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ABSTRACT

A weakness of classical Markov decision processes is that
they scale very poorly due to the flat state-space representa-
tion. Factored MDPs address this representational problem
by exploiting problem structure to specify the transition
and reward functions of an MDP in a compact manner.
However, in general, solutions to factored MDPs do not
retain the structure and compactness of the problem repre-
sentation, forcing approximate solutions, with approximate
linear programming (ALP) emerging as a very promising
MDP-approximation technique. To date, most ALP work
has focused on the primal-LP formulation, while the dual
LP, which forms the basis for solving constrained Markov
problems, has received much less attention. We show that a
straightforward linear approximation of the dual optimiza-
tion variables is problematic, because some of the required
computations cannot be carried out efficiently. Nonetheless,
we develop a composite approach that symmetrically ap-
proximates the primal and dual optimization variables (ef-
fectively approximating both the objective function and the
feasible region of the LP) that is computationally feasible
and suitable for solving constrained MDPs. We empirically
show that this new ALP formulation also performs well on
unconstrained problems.

1. INTRODUCTION

Classical methods for solving Markov decision processes
(e.g., Puterman, 1994), based on dynamic and linear pro-
gramming, scale very poorly because of the flat state space,
which subjects them to the curse of dimensionality (Bell-
man, 1961), where model size grows exponentially with the
number of problem features. Fortunately, many MDPs are
well-structured, making possible compact factored MDP
representations (Boutilier, Dearden, & Goldszmidt, 1995)
that model the state space as a cross product of state
features, represent the transition function as a dynamic
Bayesian network, and assume the reward function can

be expressed as a linear combination of several functions,
represented compactly on the state features.

However, well-structured problems do not always lead
to well-structured solutions (Koller & Parr, 1999; Dolgov
& Durfee, 2004a), which precipitates the need for approx-
imate solutions. Approximate linear programming (ALP)
(Schweitzer & Seidmann, 1985; de Farias & Van Roy,
2003) is a promising approach, with principled founda-
tions and efficient solution techniques (de Farias & Van
Roy, 2003, 2004; Guestrin, Koller, Parr, & Venkatara-
man, 2003; Patrascu, Poupart, Schuurmans, Boutilier, &
Guestrin, 2002). However, ALP work has mostly focused
on the primal LP, defined on the space of value functions,
and significantly less effort has been invested in approxi-
mating the dual LP, which operates on occupation measures
(state-visitation frequencies) and serves as the foundation
for solving constrained MDPs (Altman, 1999; Kallenberg,
1983; Dolgov & Durfee, 2004b).

Developing efficient solutions to factored MDPs with
constraints requires an approximate version of the dual
LP, and there are two obvious ways to achieve this: take
the Dual of the Approximated version of the primal LP
(DALP), or Approximate the Dual LP (ADLP). The former
formulation, the DALP, was considered and analyzed by
Guestrin (2003). A weakness of this approach (detailed in
Section 3) is that it scales exponentially with the induced
width of the associated cluster graph, which can be very
large (especially for constrained MDPs, where the cost
functions increase the interactions between state features).

The second, ADLP approach instead approximates the
dual LP directly. Unfortunately, as we demonstrate in Sec-
tion 3, linear approximations of the optimization variables
do not interact with the dual LP as well as they do with
the primal, because the constraint coefficients cannot be
computed efficiently. To address this, in Section 4, we
develop a composite ALP that symmetrically approximates
both the primal and the dual optimization coordinates
(the value function and the occupation measure), which is



equivalent to approximating both the objective functions
and the feasible regions of the LPs. This method provides
an efficient approximation to constrained MDPs, and also
performs well on unconstrained problems, as we empiri-
cally show in Section 5.

As viewed from the latter perspective of solving un-
constrained problems, a contribution of this work is that
it extends the suite of currently-available ALP techniques
by the composite-ALP approach, which has the following
useful properties. First, it allows for complete control of the
quality-versus-complexity tradeoff in its approximation of
the constraint set, as opposed to other methods where the
objective function is approximated, but the feasible region
is represented exactly (e.g., Guestrin, 2003; Guestrin et al.,
2003). As such, the composite ALP is beneficial for do-
mains, where the number of constraints required to exactly
represent the feasible region grows exponentially (which
frequently occurs in MDPs with costs and constraints);
there, our approach trades quality for efficiency, compared
to more exact methods. Second, compared to other methods
that do approximate the feasible region, the benefit of our
approach is that in some domains it might be easier to
choose good basis functions for the approximation than it
is to find good values for other approximation parameters
(e.g., a sampling distribution over the constraint set as
proposed by de Farias and Van Roy (2003)).

