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Abstract. In 2000, Saul and Roweis proposed locally linear embedding
as a tool for nonlinear dimensionality reduction [1,2]. In this paper, we
modify the LLE algorithm and formulate it as a classi�er in a manner
reminiscent of He et al [3] and name it after Roweis and Saul. Our ex-
periments with the ORL, YALE, FERET face databases and MNIST
handwritten database show that our classi�er has recognition rates of
95.41%, 95.55%, 95.41% and 92.50% respectively, clearly outperforming
the baseline PCA and LDA classi�ers as well as the recently proposed
Laplacianfaces. We propose a modi�cation to the training phase of the
classi�er by perturbing the within class entries of the reconstruction ma-
trix constructed during the training phase. This perturbation leads to
an increase in the success rates for some datasets. We point out the rela-
tionship between the Roweis-Saul classi�er and PCA and LDA. Various
hypothesis tests have been suggested for comparing classi�ers [4,5]. We
apply some of the hypothesis tests suggested by Dietterich and Alpaydin
to compare the Roweis-Saul classi�er and the Laplacianfaces and show
that the Roweis-Saul classi�er outperforms the Laplacianfaces for the
datasets considered here.

1 Introduction

The last few years have seen many proposals for non linear dimension reduc-
tion such as the ISOMAP, LLE, Laplacian eigenmaps, Hessian eigenmaps and
GTM[6,1,2,7,8,9,10]. There are many papers where the authors propose a com-
mon framework encompassing these techniques under the ambit of spectral clus-
tering [11]. He and Niyogi modi�ed Belkin and Niyogi's Laplacian eigenmaps
algorithm for nonlinear dimensionality reduction into a locality preserving pro-
jection [12]. All these techniques addressed the issues of �nding meaningful low
dimensional structures hidden in high dimensional data and analyse the data
from the point of view of clustering. Recently, He et al. modi�ed Belkin and
Niyogi's Laplacian eigenmaps into a classi�er [3,7].

In this paper, we modify the locally linear embedding (LLE) algorithm of
Saul and Roweis in a manner which is reminiscent of He et al.'s modi�cation of
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the Laplacian eigenmaps [3]. In the context of clustering, Belkin and Niyogi in
their landmark paper pointed out that the LLE algorithm of Saul and Roweis
was approximated by Laplacian eigenmaps under certain assumptions [7]. We
found that these assumptions were far too restrictive even in the context of
clustering. In the case of face recognition and handwritten digits classi�cation,
these assumptions are not valid. Our experiments with some well known face and
handwritten digits datasets show that our classi�er outperforms Laplacianfaces.

The paper is organized as follows. Section 2 describes how Saul and Roweis'
algorithm can be turned into a classi�er. In Section 3 we analyse the Roweis-Saul
classi�er and indicate the connection with PCA and LDA. Section 4 describes
a modi�cation of the training phase of the Roweis-Saul classi�er when the class
information is available. In Section 5 we measure the recognition rates of the
Roweis-Saul classi�er and also compare it with Laplacianfaces, PCA and LDA
using the ORL, YALE, FERET face databases and the MNIST handwritten
digits database. In Section 6, we compare the Roweis-Saul classi�er and Lapla-
cianfaces using hypothesis tests. In Section 7, we summarize our results and
point out some future directions.

2 Turning LLE into Roweis-Saul classi�er

Locally linear embedding (LLE) attempts to compute a low dimensional em-
bedding with the property that `nearby points in the high dimensional space
remain nearby and similarly co-located with respect to one another in the low
dimensional space' [2].

