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Abstract

Experiments are reported with computing various Horn upper bounds of random 3-CNF formulas
of different densities (i.e., clause to variable ratios). Among four algorithms tested, the most successful
one uses renaming of variables, and generates Horn implicates of limited size only. The output sizes and
approximation errors exhibit unimodal patterns with maxima in some intermediate range of densities.

1 Introduction

A general formulation of the reasoning problem in propositional logic is to decide if a clause C is implied
by a CNF expression ϕ. Here ϕ is often viewed as a fixed knowledge base, and it is assumed that we have to
answer a large number of queries C for the same knowledge base. Therefore, it may be useful to preprocess
ϕ into a more tractable form, resulting in a new knowledge base which may be only approximately equivalent
to the original one. This approach, called knowledge compilation, goes back to the seminal work of Selman
and Kautz [20]. (See also [6].)

Selman and Kautz suggested considering Horn formulas approximating the initial knowledge base from
above and below, and using these formulas to answer the queries. The Horn least upper bound (Horn-
LUB) of ϕ is the conjunction of all Horn prime implicates of ϕ 1. It can also be obtained as the closure,
under intersections, of the set of satisfying truth assignments. This natural interpretation suggests that the
Horn-LUB may be of interest as a combinatorial object in itself.

Queries to Horn formulas can be answered efficiently, but the approach can have the following draw-
backs: it may be inefficient as the resulting Horn upper bound may be large, and it may fail to answer certain
queries (those implied by the lower bound, but not implied by the upper bound).

Initial experiments for the evaluation of Horn approximations were performed by Kautz and Selman
[14]. Boufkhad [5] gives the results of experiments for Horn lower bounds using an extension to renamable
Horn formulas. The main test examples were random 3-CNF formulas with density around 4.26, which are
well known to be hard for satisfiability algorithms2.

In this paper we report some results of a detailed computational study of the Horn upper bound. We
compare several modified versions, including a renamable variant which uses an approximation algorithm

∗This material is based upon work supported by the National Science Foundation under grant CCF-0431059.
1We omit the definition of Horn greatest lower bounds (which, as opposed to LUBs, are not unique), as those will not be

discussed in this paper.
2Kautz and Selman also considered a class of planning problems, and Boufkhad also considered 4-CNF formulas.
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of Boros [4] to find a large Horn renamable subformula of the original knowledge base, and approximate
versions which resolve clauses of bounded size only. The conclusion is that the best compromise in terms
of running time, the size of the Horn upper bound and the quality of the approximation is obtained by
using renaming, and computing resolvents up to a certain bounded size. In the majority of our experiments
we measured approximation quality using the relative error measure corresponding to the combinatorial
interpretation of the Horn-LUB.

Concerning output size and approximation error for random 3-CNF of different densities, the emerging
pattern is what could perhaps be called the Horn bump: as a function of the density, the averages of these
quantities are unimodal (i.e., increasing then decreasing) with maxima in some intermediate range of den-
sities. According to previous experiments, the set of satisfying truth assignments at these densities form a
single connected cluster (Martin et al. [16]), thus there may be some other structural changes that account
for these phenomena.

2 Background

A clause is a disjunction of literals (unnegated or negated variables). It is a Horn clause if it contains at
most one unnegated literal. A CNF is a conjunction of clauses; it is a 3-CNF if each clause contains exactly
3 literals. A Horn formula or Horn-CNF is a conjunction of Horn clauses. A clause C is an implicate
of a CNF expression ϕ if every vector satisfying ϕ also satisfies C; it is a prime implicate if none of its
sub-clauses is an implicate.

The Horn least upper bound of ϕ (Horn-LUB(ϕ)) is the conjunction of all Horn prime implicates of ϕ.
More generally, a Horn upper bound is a conjunction of some Horn implicates. Selman and Kautz [20] give
an algorithm for computing Horn-LUB(ϕ). Their algorithm works iteratively, starting from ϕ, performing
all possible resolutions between two clauses, at least one of which is non-Horn, and simplifying whenever
possible (for a detailed proof of the correctness of the algorithm, see del Val [8]). We refer to this algorithm
also as Horn-LUB.