2. BACKGROUND AND RELATED WORK

A discrete-time, infinite-horizon, discounted MDP (e.g.,
Puterman, 1994) can be described as 〈S,A, P,R, γ〉, where
S = {i} is the finite set of system states, A = {a} is a
finite set of actions, P : S×A×S 7→ [0, 1] is the transition
function (Piaj is the probability of moving into state j upon
executing action a in state i), R : S × A 7→ R defines the
bounded rewards (Ria is the reward for executing action
a in state i), and γ ∈ [0, 1) is the discount factor (a unit
reward received at time τ is aggregated into the total reward
as γτ ).

A solution to such an MDP is a stationary, deterministic
policy, and the key to obtaining it is to compute the optimal
value function v, which, for every state, defines the total
expected discounted reward of the optimal policy. Given
the optimal value function, the optimal policy is to act
greedily with respect to it. The optimal value function can
be obtained, for example, using the following minimization
LP, which is often called the primal LP of an MDP (e.g.,
Puterman, 1994):

min
∑
i

αivi

∣∣∣∣ vi ≥ Ria + γ
∑
j

Piajvj ∀i ∈ S, a ∈ A

(1)

where α is an arbitrary strictly positive distribution over
the state space (αi > 0). This LP has |S| optimization
variables and |S||A| constraints. The problem can also be
formulated as an equivalent dual LP with |S||A| variables
and |S| constraints:

max
∑
i,a

Riaxia

∣∣∣∣∣∣
∑
a

xja − γ
∑
i,a

xiaPiaj = αj , ∀i ∈ S;

xia ≥ 0, ∀i ∈ S, a ∈ A,
(2)

where x is the occupation measure (xia is the discounted
number of executions of action a in state i), xi =

∑
a xia

is the total expected discounted number of visits to state i,
and the constraints in (2) ensure the conservation of flow
through each state. Given a solution to (2), the optimal
policy can be computed as:

πia = xia/
∑
a

xia = xia/xi. (3)

The dual LP is well-suited for the addition of constraints
(Altman, 1999). Given a set of T cost functions Ct, t ∈
[1, T ], where each cost function is defined similarly to the
rewards: Ct : S ×A 7→ R, the problem of maximizing the
total expected reward subject to constraints on total costs
can be formulated as an LP by augmenting (2) with linear
constraints ∑

i,a

Ctiaxia ≤ ĉt, ∀t ∈ [1, T ], (4)

where ĉt is the upper bound on cost of type t. As discussed
in Section 3, adding such costs to the model has a negative
effect on the complexity of factored approximations, as it
aids in the propagation of dependencies.

2.1 Factored MDPs

The classical MDP model requires an enumeration of
all possible system states and thus scales very poorly. To
combat this problem, a compact MDP representation has
been proposed (Boutilier et al., 1995) that defines the state
space as the cross-product of the state features: S = z1 ×
z2 . . . zN , and uses a factored transition function and an
additively-separable reward function.

The transition function is specified as a two-layer dy-
namic Bayesian network (DBN) (Dean & Kanazawa, 1989),
with the current state features viewed as the parents of the
next time-step features:

Piaj = P (z(j)|z(i), a) =
N∏
n=1

pn(zn(j)|a, zpn(i)), (5)

where z(·) is the instantiation of all Z features correspond-



ing to a state, zn(·) denotes the value of the nth state feature
of a state, and zpn(·) is the instantiation of the set of
features Zpn that are the parents of zn in the transition
DBN. Likewise, in the rest of the paper, we will use Zϕ to
refer to the set of features in the domain of function ϕ, and
zϕ to refer to an instantiation of these features. The reward
function for a factored MDP is compactly defined as

Ria =
M∑
m=1

rm(zrm(i), a), (6)

where zrm(·) is an instantiation of a subset of state features
Zrm ⊆ Z that are in the domain of the mth local reward
function rm.