Let x1,x2, · · · ,xN, xi ∈ RD be the feature vectors and X be the D × N
matrix whose columns are the xi

′s, i.e., X = [x1,x2, · · · ,xN]. The objective of
the training phase of the Roweis - Saul classi�er is to �nd a smaller dimension
d ¿ D and a D × d transformation V such that Y = VTX, where the neigh-
bourhood relations of the yi's which are the columns of Y, is similar to that of
xi's. We call V, the Roweis-Saul transform. During the testing phase, the train-
ing vectors as well as the the test vector are projected on this subspace. The
test vector is then classi�ed on the basis of the euclidean distance or any other
distance measure to one of the training vectors. In some datasets the number
N of feature vectors is less than the dimension D of each vector. In these cases,
it is not computationally feasible to �nd the local coordinates as speci�ed by
steps 1 and 2 of the algorithm given below. Hence, as a preprocessing step, we
may reduce the dimension of the input vectors by principal component analysis
(PCA), before proceeding to steps 1 and 2. Steps 1 and 2 coincide with the initial
two steps of the LLE algorithm [2,1]. We now describe the training phase of the
Roweis-Saul classi�er.

2.1 Algorithm for training phase of Roweis-Saul classi�er

Step 0: (optional) Application of PCA: For the sake of notational clarity,
assume that the initial feature vectors belong to a D̂ dimensional space. Project



the input points to a subspace along the principal components. Let VPCAbe the
transformation matrix obtained by performing PCA. The dimension of input
points will be reduced from D̂ to D, where D ¿ D̂.

Step1: Construction of the neighborhood matrix: Construct a neighbor-
hood graph for the N points x1,x2, · · · ,xN. This can be done in any of the
following ways.

1. K - nearest neighbors: Construct a graph G over all data points by connecting
points i and j if i is one of the K nearest neighbors of j.

2. ε - isomap: Construct a graph G over all data points by connecting i and j
if they are closer than ε.

3. User de�ned neighbors: Force the neighbors to be the points of the same
class to which the point belongs. This variation has not been considered
previously in the literature [1,2,7]

In the case of segmentation, Shi and Malik, empirically found that one can
remove 90 percent of the total connections with each neighborhoods when the
neighborhoods are large without a�ecting the eigenvector solution of the system
[13].

Step 2: Computation of local linear coordinates: Wij's are chosen so that
they minimize the reconstruction error

N∑

i

||xi −
N∑

j=1

Wijxj||2 (1)

with Wij = 0 if xj 6∈{neighbors of xi} subject to the constraint
∑

j Wij = 1∀i.
The Wij's are found using the method of of Lagrange multipliers [2].

Let Wi = (Wi1,Wi2, . . . ,WiN) where 1 ≤ i ≤ N. For every �xed i, the La-
grange multiplier λ is given by

∂f(Wi1,Wi2, . . . ,WiN)
∂Wik

+ λ
∂g(Wi1,Wi2, . . . ,WiN)

∂Wik
= 0 ∀k = 1,2, ...N

Minimizing the equation (1) is equivalent to solving the above equation by
setting f(Wi1,Wi2, . . . ,WiN) = ||xi −ΣN

j=1Wijxj||2 and g(Wi1,Wi2, . . . ,WiN)
= ΣjWij − 1 = 0.

Step 3: Computation of low dimensional embedding: Compute the low
dimensional embedding vectors yi that are best reconstructed by Wij, by mini-
mizing the equation

Φ(y) =
∑

i

||yi −
∑

j

Wijyj||2 (2)

Substituting yi = VTxi, we can rewrite the above equation as



=
∑

i

(VTxi −
∑

j

WijVTxi)T(VTxi−
∑

j

WijVTxi)

In matrix notation the above equation is

Φ(V) = (VTX−VTXW)T(VTX−VTXW) (3)

It is clear that minimizing Φ(V) is equivalent to minimizing the trace of the
RHS of the equation (3)

Φ(V) = Trace
{
(VTX−VTXW)T(VTX−VTXW)

}
(4)

We now show how to formulate this minimization as an algebraic eigenvalue
problem. Rewrite the RHS of above equation as follows.

