〈ψ1
i , . . . , ψ

t
i〉 and

ψt
i = 〈at−1

i , ωt
i〉. Thus, at timet, agenti will perform an action

selected randomly based on the probability distribution returned by
Πi(Ψ

t
i ). Furthermore we denote the probability of an individual

action under policyΠi givenΨt
i asPΠi(at

i|Ψt
i ).

3.2 Illustrative UAV team Domain
To demonstrate key concepts in our algorithms, we introduce a

simple UAV team domain that is analogous to the illustrative multi-
agent tiger domain [11] except for an adversary – indeed, to enable
replicable experiments, rewards, transition and observation prob-
abilities from [11] are used. Consider a region in a humanitarian
crisis, where two UAVs execute daily patrols to monitor safe food
convoys. However, these food convoys may be disrupted by land-
mines placed in their route. The convoys pass over two regions:
Left and Right. For simplicity, we assume that only one such land-
mine may be placed at any point in time, and it may be placed
in any of the two regions with equal probability. The UAVs must
destroy the landmine to get a high positive reward whereas try-
ing to destroy a region without a landmine disrupts transportation
and creates a high negative reward; but the UAV team is unaware
of which region has the landmine. The UAVs can perform three
actionsShoot-left, SenseandShoot-rightbut they cannot commu-
nicate with each other. We assume that both UAVs are observed
with equal probability by some unknown adversary with unknown
capabilities, who wishes to cause sabotage. Our worst case assump-
tion about the adversary is as stated in Section 1: (a) the adversary
has access to UAV policies due to learning or espionage (b) the
adversary eavesdrop or estimates the UAV observations. Thus, if
the policy is not randomized, the adversary may exploit UAV ac-
tion predictability in some unknown way such as jamming UAV
sensors, shooting down UAVs or attacking the food convoys, etc.
Since little is known about the adversary’s ability to cause sabo-
tage, the UAV team must maximize the adversary’s uncertainty via
policy randomization, while ensuring an above-threshold reward.

When an individual UAV takes actionSense, it leaves the state
unchanged, but provides a noisy observation OR or OL, to indi-
cate whether the landmine is to the left or right. TheShoot-leftand
Shoot-rightactions are used to destroy the landmine, but the land-
mine is destroyed only if both UAVs simultaneously take either



Shoot-leftor Shoot-rightactions. Unfortunately, if agents misco-
ordinate and one takes aShoot-leftand the otherShoot-rightthey
incur a very high negative reward as the landmine is not destroyed
but the food-convoy route is damaged. Once the shoot action oc-
curs, the problem is restarted (the UAVs face a landmine the next
day).

4. RANDOMIZATION: AGENT TEAMS
Letpi be the probability of adversary targeting agenti, andHW (i)

be the weighted entropy for agenti’s policy. We design an algo-
rithm that maximizes themultiagent weighted entropy, given by∑n

i=1 pi ∗ HW (i), in MTDPs while maintaining the team’s ex-
pected joint reward above a threshold. Unfortunately, generating
optimal policies for decentralized POMDPs is of higher complex-
ity (NEXP-complete) than single agent MDPs and POMDPs [3],
i.e., MTDP presents a fundamentally different class where we can-
not directly use the single agent randomization techniques.

Hence, to exploit efficiency of algorithms like BRLP or CRLP,
we convert the MTDP into a single agent POMDP, but with a method
that changes the state space considered. To this end, our new itera-
tive algorithm called RDR (Rolling Down Randomization) iterates
through finding the best randomized policy for one agent while fix-
ing the policies for all other agents — we show that such iteration
of fixing the randomized policies of all but one agent in the MTDP
leads to a single agent problem being solved at each step. Thus,
each iteration can be solved via BRLP or CRLP. For a two agent
case, we fix the policy of agenti and generate best randomized
policy for agentj and then iterate with agentj’s policy fixed.