For a constrained MDP, we can define factored cost
functions analogously to the reward function:

Ctia =
M∑
m=1

ckm(zckm(i), a). (7)

Clearly, this factored representation is only beneficial if
the local transition, reward, and cost functions have small
domains, i.e., they each depend only on a small subset of
all state features Z .

2.2 Primal Approximation (ALP)

Approximate linear programming (Schweitzer & Sei-
dmann, 1985; de Farias & Van Roy, 2003) lowers the
dimensionality of the primal LP (1) by restricting the
optimization to the space of value functions that are linear
combination of a predefined set of K basis functions h:

vi = v(z(i)) =
K∑
k=1

hk(zhk(i))wk, (8)

where hk(zhk) is the kth basis function defined on a small
subset of the state features Zhk ⊂ Z , and w are the
new optimization variables. For the approximation to be
computationally effective, the domain of each basis function
has to be small (|Zhk | � |Z|).

As a notational convenience, we can rewrite the above
as v = Hw, where H is a |S| × |w| matrix composed of
basis functions hk.1

Thus, LP (1) becomes:

minαTHw
∣∣∣ AHw ≥ r, (9)

1While using this notation, it is important to keep in mind that
the exponentially-sized H would never be explicitly written out,
because each column is a basis function that can be represented
compactly.

where we define the constraint matrix Aia,j = δij − γPiaj
(where δij is the Kronecker delta, δij = 1 ⇔ i = j).

For this method to be effective, we need to be able
to efficiently compute the objective function αTH and
the constraints AH , which can be done as described in
(Guestrin et al., 2003). Consider a factored initial distribu-
tion:

αi =
∏
m

µm(zµm(i)),

where, as usual, the domain of each factor µm is taken to
be small (|Zµm | � |Z|). Then, the objective function can
be computed as:2

(αTH)k =
∑
i

αiHik =
∑
i

∏
m

µm(zµm(i))hk(zhk(i))

=
∑
z′

∏
m′

µm′(z′µm′ )hk(z
′
hk

),

where z′ iterates over all features in the union of the domain
of hk and the domains of those µm′ that have a non-zero
intersection with the domain of hk: z′ = {zµm ∪ zhk :
Zµm ∩ Zhk 6= ∅}, because all µm that do not have any
variables in common with hk factor out and their sum is
1 (since it is a sum of a probability distribution over its
domain). This computation is illustrated in the following
example.

Example 1: Consider a state space S = z1×z2×z3, a set
of basis functions H = [h1(z1), h2(z1, z2), h3(z3)], and an
initial distribution α = µ1(z1)µ2(z2)µ3(z2, z3). Then,

(αTH)1 =
∑

z1,z2,z3

µ1(z1)µ2(z2)µ3(z2, z3)h1(z1)

=
∑
z1

µ1(z1)h1(z1)
∑
z2,z3

µ2(z2)µ3(z2, z3)

=
∑
z1

µ1(z1)h1(z1),

which can be computed efficiently by summing over all
values of z1 instead of z1×z2×z3. Similarly, both (αTH)2
and (αTH)3 can be computed by summing over z2×z3. �

The constraint coefficients in (9) can also be computed
efficiently:

(AH)ia,k =
∑
j

Aia,jhk(j) =
∑
j

(δij − γPiaj)hk(j)

=
∑
z

δ(z(i), z)hk(z)− γ
∑
z

P (z|z(i), a)hk(z).

The first sum can be computed efficiently, because it is

2Here and below the general expression is followed by a simple
example; some readers might find it beneficial to switch this order.



simply hk(zhk(i)), since δ is nonzero only at z(j) =
z(i). The second term can also be computed efficiently,
since P (z(j)|z(i), a) is a factored probability distribution
(just like in the case of α above). The following example
illustrates the computation.