Φ(V) = Trace
{
VTX(I−W)(I−WT)XTV

}
(5)

Let M = X(I−WT)

Φ(V) = Trace
{
VTMMTV

}
(6)

Now minimizing equation (6) is equivalent to the algebraic eigenvalue prob-
lem

VTM = λVT (7)
The transformation V is found by �rst computing the eigenvectors correspond-
ing to (d + 1) smallest eigenvalues of the matrix M. Then the eigenvector corre-
sponding to the smallest eigenvalue is discarded since it is zero. The remaining
d eigenvectors form the rows of the transformation. We note that this step is
di�erent from the corresponding step in the case of Laplacianfaces [3] where the
generalized eigenvalue problem is solved.

When we use PCA for reducing the dimension of input data, the Roweis-Saul
transform for projecting the feature vectors is given by

V = VPCAV (8)
and the low dimensional embedding of the training vectors is given by

Y = VTX (9)

The test vector x̌ is projected using the Roweis-Saul transform V and clas-
si�ed as belonging to the same class as yj, using the nearest neighbour rule.

A remark is in order. Belkin and Niyogi showed that the LLE algorithm
attempts to minimize fT(I−W)T(I−W)f and under certain conditions, it
can be interpreted as trying to �nd the eigenfunctions of the iterated Laplacian
L2, where



(I−W)T(I−W)f ≈ 1
2
L2f .

These conditions imply that pairwise di�erences of the input feature vectors
xi − xj form an orthonormal basis. They also mention in passing that this `is
not usually the case' [7]. This condition is not valid in many supervised learn-
ing problems. We emphasize that this condition is not true for all the datasets
considered in this paper. This motivated our modi�cation of the LLE algorithm
into a classi�er. In the next section, we point out some connections between the
Roweis-Saul classi�er and the classical PCA and LDA.

3 Connections between Roweis-Saul classi�er, PCA and
LDA

In the training phase of the RS classi�er we minimized the following equation

N∑

i=1

||xi −
N∑

j=1

Wijxj||2 (10)

subject to the constraint that
∑N

j=1 Wij = 1 ∀i using the method of Lagrange
multipliers.

3.1 Connection with PCA

Let X = (x1,x2, . . . ,xN), where xi ∈ RD and m = 1
N

∑N
j=1 xj. If we substitute

Wij = 1
N ∀ i, j, in equation (10), it becomes the covariance matrix of the input

data. i.e.,

N∑

i=1

||xi −
N∑

j=1

Wijxj||2 =
N∑

i=1

(xi −
N∑

j=1

Wijxj)T(xi−
N∑

j=1

Wijxj)

=
N∑

i=1

(xi −XW)T(xi −XW).

Using the fact that XW = m, the RHS of the above equation can be rewritten
as

N∑

i=1

||xi −
N∑

j=1

Wijxj||2 =
N∑

i=1

(xi −m)T(xi −m) (11)



The technique of PCA involves choosing the eigenvectors corresponding to the
leading eigenvalues of the covariance matrix as the basis for projection of the
input data [14,15]. This shows the relationship between Step 2 (�nding local
linear coordinates) of the training phase of the Roweis-Saul classi�er and PCA.
During the training phase of the Laplacianfaces, this step is absent because the
linear coordinates are chosen by taking them to be the Euclidean distance or the
neighbourhood relationships between the input points [3].

3.2 Connection with LDA

Let C be the number of classes in the given dataset and ci, the number of samples
in each of the class, where 1 ≤ i ≤ C. Let us represent xj and Wjk as xi

j and
Wi

jk if xj ∈ ci and where 1 ≤ j,k≤ N and mi = 1
ci

∑ci

j=1 xi
j. The equation (10)

can be rewritten as

N∑

i=1

||xi −
N∑

j=1

Wijxj||2 =
C∑

i=1

ci∑

j=1

||xi
j−

ci∑

k=1

Wi
jkx

i
k||2

If Wi
jk = 1

ci
∀i, j,k then

∑ci

k=1 Wi
jkx

i
k becomes the class mean of the input

samples (i.e.,) mi

=
C∑

i=1

ci∑

j=1

||xi
j −mi||2

=
C∑

i=1

ci∑

j=1

(xi
j −mi)T(xi

j −mi) (12)