The intersection of vectors (x1, . . . , xn), (y1, . . . , yn) ∈ {0, 1}n is (x1 ∧ y1, . . . , xn ∧ yn). A Boolean
function can be described by a Horn formula if and only if its set of satisfying truth assignments is closed
under intersection [12, 17]. Thus Horn-LUB(ϕ) can also be obtained by taking T (ϕ), the set of satisfying
truth assignments of ϕ, and closing it under intersections.

A renaming of a variable x in a formula is obtained by switching the occurrences of x and x̄. A CNF
is Horn renamable if one can rename some of its variables to turn it into a Horn formula. It can be decided
in polynomial time if a CNF is Horn renamable [2, 15], but finding a largest Horn renamable sub-CNF is
NP -hard (Crama et al. [7]). Boros [4] gave an approximation algorithm for finding a large Horn renamable
sub-CNF in an arbitrary CNF. Note that the Horn-LUB obtained after a renaming corresponds to intersection
closure with respect to a reorientation of the hypercube, using another vertex as the minimum instead of
the all 0 vector. Van Maaren and van Norden [21] considered the connection between the efficiency of
satisfiability algorithms and the size of a largest renamable sub-CNF for random 3-CNF.

An n-variable random 3-CNF formula of density α is obtained by selecting α · n clauses of size 3,
selecting each clause from the uniform distribution over all such clauses. There is a vast literature on
random 3-CNF (and, more generally, on k-CNF) formulas, including both theoretical and experimental
results. Experiments show that there is a phase transition from the formulas being almost surely satisfiable
to being almost surely unsatisfiable around α = 4.26. It has been proved that there is indeed a sharp
transition [11], and various bounds are known for its location [1, 9].
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3 Computational results

Besides Horn-LUB, we considered three other algorithms to compute Horn approximations. The algorithm
Renamed-Horn-LUB finds a renaming of the variables using a heuristic algorithm of [4], and then applies
the Horn-LUB algorithm. The algorithm 4-Horn-LUB works as the Horn-LUB algorithm, but only performs
resolution steps that produce clauses of size at most 4. Finally, Renamed-4-Horn-LUB is the combination
of the last two algorithms: it first performs a renaming, and then does those resolution steps that produce
clauses of size at most 4.

Table 1 gives running times, and Table 2 output sizes, for Horn-LUB, for different numbers of variables
and different densities. (All running times reported in this paper were measured on a Dell laptop with a
2.40 GHz CPU and 256MB RAM.) As we wished to perform exhaustive testing (over all truth assignments)
in several cases, it was not feasible to go much above 20 variables. For Horn LUB, in any event, running
times become prohibitive as one gets significantly above 20 variables, as indicated by the last column of
Figure 1. As the case of 20 variables is considered in more detail below, the output size for this case is
computed with a smaller step size. The output size is unimodal, with maximum around density 2.5.

Number of variables
α 12 14 16 18 20 22
1 0.01 0.02 0.07 0.19 0.96 7.53
2 0.07 0.55 2.74 19.71 50.49 > 15 min
3 0.14 0.79 2.91 24.27 126.81 > 15 min
4 0.11 0.42 4.90 27.07 224.561 > 15 min

Table 1: Mean running time to compute the Horn-LUB of random 3-CNF formulas ϕ in CPU sec as function
of number of variables and density α of ϕ, averaged over 50 runs.

Number of variables
α 16 18 20 22
1 36.28 66.48 96.14 146.60

1.5 −− −− 517.3 −−
2 306.46 565.00 1044.72 > 15 min

2.5 −− −− 1255.06 > 15 min
3 330.04 585.42 898.76 > 15 min

3.5 −− −− 599.60 > 15 min
4 195.40 305.40 409.34 > 15 min

Table 2: Mean size (number of clauses) of the Horn-LUB as function of density and number of variables,
averaged over 50 runs. (−− means not computed; > 15 min means not run to completion due to long
running time).

Tables 3 and 4 contain similar data for the 4-Horn-LUB algorithm. The running times of this algorithm
are significantly smaller. The output sizes are also smaller, and again unimodal, with maximum between
density 2.5 and 3.