Overall RDR starts with an initial joint deterministic policy cal-
culated in the algorithm as a starting point. Assuming this fixed
initial policy as providing peak expected reward, the algorithm then
rolls down the reward, randomizing policies turn-by-turn for each
agent. Rolling down from such an initial policy allows control of
the amount of expected reward loss from the given peak, in ser-
vice of gaining entropy.The key contribution of the algorithm is
in the rolling down procedure that gains entropy (randomization),
and this procedure is independent of how the initial policy for peak
reward is determined. The initial policy may be computed via al-
gorithms such as [6] that determine a global optimal joint policy
(but at a high cost) or from random restarts of algorithms that com-
pute a locally optimal policy [11, 5], that may provide high quality
policies at lower cost. The amount of expected reward to be rolled
down is input to RDR. RDR then achieves the rolldown in1/d steps
whered is an input parameter.

The turn-by-turn nature of RDR suggests some similarities to
JESP [11], which also works by fixing the policy of one agent
and computing the best-response policy of the second and iterat-
ing. However, there are significant differences between RDR and
JESP, as outlined below: (i) JESP uses conventional value iteration
based techniques whereas RDR creates randomized policies via LP
formulations. (ii) RDR defines a new extended state and hence
the belief-update, transition and reward functions undergo a major
transformation. (iii) The d parameter is newly introduced in RDR
to control number of rolldown steps. (iv) RDR climbs down from a
given optimal solution rather than JESP’s hill-climbing up solution.

RDR Details: For expository purposes, we use a two agent do-
main, but we can easily generalize ton agents. We fix the policy of
one agent (say agent 2), which enables us to create a single agent
POMDP if agent 1 uses an extended state, i.e. at each timet, agent
1 uses an extended stateet

1 = 〈st,Ψt
2〉. Here,Ψt

2 is as intro-
duced in the previous section. By usinget

1 as agent 1’s state at
time t, given the fixed policy of agent 2, we can define a single-
agent POMDP for agent 1 with transition and observation function

as follows.
P ′(et
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Figure 1: RDR applied to UAV team domain

Thus, we can create a belief state for agenti in the context of
j’s fixed policy by maintaining a distribution overet

i = 〈st,Ψt
j 〉.

Figure 1 shows three belief states for agent 1 in the UAV domain.
For instanceB2 shows probability distributions overe21. In e21 =
(Left〈Sense,OL〉), Left implies landmine to the left is the current
state, Sense is the agent 2’s action at time 1, OL (Observe Left)
is agent 2’s observation at time 2. The belief update rule derived
from the transition and observation functions is given in (8), where
denominator is the transition probability when actiona1 from belief
stateBt

1 results inωt+1
1 being observed. Immediate rewards for the

belief states are assigned using (9).
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∑
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Thus, RDR’s policy generation implicitly coordinates the two
agents, without communication or a correlational device. Random-
ized actions of one agent are planned taking into account the impact
of randomized actions of its teammate on the joint reward. Algo-
rithm 4 (at the end of paper) presents the pseudo-code for RDR
for two agents, and shows how we can use beliefs over extended
stateset

i to construct LPs that maximize entropy while maintaining
a certain expected reward threshold. The inputs to this algorithm
are the parameters d,percentdecandx̄. The parameter d specifies
the number of iterations taken to solve the problem. It also decides
the amount of reward that can be sacrificed at each step of the al-
gorithm for improving entropy. Parameterpercentdecspecifies the
percentage of expected reward the agent team forgoes for improv-
ing entropy. As with Algorithm 2, parameter̄x provides an input
solution with high randomness; and it is obtained using a uniform
policy as discussed in Section 2.3. Step 1 of the algorithm uses
the Compute joint policy() function which returns a optimal joint
deterministic policy from which the individual policies and the ex-
pected joint reward are extracted. Obtaining this initial policy is



not RDR’s main thrust, and could be a global optimal policy ob-
tained via [6] or a very high quality policy from random restarts
of local algorithms such as [11, 5]. The input variablepercentdec
varies between 0 to 1 denoting the percentage of the expected re-
ward that can be sacrificed by RDR. The step size as calculated in
the algorithm, denotes the amount of reward sacrificed during each
iteration. RDR then iterates 1/d times(step 3).