The RHS of equation (12) is the within class scatter matrix SWthat is minimized
in Linear Discriminant Analysis (LDA). In LDA, the denominator of the criterion
function

J(Wi) =
WT

i SBWi

WT
i SwWi

(13)

is minimized in order to maximize the criterion function (13) where SB is the
between class scatter matrix and Swis the within class scatter matrix [15]. From
this it is clear that during Step 2, we are minimizing an analogue (equation (10))
of the within class scatter matrix in order to �nd the local coordinates.

4 Roweis-Saul with an α perturbation

In this section, we propose a modi�cation of the Roweis-Saul classi�er described
in the previous section. First we assume that the input data consists of a labelled



training set and is ordered using the class information. In Step 3 of training
phase, described in (2.1), we add a matrix Wα to W, i.e.,

WRSα = Wα + W. (14)
We identify the matrix Wα in the above equation (14) with the matrix whose
rows and columns are indexed by the input data points. The (i, j)th entry of
Wα is α if the ith and the jth points belong to the same class and 1−α if they
belong to di�erent classes. Hence equation (4) becomes

Φ(V) = Trace
{
VTX(I−WRSα)(I−WT

RSα)XTV
}

.

Thereafter, we follow the steps mentioned in (2.1) of the Roweis-Saul training
phase to compute the embedding. This matrix is motivated by our desire to
bring the within class points closer and can be viewed as a perturbation of the
reconstruction matrix constructed during Step 3 of the training phase. We choose
α between 1.0 and 0.0, and the typical value used in this paper is 0.9. [Table 2].

Experiments with the databases using the RS classi�er with α graph per-
turbation show that it has lower error rate when compared to the RS classi�er
and Laplacianfaces. Since this variation makes use of the class information of the
dataset, it can be considered as a supervised learning analogue of the Roweis-Saul
classi�er. A similar modi�cation when applied to the Laplacianfaces, also yields
a similar boost in the performance [Table 2]. This phenomenon is interesting and
needs to be validated for larger and more diverse datasets than considered here.

5 Experiments
5.1 Experiments with face databases
The YALE face database, ORL face database and the FERET database were
used to measure the recognition rates of the Roweis-Saul classi�er and compared
with the Laplacianfaces [16,17,18]. He et al. had downsampled the images to
32 × 32 before performing classi�cation [3]. In our experiments we used three
di�erent image sizes, namely 32× 32, 64× 64 and 128× 128. In the case of the
FERET database, we manually selected 106 people each having 4 frontal images.
In all these cases we have set the number of neighbors as(K =) 4.

Table 1. Face databases used in the experiments

Database No. of people No. of images per person
ORL 40 10
YALE 15 11
FERET 106 4



Table 2. Recognition rates for Roweis-Saul, Laplacianfaces and their
variations

Dataset Size RS RS α Laplacian Laplacian α PCA LDA

ORL
4 training

32
64
128

95.41% 95.41% 91.66% 92.50% 87.91% 93.33%
94.58% 95.41% 91.25% 91.66% 87.08% 92.92%
94.58% 95.41% 91.25% 91.66% 87.08% 92.50%

YALE
5 training

32
64
128

95.55% 96.66% 90.00% 94.44% 87.78% 95.56%
94.44% 95.55% 88.89% 93.33% 84.44% 94.44%
94.44% 95.55% 88.89% 91.11% 84.44% 93.33%

FERET
2 training

32
64
128

95.41% 95.41% 91.66% 92.50% 87.91% 92.22%
94.58% 95.41% 91.25% 91.66 87.08% 92.22%
92.92% 95.41% 91.25% 91.66 87.08% 92.92%

Fig. 1. Recognition rates for the RS classi�er and Laplacianfaces with increasing
number of training samples for ORL and YALE databases.