Example 2: Consider S and H as in Example 1 and the
transition model (with actions omitted):

P (z′1, z
′
2, z

′
3|z1, z2, z3) = p1(z′1|z1)p2(z′2|z1, z2)p2(z′3|z3)

Then, the second term in AH , shown for k = 3, becomes:∑
j

Piajh3(j) =
∑
j

P (z′1(j), z
′
2(j), z

′
3(j)|z1, z2, z3)h3(j)

=
∑

z′
1,z

′
2,z

′
3

p1

(
z′1|z1(i)

)
p2

(
z′2|z1(i), z2(i)

)
p3

(
z′3|z3(i)

)
h3(z′1)

=
∑
z′
3

p3

(
z′3|z3(i)

)
h3(z′3)

∑
z′
1,z

′
2

p1

(
z′1|z1(i)

)
p2

(
z′2|z1(i)

)
=

∑
z′
3

p3

(
z′3|z3(i)

)
h3(z′3)

which can be efficiently computed by summing over z′3. �
The primal ALP described above reduces the number

of optimization variables from |S| to |w| = K, and, as
just illustrated, the coefficients of the objective function
and every constraint row can be computed efficiently. How-
ever, the number of rows in the constraint matrix remains
exponential at |S||A|, so the ALP has to undergo some
additional transformation (or approximation) to become
feasible. To address this issue, several techniques have been
proposed, such as sampling (de Farias & Van Roy, 2004)
and exploiting problem structure (Guestrin et al., 2003).

2.3 Dual of Primal Approximation

The primal ALP (9) operates on the value function
coordinates, and is thus not well-suited for addition of
costs and constraints (defined on the occupation measure).
Guestrin (Guestrin, 2003) considers the dual of (9) that can
be used for formulating constrained problems:

max rTx
∣∣∣HTATx = α. (10)

This LP has |S||A| variables (occupation-measure) and
|w| = K constraints (approximated flow conservation).
The exact occupation measure can be represented more
compactly by using marginal occupation measures (or
marginal visitation frequencies (Guestrin, 2003)), which
define the occupation measure over subsets of the state
features (their domains are defined by the transition, reward,
and basis functions). However, assuring global consistency
of the marginal occupation measures requires expanding

their domains, making the complexity exponential in the
size of the induced width of the cluster graph (a graph
with a vertex per variable and edges between variables that
appear in one function). For some domains, the induced
width is large, especially for constrained MDPs, where the
cost functions introduce additional edges into the cluster
graph. Guestrin (2003) also suggests an interesting further
approximation of the DALP, where global consistency of
marginal occupation measures is not guaranteed. To date,
this approximation has not been carefully investigated, but
is potentially promising. Another implication of the DALP
approach is that the number of constraints grows with the
number of primal basis functions and their domains (the
more functions, and the bigger their domains, the larger
the induced width of the cluster graph).

The new approach that we propose independently con-
trols the number of optimization variables (via the primal
basis) and the number of constraints (via the dual basis),
thus providing an effective approximation method for prob-
lems with large induced graph widths.

3. APPROXIMATION OF THE DUAL LP
Another way to construct an ALP suitable for constrained

problems is to approximate the variables of the dual LP (2)
using the primal ALP techniques. The focus of this section
is on the negative result that shows that this approximation,
by itself, is not computationally feasible, but the analysis
of this section also paves the way for the approximation
presented in Section 4. By straightforwardly applying the
techniques from the primal ALP, we could restrict the
optimization in (2) to a subset of the occupation measures
that belong to a certain basis Q = [ql], l ∈ [1, L],
reducing the number of optimization variables from |S||A|
to |y| = L:

max rTQy
∣∣ATQy = α, Qy ≥ 0. (11)

For this approximation to be practical, we need to efficiently
compute the objective function rTQ and the constraint
matrix ATQ, as well as deal with the exponential number
of constraints. The objective-function coefficients can be
computed efficiently:

(rTQ)l =
∑
i,a

(rT )iaQia,l =
∑
i,a

M∑
m=1

rm
(
zrm(i)

)
ql(zql)

=β
M∑
m=1

[ ∑
zrm

S
zql

rm
(
zrm(i)

)
ql(zql)

]
,

where β = |Z \ (Zrm
⋃
Zql)| is the normalization constant

that is the size of the domain not included in the summation.



Each of the M terms above can be efficiently computed by
summing over the state variables in the union Zrm

⋃
Zql .

Unfortunately, the same is not true for the constraint
coefficients, and therein lies the biggest problem of the dual
ALP:

(ATQ)j,l =
∑
i,a

δijql(i, a)−
∑
i,a

γPiajql(i, a) (12)

The first term can be calculated efficiently, as in the case
of the primal ALP, since it is simply ql(zhk(j)). However,
the second term presents problems, as demonstrated below.