The function GenerateMDP generates all reachable belief states
(on lines 2 through 6) from a given starting belief stateB and hence
a belief MDP is generated. The number of such reachable belief
states isO(|A1||Ω1|)T−1 whereT is the number of time steps.
The number of extended states in each B increases by a factor of
|A2||Ω2| with increasing time horizon T. Thus the time to calculate
B(e) for all extended states e, for all belief states B in agent 1’s be-
lief MDP is O(|S|2(|A1||A2||Ω1||Ω2|)T−1). Lines 7 through 12
compute the reward for each belief state. The total computations
to calculate the reward isO(|S||A1||A2|(|A1||A2||Ω1||Ω2|)T−1).
The belief MDP generated is denoted by the tuple〈B,A, trans,R〉.
We reformulate the MDP obtained to problem 4 and use our poly-
nomial BRLP procedure to solve it, usinḡx as input. Thus, algo-
rithm RDR is exponentially faster than an exhaustive search of a
policy space, and comparable to algorithms that generate locally
optimal policies [11].

5. EXPERIMENTAL RESULTS
We present three sets of experimental results. Our first set of ex-

periments examine the tradeoffs in run-time, expected reward and
entropy for single-agent problems. Figures 2a and 2b show the re-
sults for these experiments based on generation of MDP policies.
The results show averages over 10 MDPs where each MDP repre-
sents a flight of a UAV, with state space of 28-40 states. The states
represent the regions monitored by the UAVs. The transition func-
tion assumes that a UAV action can make a transition from a region
to one of four other regions, where the transition probabilities were
selected at random. The rewards for each MDP were also generated
using random number generators. These experiments compare the
performance of our four methods of randomization for single-agent
policies. In the figures,CRLPrefers to algorithm 2;BRLPrefers
to algorithm 3; whereasHW (x) andHA(x) refer to Algorithm
1 with these objective functions. Figure 2a examines the tradeoff
between entropy and expected reward thresholds. It shows the av-
erage weighted entropy on the y-axis and reward threshold percent
on the x-axis. The average maximally obtainable entropy for these
MDPs is 8.89 (shown by line on the top) and three of our four meth-
ods (except CRLP) attain it at about 50% threshold, i.e. an agent
can attain maximum entropy if it is satisfied with 50% of the max-
imum expected reward. However, if no reward can be sacrificed
(100% threshold) the policy returned is deterministic.

Figure 2b shows the run-times, plotting the execution time in sec-
onds on the y-axis, and expected reward threshold percent on the
x-axis. These numbers represent averages over the same 10 MDPs
as in Figure 2a. Algorithm CRLP is the fastest and its runtime is
very small and remains constant over the whole range of threshold
rewards as seen from the plot. Algorithm BRLP also has a fairly
constant runtime and is slightly slower than CRLP. Both CRLP and
BRLP are based on linear programs and hence their small and fairly
constant runtimes. Algorithm 1, for bothHA(x) andHW (x) ob-
jectives, exhibits an increase in the runtime as the expected reward
threshold increases. This trend that can be attributed to the fact that
maximizing a non-concave objective while simultaneously attain-
ing feasibility becomes more difficult as the feasible region shrinks.

We conclude the following from Figure 2: (i) CRLP is the fastest
but provides the lowest entropy. (ii) BRLP is significantly faster
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Figure 2: Comparison of Single Agent Algorithms

than Algorithm 1, providing 7-fold speedup on average over the 10
MDPs over the entire range of thresholds. (iii) Algorithm 1 with
HW (x) provides highest entropy among our methods, but the av-
erage gain in entropy is only 10% over BRLP. (iv) CRLP provides
a 4-fold speedup on an average over BRLP but with a significant
entropy loss of about 18%. In fact, CRLP is unable to reach the
maximal possible entropy for the threshold range considered in the
plot. Thus, BRLP appears to provide the most favorable tradeoff
of run-time to entropy for the domain considered, and we use this
method for the multiagent case. However, for time critical domains
CRLP might be the algorithm of choice and therefore both BRLP
and CRLP provide useful tradeoff points.