Table-1 gives information about the databases used for our experiments.
Figure-1 shows how the recognition rates of the RS classi�er and Laplacian-
faces improve when the number of training samples increase. Table-2 compares
the recognition rates of the Roweis-Saul classi�er and Laplacianfaces, PCA and
LDA for di�erent image sizes. We observe that recognition rates decrease with
increasing image size.

5.2 Experiments with handwritten digit database

The MNIST handwritten digit database was used to compare the recognition
rates of RS classi�er and Laplacianfaces. The MNIST handwritten digit database
has 60,000 training digits and 10,000 testing digits each of size 28X28. The
authors of the training and testing set were disjoint. We took 500 training images
for each digit and considered the entire testing set for classi�cation. The results
summarized in the Table-3 shows that RS classi�er has low error rate when
compared to the Laplacianfaces.

Table 3. Recognition rates for MNIST handwritten digit database

Classi�er Recognition rate
RS classi�er with α graph 93.50%

RS classi�er 92.50%
Laplacianfaces with α graph 91.50%

Laplacianfaces 90.00%
PCA 87.50%
LDA 89.00%

6 Comparing classi�ers using hypothesis tests

In this section, we apply McNemar's test, K- fold cross validated paired test, 5×2
cross validated paired t test and 5×2 cross validated paired F test to compare
the classi�cation rates of Roweis-Saul classi�er and Laplacianfaces. The results
of our experiments with the ORL face database show that RS classi�er has
lower error rate when compared to Laplacianfaces. The comparisons for the
YALE face database indicate that they both have same error rate. For a detailed
introduction to these tests we refer the reader to the paper by Dietterich and
the recent book by Alpaydin and the references therein [4,5].

6.1 McNemar's test for comparing classi�ers

We performed McNemar's test for all the three databases mentioned previously.
For the ORL database, 4 images per person were used for training and 6 images



per person for testing. The YALE database was tested with 5 images per person
in training and the remaining for testing. The FERET database was tested using
2 images per person for training and the remaining 2 images for testing. This
test takes into account the number of samples misclassi�ed by the Laplacianfaces
when compared to the Roweis-Saul classi�er and vice-versa. The null hypothesis
(H0) is that both the classi�ers have equal error rate i.e. e01 = e10.

e00 : No. of samples misclassi�ed by both classi�ers
e01 : No. of samples misclassi�ed by Laplacianfaces but not Roweis-Saul classi�er
e10 : No. of samples misclassi�ed by Roweis-Saul classi�er but not Laplacianfaces
e11 : No. of samples correctly classi�ed by both classi�ers

The values of eij's and the results are available in Table-4. We have the chi-
square statistic with one degree of freedom χ2 = (|e01−e10|−1)2

e01+e10
. McNemar's test

accepts the null hypothesis at signi�cance level α if χ2 ≤ χ2
α,1. The typical value

for α is 0.05 and χ2
0.05,1 = 3.84. Since the null hypothesis is rejected and e01 is

greater than e10 for ORL and FERET database, we conclude that the Roweis-
Saul classi�er outperforms the Laplacianfaces for these databases. Even though
e01 is greater than e10 for the Yale database, the χ2 value is in the acceptable
range. Hence, we conclude that both the classi�ers have same error rate. The
results of McNemar's test are shown in Table-4.