Example 3: Consider S and P as in the previous ex-
amples. The problematic second term in (12), for Q =
[q1(z1, z2, a), q2(z2, a), q3(z3, a)], becomes (l = 3, with
actions a omitted for brevity):∑
z1,z2,z3

q3(z3)p1(z′1(j)|z1)p2(z′2(j)|z1, z2)p3(z′3(j)|z3)

=
∑
z3

q3(z3)p3(z′3(j)|z3)
∑
z1,z2

p1(z′1(j)|z1)p2(z′1(j)|z2, z2)

and computing the last term requires summing over the
whole state space z1 × z2 × z3. �

This example demonstrates the critical difference be-
tween the primal and dual ALPs, due to the difference
between the left- and the right-hand-side operators A(·) and
(·)A, used in the primal and dual ALPs, respectively. The
former can be computed efficiently, because

∑
a P (a|b) =

1 and their product drops out of the computation, while
the latter cannot, since a product of terms of the form∑
b P (a|b) is hard to compute efficiently. Therefore, the

drawback of the dual ALP (11) is that it has an exponential
number of constraints, and computing the coefficients for
each one of them scales exponentially.

4. COMPOSITE ALP
The ADLP (11) approximates the dual variables x, which

is equivalent to approximating the feasible region of the
primal ALP (9); the primal does the opposite. We can
combine the two by applying the dual approximation x =
Qy to the DALP (10):

max rTQy

∣∣∣∣∣HTATQy = HTα,

Qy ≥ 0.
(13)

This ALP still has an exponential number (|S||A|) of
constraints in Qy ≥ 0, but this can be resolved in several
ways. These constraints can be reformulated using the non-
serial dynamic programming approach (Bertele & Brioschi,
1972) (analogously to its application in (Guestrin et al.,
2003)), yielding an equivalent, but smaller, constraint set.

Another approach is to simply restrict attention to non-
negative basis functions Q and replace the constraints with
a stricter condition y ≥ 0 (introducing another source of
approximation error). We will adopt the latter approach
(which works quite well, as shown by our experiments),
leading to the following LP:

max rTQy

∣∣∣∣∣HTATQy = HTα,

y ≥ 0.
(14)

The above gives the dual form of the composite ALP. The
equivalent primal form is:

minαTHw
∣∣∣QTAHw ≥ QT r. (15)

The primal form has K variables (one per primal basis
function hk) and L constraints (one per dual basis function
ql); the dual form is the opposite. Thus, the composite
ALP combines the efficiency gains of the primal and the
dual approximations. However, as in the case of the primal
and the dual ALPs, the usefulness of the composite ALP
is contingent upon our ability to efficiently compute the
coefficients of its objective function and constraints. The
objective functions of the two forms are the same as in
the primal and the dual ALPs, respectively, so both can be
computed efficiently as described in the earlier sections.

Thus, the important question is whether the constraint
coefficients can be computed efficiently. A first glance at
the constraints conveys some pessimism, because of the
term AQ, which was the stumbling block in the dual ALP.
However, despite that, the computation can be carried out
efficiently if we apply the primal approximation first and
then the dual approximation to the result. Consider the
primal approximation:

(AH)ia,k

= hk
(
zhk(i)

)
− γ

∑
zhk

∏
n:zn∈Zhk

pn
(
zn|zpn(i), a

)
hk(zhk)

= hk(zhk)− ψ(zψk , a),

where we introduced ψk to refer to the second term, which
is a compact function whose domain is the union of the
DBN parents of all features that are in the domain of the
kth basis function: Zψk =

⋃
n:zn∈Zhk

Zpn . Applying the
dual approximation to the result:(
QT (AH)

)
l,k

=
∑
i,a

ql(i, a)
(
hk(zhk(i))− ψ(zψk , a)

)
=

∑
zhk

S
zql

ql(zql , a)hk(zhk)−
∑

zψk
S

zql ,a

ql(zql , a)ψ(zψk , a)

The first term can be computed efficiently be summing over



Zhk
⋃
Zql , the union of the domains of the kth primal and

the lth dual basis function. The second term is obtained
by summing over the action space and Zψk

⋃
Zql =( ⋃

n:zn∈Zhk
Zpn

) ⋃
Zql , the domain of ql dual basis func-

tion and the union of the DBN parents of all features in the
domain of hk. Therefore, the coefficients of the composite
constraint matrix can be computed efficiently by summing
over relatively small domains (assuming the domains of all
basis functions are small and the transition DBN is well-
structured).