Reward Threshold 1 .5 .25 .125
90% .67(.59) 1.73(.74) 3.47(.75) 7.07(.75)
50% .67(1.53) 1.47(2.52) 3.4(2.62) 7.47(2.66)

Table 2: RDR: Avg. run-time in sec and (Entropy),T = 2
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Figure 3: Results for RDR

Our second set of experiments examine the tradeoffs in run-time,
expected joint reward and entropy for the multiagent case. Table
2 shows the runtime results and entropy (in parenthesis) averaged
over 10 instances of the UAV team problem based on the original
transition and observation functions from [11] and its variations.
d, the input parameter controlling the number of rolldown steps of
algorithm 4, varies from 1 to 0.125 for two values of percent reward
threshold (90% and 50%) and time horizonT=2. We conclude
that asd decreases, the run-time increases, but the entropy remains
fairly constant ford ≤ .5. For example, for reward threshold of
50%, for d = 0.5, the runtime is 1.47 secs, but the run-time increases
more than 5-fold to 7.47 when d = 0.125; however, entropy only
changes from 2.52 to 2.66 with this change in d.

Thus in our next set of graphs, we present results ford = .5,
as it provides the most favorable tradeoff, if other parameters re-



main fixed. Figure 3a plots RDR expected reward threshold per-
cent on thex-axis and weighted entropy on the y-axis averaged
over the same 10 UAV-team instances. Thus, if the team needs to
obtain 90% of maximum expected joint reward with a time hori-
zonT = 3, it gets a weighted entropy of 1.06 only as opposed to
3.62 if it obtains 50% of the expected reward for the samed and
T . Similar to the single-agent case, the maximum possible entropy
for the multiagent case is also shown by a horizontal line at the top
of the graph. Figure 3b studies the effect of changing miscoordi-
nation cost on RDR’s ability to improve entropy. As explained in
Section 3.2, the UAV team incurs a high cost of miscoordination,
e.g. if one UAV shoots left and the other shoots right. We now de-
fine miscoordination reduction factor (MRF) as the ratio between
the original miscoordination cost and a new miscoordination cost.
Thus, high MRF implies a new low miscoordination cost, e.g. an
MRF of 4 means that the miscoordination cost is cut 4-fold. We
plot this MRF on x-axis and entropy on y-axis, with expected joint
reward threshold fixed at 70% and the time horizon T at 2. We
created 5 reward variations for each of our 10 UAV team instances
we used for 3a; only 3 instances are shown, to reduce graph clut-
ter(others are similar). Forinstance3, the original miscoordination
cost provided an entropy of 1.87, but as this cost is scaled down by
a factor of 12, the entropy increases to 2.53.

Based on these experiments, we conclude that: (i) Greater toler-
ance of expected reward loss allows higher entropy; but reaching
the maximum entropy is more difficult in multiagent teams — for
the reward loss of 50%, in the single agent case, we are able to reach
maximum entropy, but we are unable to reach maximum entropy in
the multiagent case. (ii) Lower miscoordination costs allow higher
entropy for the same expected joint reward thresholds. (iii) Varying
d produces only a slight change in entropy; thus we can used as
high as 0.5 to cut down runtimes. (iv) RDR is time efficient because
of the underlying polynomial time BRLP algorithm.
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Figure 4: Improved security via randomization

Our third set of experiments examine the tradeoffs in entropy of
the agent/agent-team and the total number of observations (probes)
the enemy needs to determine the agent/agent-team actions at each
state. The primary aim of this experiment is to show that maximiz-
ing policy entropy indeed makes it more difficult for the adversary
to determine/predict our agents’ actions, and thus more difficult for
the adversary to cause harm, which was our main goal at the begin-
ning of this paper. Figures 4a and 4b plot the number of observa-
tions of enemy as function of entropy of the agent/agent-team. In
particular for the experiment we performed, the adversary runs yes-
no probes to determine the agent’s action at each state, i.e. probes
that return an answer yes if the agent is taking the particular ac-
tion at that state in which case the probing is stopped, and a no
otherwise. The average number of yes-no probes at a state is the
total number of observations needed by the adversary to determine
the correct action taken by the agent in that state. The more deter-

ministic the policy is, the fewer the probes the adversary needs to
run; if the policy is completely deterministic, the adversary need
not run any probes as it knows the action. Therefore, the aim of
the agent/agent-team is to maximize the policy entropy, so that the
expected number of probes asked by the adversary is maximized.