As all these algorithms produce a conjunction of some implicates of the original formula ϕ, their output
is implied by ϕ; that is, each algorithm’s output has a one-sided error. The relative error of such an algorithm
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Number of variables
α 20 30 40
1 0.00 0.03 0.01
2 0.16 0.27 0.21
3 1.49 21.41 100.88
4 0.909 28.29 261.17

Table 3: Running time to compute Renamed-4-Horn-LUB in CPU sec. Averaged over 50 runs.

Number of variables
α 16 18 20 22
1 22.78 23.64 28.24 30.36

1.5 −− −− 70.52 −−
2 164.06 189.26 236.24 243.36

2.5 −− −− 547.6 −−
3 302.16 479.26 704.84 968.50

3.5 −− −− 639.26 −−
4 244.05 333.22 452.74 567.16

Table 4: Mean size (number of clauses) of the Renamed-4-Horn-LUB as function of density and number of
variables, averaged over 50 runs (−− means not computed).

A on an input formula ϕ is measured by

rA(ϕ) =
|T (A(ϕ))|
|T (ϕ)|

,

where A(ϕ) denotes the formula output by A on ϕ, and |T (ϕ)| denotes the number of satisfying truth
assignments of ϕ.

Figures 1 and 2 present computational results for the relative errors of the four algorithms for different
densities on 20 variables. Figure 1 gives statistics for the Horn-LUB, resp., the Renamed-Horn-LUB algo-
rithm, and Figure 2 gives statistics for the 4-Horn-LUB, resp., Renamed-4-Horn-LUB algorithm. The error
curves are again unimodal, with maximum around 2.4. Experiments for fewer variables show similar values
of the maxima.

The overall conclusion is that Renamed-4-Horn-LUB is the best algorithm for 20 variables.3 It is sig-
nificantly faster than either Horn-LUB or Renamed-Horn-LUB, and it is even somewhat faster than 4-Horn-
LUB. Its output size is significantly smaller than those of Horn-LUB or Renamed-Horn-LUB, but larger
than that of 4-Horn-LUB. On the other hand, its relative error is only slightly worse than that of Renamed-
Horn-LUB, which has the smallest relative error. The running times and output size of Renamed-Horn-LUB
and 4-Horn-LUB are omitted, and will be included in the full version of the paper. Replacing the limit 4 on
clause size with 3, or even using all implicates of size at most 3, results in a large increase in the relative
error for densities below the satisfiability threshold.

It is to be expected, and supported by some experimental evidence, that as the number of variables
increases, the limit on the clause size required for producing reasonable relative error will also increase.

3Preliminary experiments show Renamed-4-Horn-LUB also performing relatively well for up to at least 40 variables, but for 40
variables, simply measuring performance is computationally expensive.
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 Figure 1: Relative errors rA(ϕ) of Horn-LUB (left) and Renamed-Horn-LUB (right) for ϕ with 20 variables

as function of density. Measured by exhaustive examination of all length 20 vectors. Notice that the two
scales for rA(ϕ) are different; Renamed-Horn-LUB has much lower relative error. Averaged over 100 runs.
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 Figure 2: Relative errors of 4-Horn-LUB (left) and Renamed-4-Horn-LUB (right) for formulas with 20

variables as function of density. Measured by exhaustive examination of all length 20 vectors. Again, the
two scales are different; Renamed-4-Horn-LUB has much lower relative error. Averaged over 100 runs.

Another way to evaluate the algorithms is to consider the number of queries that are answered incorrectly
by their output. In Figure 3 we present such results for the Horn-LUB algorithm. Horn-LUB’s output
answers all Horn queries correctly, and all non-Horn prime implicate queries incorrectly. Figure 3 shows the
fraction of non-Horn prime implicates compared to the total number of prime implicates, without and with
renaming, for 20 variables. We again observe a similar unimodal behavior, but the maximum is lower this
time, around density 1.6. Similar comparisons for the other algorithms will be included in the full version
of the paper.

In their experiments, Selman and Kautz [20] considered the case of prime implicates of size 1 and 2.
Prime implicates of size 1 correspond to the notion of the backbone of a CNF, considered by Monasson et
al. [18]. The backbone of a CNF consists of those variables which have a forced value in every satisfying
truth assignment. Monasson et al. present interesting experimental results on the size of the backbone, and
give an argument showing that asymptotically, for a random 3-CNF of density α below the SAT/UNSAT
threshold, the backbone cannot contain a positive fraction of the variables with positive probability. Figure 4
shows the fraction of clauses of size 1 and 2 that are implicates of a random 3-CNF, for different densities.