Table 4. Results of McNemar's test
Database e00 e01 e10 e11 χ Null hypothesis
ORL 11 8 2 219 4.9 REJECT

FERET 14 9 1 188 5.6 REJECT
Yale 4 5 1 80 1.5 ACCEPT

6.2 K - fold cross validated paired t test

In the K-fold cross validated paired test the dataset is divided randomly into K
equal parts [5]. To get the training and testing set, we combine K − 1 parts to
form the training set and the remaining part for testing. In the subsequent round,
we take another one of K parts for testing and combine the remaining K−1 parts
for training. We perform this experiment till all the K parts have been tested.
We record the error rates p1

i for the �rst classi�er and p2
i for the second classi�er,

where 1 ≤ i ≤ K and calculate the di�erence in error rates pi = p1
i − p2

i . The
null hypothesis H0 assumed here is that mean µ of the distribution of di�erence
in error rates is zero. We perform a t test to check whether the mean of the
distribution of di�erence in error rates falls in the acceptable range. If it does
not fall in the acceptable range, we reject the null hypothesis. The t test statistic



with K−1 degrees of freedom is given by tK−1 =
√

Km
S , where m =

PK
i=1 pi

K and
S =

PK
i=1(pi−m)2

K−1 .

The K-fold cross validated paired t test accepts the null hypothesis that
both the classi�ers have same error rate at signi�cance level α if tK−1 is in the
interval (−tα/2,K−1, tα/2,K−1). If tK−1 < −tα/2,K−1, the �rst classi�er has a
higher error rate when compared to the second classi�er. If tK−1 > tα/2,K−1,
the second classi�er has a higher error rate when compared to the �rst one.

The results of this test for the ORL and YALE face datasets are summarized
in Table-5. Since the null hypothesis is rejected for ORL database and it exceeds
tα/2,K−1, we conclude that Laplacianfaces has a higher error rate when compared
to RS classi�er. Since the tK−1value of YALE database is in the acceptable
range, we accept the null hypothesis and conclude that both Laplacianfaces and
RS classi�er have the same error rates.

Table 5. K - fold cv paired t test with K = 10 & α = 0.05

Database −tα/2,K−1 tK−1 tα/2,K−1 Null Hypothesis
ORL -2.26 2.5038 2.26 REJECT
YALE -2.26 1.0437 2.26 ACCEPT

6.3 5×2 cross validated paired t test

In 5×2 cv paired t test proposed by Dietterich, we divide the dataset randomly
into two equal parts, to get the �rst pair of training and testing set [4]. Then we
swap the role of training and testing sets. To get the second pair we shu�e the
dataset and again divide it randomly into two equal parts. We repeat this for
three more pairs, and get ten training and testing sets. In all, we perform �ve
replications of twofold cross-validation. Even though it is possible to get more
training and testing pairs, Dietterich points out that after �ve folds, the training
and testing sets overlap and the error rates calculated becomes dependent [4].

Let p
(j)
i be the di�erence between the error rates of the two classi�ers on the

fold j = 1, 2 of replication i = 1, . . . , 5. Let the average on the replication i be
pi = (p(1)

i + p
(2)
i )/2, and the variance be s2

i = (p(1)
i − pi)2/(p(2)

i − pi)2.
The null hypothesis is that the two classi�cation algorithms have the same

error rate p
(j)
i . Here p

(j)
i can be treated as approximately normal distributed

with 0 mean and unknown variance σ2. Then p
(j)
i /σ is approximately unit nor-

mal. If we assume p
(1)
i and p

(2)
i are independent normals, then s2

i /σ2 has a χ2

distribution with one degree of freedom. If each of s2
i are independent, then their

sum is χ2 with �ve degrees of freedom.
M =

P5
i=1 s2

i

σ2 ∼ χ2
5 and



t =
p
(1)
1√
M/5

=
p
(1)
1√∑5

i=1 s2
i /5

∼ t5 (15)

The above equation is a t statistic with �ve degrees of freedom. We accept the
null hypothesis that both the classi�ers have the same error rate at signi�cance
level α if this value is in the interval (−tα/2,5, tα/2,5). t0.025,5 = 2.57. Since the t
value for ORL face database is not in the acceptable range, the null hypothesis is
rejected and we conclude that Laplacianfaces has more error rate when compared
to RS classi�er. Since the t value of YALE database is in the acceptable range
we accept the null hypothesis and conclude that both Laplacianfaces and RS
classi�er have same error rates. The results are summarized in Table-6.