In contrast, the adversary minimizes the expected number of
probes required to determine the agents’ actions. Hence, for any
given states, the adversary uses the Huffman procedure to op-
timize the number of probes [8], and hence the total number of
probes over the entire MDP state space can be expressed as fol-
lows. Let S = {s1, s2, ...., sm} be the set of MDP states and
A = {a1, a2, ...., an} be the action set at each state. Letp(s, a) =
{p1, ....., pn} be the probabilities of taking the action set{a′1, ....., a′n},
a′i ∈ A at states sorted in decreasing order of probability. The
number of yes-no probes at states is denoted byζs = p1∗1+.....+
pn−1 ∗(n−1)+pn ∗(n−1). If the weight of the states (see notion
of weight introduced in section 2) isW = {w1, w2, ......, wm},
then the number of observations over the set of states is denoted
Observe-all=

∑
s=1...m{ws∗ ζs}. Setting some weights to zero

implies that the adversary was not concerned with those states, and
the number of observations in this situation is denotedObserve-
select. While the number of observations in both Observe-all and
Observe-select are obtained assuming the adversary obtains an ac-
curate policy of the agent or agent team, in real situations, an ad-
versary may obtain a noisy policy, and the adversary’s number of
observations in such a case is denoted Observe-noisy.

Figure 4a demonstrates the effectiveness of entropy maximiza-
tion using the BRLP method against an adversary using yes-no
probes procedure as his probing method for the single agent case.
The plot shows the number of observations on y-axis and entropy
on the x-axis averaged over the 10 MDPs we used for our single-
agent experiment. The plot has 3 lines corresponding to the three
adversary procedures namelyObserve-all, Observe-selectandObserve-
noisy. Observe-allandObserve-selecthave been plotted to study
the effect of entropy on the number of probes the adversary needs.
For example, forObserve-all, when entropy is 8, the average num-
ber of probes needed by the adversary is 9. The purpose of the
Observe-noisyplot is to show that the number of probes that the
adversary requires can only remain same or increase when using a
noisy policy, as opposed to using the correct agent policy. The noise
in our experiments is that two actions at each state of the MDP have
incorrect probabilities. Each data point in theObserve-noisycase
represents an average of 50 noisy policies, averaging over 5 noisy
policies for each reward threshold over each of the 10 MDPs.

Figure 4b plots a similar graph as 4a for the multiagent case, av-
eraged over the 10 UAV-team instances with two UAVs. The plot
has three lines namelyObserve-all, Observe-selectandObserve-
noisywith the same definitions as in the single agent case but in a
distributed POMDP setting. However, in plot 4b the y-axis repre-
sents joint number of yes-no probes and the x-axis represents joint
entropy. Both these parameters are calculated as weighted sums of
the individual parameters for each UAV, assuming that the adver-
sary assigns equal weight to both the UAVs.

We conclude the following from plots 4a and 4b: (i) The num-
ber of observations(yes-no probes) increases as policy entropy in-
creases, whether the adversary monitors the entire state space (observe-
all) or just a part of it (observe-select). (ii) If the adversary obtains
a noisy policy (observe-noisy), it needs a larger number of obser-
vations when compared to the adversary obtaining an accurate pol-
icy. (iii) As entropy increases, the agents’ policy tends to become
more uniform and hence the effect of noise on the number of yes-no
probes reduces. In the extreme case where the policy is totally uni-
form theObserve-allandObserve-noisyboth have same number of



probes. This can be observed at the maximal entropy point in plot
4a. The maximal entropy point is not reached in plot 4b as shown
in the results for RDR. From the above we conclude that maximiz-
ing entropy has indeed made it more difficult for the adversary to
determine our agents’ actions and cause harm.