Example 4: Consider S, P , and H as in the previous
examples. Then, for k = 3, we have:

(AH)ia,3 = h3

(
z3(i)

)
− γ

∑
z′
3

P
(
z′3|z3(i), a

)
h3(z′3)

Thus, Zψ3 = {z3}, and ψ3 can be computed efficiently by
summing over z′3. Multiplying by Q, we get for l = 2:

(QTAH)2,3 =
∑
i,a

(QT )2,ia(AH)ia,3

=
∑
z2,z3

q2(z2)h3(z3)− γ
∑
z2,z3

q2(z2)
∑
z′
3

P
(
z′3|z3, a

)
h3(z′3)

which can be computed by summing over z2 × z3. �
Another important issue to consider is the feasibility and

boundedness of the composite ALPs (15) and (14). All
ALPs that approximate only the optimization variables (pri-
mal ALP (9); its dual, DALP (10); the dual approximation,
ADLP (11)) are bounded, because the approximation limits
the search to a subset of possible solutions. Feasibility
of the primal ALP (9) can also be ensured by adding
a constant to H (de Farias & Van Roy, 2003). In the
case of the composite ALP, where both the feasible region
and the objective function are approximated, guaranteeing
boundedness and feasibility is slightly more complicated.

Proposition 1: The primal form of the composite ALP
(15) is feasible for any dual basis Q ≥ 0 and any primal
basis H that contains a constant function hk(zhk) = 1.
Proof: By the results of de Farias and Van Roy (de Farias
& Van Roy, 2003), the primal ALP (9) is feasible whenever
the primal basis H contains a constant. Call a feasible
solution to the primal ALP w∗. By definition, w∗ satisfies

AHw∗ ≥ r.

Then, for any Q ≥ 0, QTAHw∗ ≥ QT r also holds,
meaning that (15) also has a feasible solution. �

In other words, introducing a dual approximation Q
only enlarges the feasible region of the primal form of
the composite ALP (15), thus guaranteeing its feasibility.
Unfortunately, (15) is not, in general, bounded, because the

dual basis Q might contain too few constraints. Intuitively,
to bound (15), we need at least as many constraints as
optimization variables. Therefore, an important question is:
Given a primal basis H , how big must the dual basis Q
be to ensure the boundedness of the primal form (15), or,
equivalently, the feasibility of the dual form (14)?

Proposition 2: For any primal basis H (|S| × K), there
exists a dual basis Q (|S||A|×L), such that the number of
dual basis functions does not exceed the number of primal
functions (L ≤ K), and the dual form of the composite
ALP (14) is feasible for H and Q.
Proof: A flat set of constraints ATx = α is always feasible,
thus there also always exists a solution to

HTATx = HTα.

Let rank(HTAT ) = m ≤ K. Then, let us reorder rows and
columns such that the upper-left m×m corner of HTAT

is non-singular. Let the dual basis contain m linearly-
independent functions and reorder the rows of Q such
that the top m rows are also linearly independent. Then,
HTATQ will be K×m, with a non-singular m×m matrix
in the upper-left corner, with the remaining rows (and
right-hand sides HTα), their linear combinations. Thus, the
resulting system HTATQy = HTα will have a solution. �

Therefore, for any primal basis H with K functions,
there exists a dual basis Q with L ≤ K functions, which
guarantees feasibility of the dual form of the composite
ALP (14). By standard properties of LPs, this ensures
the boundedness of the primal form (14), thus assuring
a feasible and bounded solution to both. Intuitively, (14)
has more variables than equations (L > K), thus it is
usually feasible. So, from the practical standpoint, ensuring
boundedness and feasibility of the composite ALPs is
not difficult (when L > K, all but the most degenerate
systems are underconstrained), which was confirmed by
our experiments where using a meaningful dual basis with
several times more functions than the primal (but on the
same order of magnitude), resulted in a feasible (14).

For factored MDPs with cost functions (7) and cost
constraints (4), we can add such constraints to the dual
form of the composite ALP (14):

max rTQy

∣∣∣∣∣∣∣
HTATQy = HTα,

CQy ≤ Ĉ,

y ≥ 0.