For a larger number of variables it is not feasible to search the whole space exhaustively. In order to
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Figure 3: Fraction of all prime implicates of a 3-CNF formula on 20 variables that are not Horn as a function
of α. Left figure shows statistics for 3-CNFs; right figure shows statistics for 3-CNFs that had renaming
applied first. Averaged over 50 runs.
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 Figure 4: Left: Ratio of number of size 1 implicates of an n-variable 3-CNF formula to n (for n =

30, 40, 60, 100) . Right: Ratio of number of size 2 implicates of an n-variable 3-CNF formula to 3
(
n
2

)
(which is an upper bound on the maximum number of possible size 2 implicates) (for n = 30, 40, 50). All
curves (both sides) generated by considering 200 randomly generated formulas for a range of values of α.

estimate the relative error, one could try to use random sampling by generating a random satisfying truth
assignment of the Horn upper bounds. This raises the question whether a random satisfying truth assignment
of a Horn formula can be generated uniformly in polynomial time. As far as we know, this is open. In related
work, Roth [19] showed that it is NP -hard to approximate the number of satisfying truth assignments of a
Horn formula within a multiplicative factor of 2n1−ε

(for any ε) in polynomial time, even if the clauses have
size 2 and every variable occurs at most 3 times, and Jerrum et al. [13] established a connection between
almost uniform generation and randomized approximate counting.

We have started to do some initial experiments with various heuristics for randomly generating a satisfy-
ing truth assignment of a Horn formula. Table 5 compares the relative error of the Horn-LUB algorithm with
the estimate of the relative error obtained by “random” sampling. The algorithm is a naive one, randomly
selecting variables to be fixed (and deriving all assignments that are forced by the previous choices). Uni-
form random generation would require weighting the choices of the two values by the number of satisfying
truth assignments corresponding to each value. As Table 5 shows, the estimates are rather close.
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α 0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2
% 1.3 5.4 12 12.9 11.8 8.4 4.2 2.3 1.3 0.0 0.0

Table 5: Percentage error in measuring rA(ϕ) using “random” sampling of vectors versus exhaustive. Gen-
erates 100,000 “random” vectors; stops early if 50,000 distinct vectors obtained; uses only distinct vectors
to measure error. Averaged over 10 runs.

4 Further remarks

We have considered four different algorithms for generating the Horn-LUB of a random 3-CNF for different
densities, and concluded that over 20 variables the algorithm Renamed-4-Horn-LUB provides the best com-
promise in terms of running time, output size and relative error. We observed a Horn bump for the different
performance measures in an intermediate range of densities.

There are several directions for further work that we plan to pursue. The extension of the experiments
to error measures corresponding to the number of queries answered correctly, and to larger sizes using more
computing power is in progress. This could perhaps give some information on how the relative errors grow
with the number of variables. It would also be interesting to incorporate similar experiments concerning
Horn greatest lower bounds, extending Boufkhad’s work [5]. The question of almost uniform random gen-
eration of a satisfying truth assignment seems to be of interest in itself.

A very interesting, and little understood, problem related to the phase transition of random 3-CNF is
the evolution of random 3-CNF (see [16]), in analogy to the classic work of Erdős and Rényi [10] on
the evolution of random graphs, and to the study of the evolution of random Boolean functions (see, e.g.,
Bollobás et al. [3]). In this context, it would perhaps be of interest to perform more experiments on the
existence of the Horn bump, and to try to get some theoretical results.

The interpretation of the Horn least upper bound as the intersection closure of the set of satisfying truth
assignments leads to the following general question: what is the expected size of the intersection closure
of a random subset of {0, 1}n, given a probability distribution on the subsets? We are not aware of results
of this kind. (Another closure problem, the dimension of the subspace spanned by a random set of vectors
has been studied in great detail.) A basic case to consider would be when m random vectors are generated,
each component of which is set to 1 with probability p. The size of the Horn-LUB of a random 3-CNF with
a given density is a special case of the general question, when the distribution is generated by picking a
random formula.

Acknowledgment We would like to thank Eli Ben-Sasson and Bart Selman for useful comments, and an
anonymous referee for excellent feedback.
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