6. SUMMARY AND RELATED WORK
This paper focuses on security in multiagent systems where in-

tentional threats are caused by unseen adversaries, whose actions
and capabilities are unknown, but the adversaries can exploit any
predictability in our agents’ policies. Policy randomization for
single-agent and decentralized (PO)MDPs, with some guaranteed
expected rewards, are critical in such domains. To this end, this pa-
per provides two key contributions: (i) provides novel algorithms,
in particular the polynomial-time CRLP and BRLP algorithms, to
randomize single-agent MDP and POMDP policies, while attaining
a certain level of expected reward; (ii) provides RDR, a new algo-
rithm to generate randomized policies for decentralized POMDPs.
RDR can be built on BRLP or CRLP, and thus is able to efficiently
provide randomized policies. Finally, while our techniques are ap-
plied for analyzing randomization-reward tradeoffs, they could po-
tentially be applied more generally to analyze different tradeoffs
between competing objectives in single/decentralized (PO)MDP.

Randomization as a goal has received little attention in the lit-
erature, and is seen as a means or side-effect in attaining other
objectives, e.g., in resource-constrained MDPs [1] or memoryless
POMDP policy generators [9] (for breaking loops). In [13] coor-
dination of multiple agents executing randomized policies in a dis-
tributed MDP setting is discussed, but there randomization occurs
as a side-effect of resource constraints; furthermore, agents com-
municate to resolve the resulting team miscoordination. In contrast,
our work explicitly emphasizes maximizing entropy in policies,
and attains implicit coordination (no communication) over random-
ized policies in decentralized POMDPs. Significant attention has
been paid to learning in stochastic games, where agents must learn
dominant strategies against explicitly modeled adversaries [10, 7].
Such dominant strategies may lead to randomization, but random-
ization itself is not the goal. Our work in contrast does not require
an explicit model of the adversary and, in this worst case setting,
hinders any adversary’s actions by increasing the policy’s weighted
entropy through efficient algorithms, such as BRLP. Thus, we fo-
cus on agent teams using decentralized POMDPs doing intentional
policy randomization. Finally, [17] illustrates randomization for se-
curity in general, but does not provide algorithms for randomizing
policies for either single agent or distributed (PO)MDPs.
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Algorithm 4 RDR(d, percentdec, x̄)

1: π1, π2, Optimalreward← Compute joint policy()
2: stepsize← percentdec ·Optimalreward · d
3: for i← 1 to 1/d do
4: MDP ← GenerateMDP (b,Π

(i+1)Mod2
, T )

5: Entropy,Π
iMod2

← BRLP (Optimalrew− stepsize ∗
i, x̄)

1: GenerateMDP(b, π2, T ) :
2: reachable(0)← {b}
3: for t← 1 to T do
4: for all Bt−1 ∈ reachable(t− 1) do
5: for all a1 ∈ A1, ω1 ∈ Ω1 do
6: trans, reachable(t)

∪← UPDATE(Bt−1, a1, ω1)
7: for t← T downto 1 do
8: for all Bt ∈ reachable(t) do
9: for all a1 ∈ A1 do

10: for all st ∈ S, ψt
2 ← 〈at−1

2 , ωt
2〉 do

11: for all at
2 givenΨt

2 do {Equation 9}
12: <a1

t (Bt)
+← Bt(st,Ψt

2) ·
R

(
st, 〈at

1, a
t
2〉

)
.P (at

2|Ψt
2)

13: return 〈B,A, trans,<〉

1: UPDATE(Bt, a1, ω1) :
2: for all st+1 ∈ S, ψt

2 ← 〈at−1
2 , ωt

2〉 do
3: for all st ∈ S do {Equation 8}
4: Bt+1(st+1,Ψt+1

2 )
+← Bt(st,Ψt

2) ·
P (st, (at

1, a
t
2), s

t+1) · O1(s
t+1, (at

1, a
t
2), ω

t+1
1 ) ·

O2(s
t+1, (at

1, a
t
2), ω

t+1
2 ) · P (at

2|Ψt
2)

5: trans← normalize(Bt+1(st+1,Ψt+1
2 ))

6: return trans,Bt+1