(16)

The coefficients of each of the T rows of the constraint
CQy ≤ Ĉ can be computed efficiently, in exactly the same
way as the reward function rTQy, since each row of the
constraint matrix C defines the cost function of type t ∈
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[1, T ], which is assumed to be additively-decomposable (7),
just like the reward function r.

5. EXPERIMENTAL EVALUATION

The main driving force behind the composite ALP was
to construct an efficient ALP, suitable for constrained
MDPs, but the approach can certainly also be applied to
unconstrained problems. Therefore, since there is a wider
variety of algorithms for unconstrained MDPs, we focus on
unconstrained domains in our analysis. This ignores one of
the advantages of the composite ALP, but gives a more
direct and clear comparison to other methods.

We evaluated the composite ALP on several domains,
including the “SysAdmin” problem (Guestrin et al., 2003),
the results for which we report here. The domain involves
a network of n computers, each of which can fail with
a probability that depends on the status of neighboring
computers. The state of the system is defined by n binary
features, where each feature defines the status of one
computer. At each time step, the decision-maker can reboot
a computer and receives a reward that is proportional to the
number of computers that are up and running.

Figure 1a compares the values of policies for a problem
with a unidirectional-ring network The values of policies
obtained by the following methods are given: 1) Optimal,
2) Primal ALP3 with basis functions over all pairs of
features (quadratic), 3) Composite ALP with the same
primal basis, and dual basis over neighbor triplets (linear),
4) Primal ALP with basis functions over single features
(linear), 5) Random policy, 6) Worst policy. We performed
no optimizations of the bases, and only used very simple
functions, such as constants, binary indicators, and identity
matrices. The plot shows the actual values of policies (not

3Note that, for unconstrained problems, the primal ALP (9) is
equivalent to the DALP (10).

the value functions), which is a more accurate metric, as
constraint approximation in the composite ALP can lead to
unrealizable value functions.4

Figure 1b shows the efficiency gains of the composite
ALP, relative to the exact LP and the two primal ALPs
variations. A problem where each pair of variables appears
in at least one function has an induced width that equals
the total number of state variables. Thus, the composite
ALP achieves exponential speedup, compared to a primal
ALP or a DALP with a basis set defined on all pairs of
features, but without a significant loss in quality (Figure 1a).
The complexity of the composite ALP in these experiments
roughly matches the complexity of the primal ALP (or the
DALP) with basis functions over single features (Figure
1b), but the composite produces noticeably better policies
(Figure 1a). Of course, for more-structured problems, basis
functions over single features might suffice, for the more
symmetric bidirectional-ring network (Figure 1c).

A successful deployment of the composite ALP hinges
on the ability to construct good basis functions. The prob-
lem of basis selection is outside the scope of this paper,5 but
our preliminary experimental investigation suggests that, for
many domains, simple and intuitive basis functions perform
quite well. We performed experiments on domains with
weakly-coupled tasks, using a very simple and intuitive
approach to basis function construction: in the spirit of
(Poupart, Boutilier, Patrascu, & Schuurmans, 2002), we
used optimal solutions (v∗ and x∗) to subproblems with

4Given the same primal basis, the composite ALP will, in
general, produce lower-quality solutions than the primal ALP,
because it also approximates the feasible region. The data point in
Figure 1a, corresponding to 10 computers, is unusual. The value
function of the composite ALP maps to a better policy than a
more accurate value function of the primal ALP.

5For a discussion of the complexity and heuristics for basis
selection for the primal ALP, see (Patrascu et al., 2002).



small combinations of subtasks as basis functions (H
and Q) for the original problems. Our preliminary results
indicate that this approach is promising and yields high-
quality approximations.

6. DISCUSSION, CONCLUSIONS, AND
FUTURE WORK

Our main motivation in this work has been to develop
a tractable approximation to constrained MDPs, for which
exact solutions are predominantly based on the dual LP (2).
The sole previous ALP formulation based on the dual LP
is Guestrin’s DALP (Guestrin, 2003). As discussed in Sec-
tion 3, DALP unfortunately scales exponentially with the
induced width of the cluster graph, which can be quite large,
especially for constrained problems. We have presented
the composite ALP approach as a more tractable yet still
effective alternative that approximates both the optimization
variables and the feasible regions of the LPs, symmetrically
handling both the primal and dual variables. The composite
ALP can also be effective in solving unconstrained MDPs,
as we have empirically shown in Section 5. Overall, our
experiments confirm the intuition behind composite ALPs:
if the objective function is approximated, then using the
exact feasible region can be wasteful. In the future, we
would also like to establish more definitive quality bounds
for the approach.