Table 6. 5×2 cv paired t test with α = 0.05

Database ORL YALE
p1

p2

p3

p4

p5

5.00
2.25
2.75
6.25
3.25

1.33
2.33
1.00
2.00
4.00

s2
1

s2
2

s2
3

s2
4

s2
5

0.5000
3.3125
3.125
3.125
1.125

0.8712
0.2178
2.0000
0.8712
8.0000

t 3.6770 1.2932
t0.025,5 2.57 2.57

Null Hypothesis REJECT ACCEPT

6.4 5×2 cross validated paired F test

The numerator in equation (15) is arbitrary and can take ten di�erent values
namely p

(j)
i , j = 1, 2, i = 1, . . . , 5 and thus we get ten di�erent t statistics.

t
(j)
i =

p
(j)
i√∑5

i=1 s2
i /5

Alpaydin proposed an extension to the 5×2 cross validated t test by consid-
ering the ten possible statistics. If p

(j)
i /σ ∼ Z, then (p(j)

i )2/σ2 ∼ χ2 and their
sum is chi-square with ten degrees of freedom.



N =

∑5
i=1

∑2
j=1(p

(j)
i )2

σ2
= χ2

10

If we replace the numerator of equation (15) by the above equation, the resulting
statistic is the ratio of two chi-square distributed random variables. Alpaydin
notes that 'two such variables divided by their corresponding degrees of freedom
is F distributed with ten and �ve degrees of freedom' [5].

f =
N/10
M/5

=

∑5
i=1

∑2
j=1(p

(j)
i )2

2
∑5

i=1 s2
i

∼ F10,5

This test accepts the null hypothesis that both the classi�ers have the same error
rate for a signi�cance level α if the value is less than Fα,10,5. F0.05,10,5 = 4.74.

Since the f value of ORL face database is not less than Fα,10,5, we reject the
null hypothesis and we conclude that Laplacianfaces has more error rate when
compared to RS classi�er for ORL. Since the f value of YALE database is less
than Fα,10,5, we accept the null hypothesis and conclude that both Laplacianfaces
and RS classi�er has same error rates for YALE face database. The results are
summarized in Table-7.

Table 7. 5×2 cv paired F test α = 0.05

Database N M f Fα,10,5 Null Hypothesis
ORL 188.50 11.5625 8.4246 4.74 REJECT
YALE 68.3824 11.9602 2.8587 4.74 ACCEPT

7 Conclusion

We modi�ed the LLE algorithm for nonlinear dimensionality reduction and for-
mulated it as a classi�er. We measured the performance of this classi�er using
the ORL, YALE and FERET face databases and the MNIST handwritten digit
database against classi�ers such as PCA, LDA and the related Laplacianfaces
and found that it outperformed them. We also indicated the relationships be-
tween the Roweis-Saul classi�er and PCA and LDA. We modi�ed the training
phase of the classi�er by perturbing the within class entries of the reconstruction
matrix constructed during the training phase. We proved that this perturbation
leads to a small increase in the success rates for some datasets. We used the hy-
pothesis tests suggested by Dietterich and Alpaydin to compare the Roweis-Saul
classi�er and the Laplacianfaces. The results from these tests seem to indicate
that Roweis-Saul performs better than the Laplacianfaces for most cases consid-
ered in this paper. Since the datasets considered in this paper consist of images,



the results of this paper need to be validated for more diverse datasets. Classi�ers
such as PCA have been viewed from other perspectives such as reconstruction,
compression and ease of computation. Bengio et al touch upon some compu-
tational issues as well as a generalized framework in the case of LLE [11]. A
similar understanding of the Roweis-Saul classi�er and its variation is required
for applying it to larger and more diverse datasets.
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