An alternative feasible-region approximation technique,
which statistically samples the constraint set, was proposed
by de Farias and Van Roy (2003). However, applying
this idea to the dual formulation is problematic, since
computing the coefficients for a given constraint in the
ADLP (11) is computationally difficult, as demonstrated in
Section 3. For unconstrained problems, a careful compar-
ison of the constraint sampling scheme to the composite
ALP is an interesting direction for future work, but a
direct comparison is difficult, because, even given the same
primal basis H , the performance of the two algorithms
can vary greatly depending on the choice of constraint-
approximation parameters (sampling distribution and the
dual basis Q). Another possible way of approximating dual
LPs for problems with large induced cost-network widths is
to use the DALP (11) with marginal occupation measures
that are not globally consistent, as suggested by Guestrin
(2003). This idea (and its comparison to our composite
ALP) deserves future study.

7. ACKNOWLEDGMENTS

This material is based upon work supported by Hon-
eywell International, and by the DARPA/IPTO COORDI-
NATORs program and the Air Force Research Laboratory

under Contract No. FA8750–05–C–0030. The views and
conclusions contained in this document are those of the
authors, and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Gov-
ernment. Thanks to the anonymous reviewers for helpful
comments and suggestions.

REFERENCES
Altman, E. (1999). Constrained Markov Decision Processes.

Chapman and HALL/CRC.
Bellman, R. (1961). Adaptive Control Processes: A Guided Tour.

Princeton University Press.
Bertele, U., & Brioschi, F. (1972). Nonserial Dynamic Program-

ming. Academic Press.
Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting

structure in policy construction. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, pp.
1104–1111. Morgan Kaufmann.

de Farias, D. P., & Van Roy, B. (2003). The linear programming
approach to approximate dynamic programming. Operations
Research, 51(6).

de Farias, D., & Van Roy, B. (2004). On constraint sampling
in the linear programming approach to approximate dynamic
programming.. Mathematics of Operations Research, 29(3),
462–478.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about
persistence and causation. Computational Intelligence, 5(3),
142–150.

Dolgov, D. A., & Durfee, E. H. (2004a). Graphical models in
local, asymmetric multi-agent Markov decision processes. In
Proc. of the Third Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS-04).

Dolgov, D. A., & Durfee, E. H. (2004b). Optimal resource
allocation and policy formulation in loosely-coupled Markov
decision processes. In Proc. of the 14th Int. Conf. on Automated
Planning and Scheduling.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003).
Efficient solution algorithms for factored MDPs. Journal of
Artificial Intelligence Research, 19, 399–468.

Guestrin, C. (2003). Planning Under Uncertainty in Complex
Structured Environments. Ph.D. thesis, Computer Science De-
partment, Stanford University.

Kallenberg, L. (1983). Linear Programming and Finite Markovian
Control Problems. Math. Centrum.

Koller, D., & Parr, R. (1999). Computing factored value functions
for policies in structured MDPs. In Proceedings of the Sixteenth
International Conference on Artificial Intelligence IJCAI-99, pp.
1332–1339.

Patrascu, R., Poupart, P., Schuurmans, D., Boutilier, C., &
Guestrin, C. (2002). Greedy linear value-approximation for
factored markov decision processes. In Eighteenth national
conference on Artificial intelligence, pp. 285–291. American
Association for Artificial Intelligence.

Poupart, P., Boutilier, C., Patrascu, R., & Schuurmans, D. (2002).
Piecewise linear value function approximation for factored mdps.
In Eighteenth national conference on Artificial intelligence, pp.
292–299. American Association for Artificial Intelligence.

Puterman, M. L. (1994). Markov Decision Processes. John Wiley
& Sons, New York.

Schweitzer, P., & Seidmann, A. (1985). Generalized polynomial
approximations in Markovian decision processes. J. of Math.
Analysis and Applications, 110, 568 582.


