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Abstract—In [23], a new Hybrid Probabilistic Logic Pro-
grams framework has been proposed, and a new seman-
tics has been developed to enable encoding and reason-
ing about real-world applications. In this paper, the lan-
guage of Hybrid Probabilistic Logic Programs framework
of [23] is extended to allow non-monotonic negation, and
two alternative semantics are defined: stable probabilis-
tic model semantics and probabilistic well-founded seman-
tics. Stable probabilistic model semantics and probabilis-
tic well-founded semantics generalize stable model seman-
tics and well-founded semantics of traditional normal logic
programs, and they reduce to the semantics of original Hy-
brid Probabilistic Logic programs framework of [23] for pro-
grams without negation. It is the first time that two differ-
ent semantics for Hybrid Probabilistic Programs with non-
monotonic negation as well as their relationships are de-
scribed. This development provides a foundational ground
for developing computational methods for computing the
proposed semantics. Furthermore, it makes it clearer how to
characterize non-monotonic negation in probabilistic logic
programming frameworks for commonsense reasoning.

I. Introduction

Hybrid Probabilistic Programs (HPP) [5] is a probabilis-
tic logic programming framework that enables the user to
explicitly encode his/her knowledge about the type of de-
pendencies existing between the probabilistic events being
described by the programs. HPP generalizes the proba-
bilistic annotated logic programming framework, originally
proposed in [18] and further extended in [19]. Since the
aim of probabilistic logic programming in general, and of
the HPP framework in particular, is to allow reasoning and
decision making under probabilistic and statistical knowl-
edge, a generalization and a new semantics for HPP have
been defined in [23]. The idea in [23] comes upon observ-
ing that commonsense reasoning about probabilities relies
on how likely (probable) are the various events to occur,
rather than how precise our knowledge about these prob-
abilities is. The generalization includes adding the ability
to encode the user’s knowledge about how to combine the
probabilities of the same event derived from different rules
in HPP. In addition, the new semantics, intuitively, cap-
tures the probabilistic reasoning according to how likely
are the various events to occur, by employing the truth or-
der instead of the knowledge order [5]. It was shown that
the modified HPP framework is more suitable for reason-
ing and decision making tasks, including those arising from
probabilistic planning. In addition, it was shown that the
new HPP framework subsumes Lakshmanan and Sadri’s
[11] probabilistic implication-based framework as well as it

is a natural extension of classical logic programming.
It is known that non-monotonic negation is vital to cap-

ture the principles of commonsense reasoning [1]. More-
over, it is important to provide the ability to derive neg-
ative conclusions in the absence of positive information
[20]. Therefore, it is essential to extend the different prob-
abilistic logic programming frameworks to deal with non-
monotonic negation. In this view, the probabilistic logic
programming framework in [19] was extended in [20] to al-
low this important feature by developing a semantics based
on a notion of stable models [7]. However, the stable model
semantics extension in [20] is computationally expensive
[15], since at every fixpoint iteration an exponential num-
ber of linear programs, each having an exponential number
of variables, needs to be solved [15]. The main reason for
this computational complexity arises from the fact that
[20] allows annotated conjunctions and disjunctions to ap-
pear as heads of the rules. Also, it is worth noting that
knowledge order was used in defining the stable model se-
mantics in [20] as well as a fixed assumption (ignorance) is
postulated among the dependencies of the various events
encoded by the logic programs.

In [13], [14], a well-founded like semantics [8] extension
to the probabilistic logic programming framework of [11]
was introduced along with well-founded like semantics [8]
extension to various non-probabilistic logic programming
frameworks with uncertainty [12]. Although the notion of
non-monotonic negation in [20] is more natural and closer
to the classical notion of non-monotonic negation, the no-
tion of non-monotonic negation in [13], [14] is closer to
classical negation (since Prob(¬A) = 1− Prob(A)). An
alternating fixpoint semantics [8] was introduced in [13]
to describe the well-founded like semantics. It must be
noted that no declarative account was given for the well-
founded semantics [9] of the probabilistic logic program-
ming in [13], [14], due to the way non-monotonic negation
is interpreted, which has an operational nature. This inter-
pretation of non-monotonic negation makes it less natural
to define stable model like semantics [7] and well-founded
like semantics [9]. In [14], a framework to approximate the
well-founded semantics for [12], including the probabilistic
logic programming framework of [11], was described. The
approximate well-founded semantics is based on the idea
that uncertainty values are assigned as approximations to
atoms of the Herbrand base, in the form of intervals, where
the certainty values of the atoms lie within these intervals.
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However, it is not clear how the approximate well-founded
semantics extension [14] works for the probabilistic logic
programming framework of [11], where probabilities are
originally represented as intervals. To this end, it seems
that it is not feasible to define a natural notion of non-
monotonic negation as well as stable model semantics [7]
extension for the probabilistic logic programming frame-
work in [11].

In this paper, we extend the language of Hybrid Prob-
abilistic Logic Programs of [23], which allows multiple
modes of probabilistic combinations and employs the truth
order, to support non-monotonic negation, by considering
only annotated atoms as heads of rules. This is to avoid
the computational complexity inherited from allowing an-
notated conjunctions or disjunctions to appear as heads of
rules. In [23], we have shown that it is possible to develop
an algorithm to compute the least fixpoint of HPP with-
out negation and with only annotated atoms as heads of
rules in worst-case time complexity O(n2), where n is the
size of a program. In addition, we define two alternative
semantics for the extended language; the stable probabilis-
tic model semantics and the probabilistic well-founded se-
mantics and study their relationships. We show that the
stable probabilistic model semantics and the probabilistic
well-founded semantics generalize the stable model seman-
tics [7] and the well-founded semantics [9] for normal logic
programs, and they reduce to the semantics of HPP [23] in
the absence of non-monotonic negation. An important re-
sult is that the relationship between the stable probabilistic
model semantics and the probabilistic well-founded seman-
tics preserves the relationship between the stable model
semantics and the well-founded semantics for normal logic
programs [9].

Another reason why these proposed semantics are in-
teresting is that they provide a foundational ground for
building algorithms and systems for computing the mean-
ing of HPP with non-monotonic negation based on the
stable probabilistic model semantics and the probabilis-
tic well-founded semantics. The fact that these proposed
semantics naturally generalize their classical counterparts
suggests that efficient algorithms and implementations can
be developed by extending the existing efficient algorithms
and implementations developed for the stable models and
the well-founded semantics for normal logic programs, such
as SMODELS [17]. To show this point, an algorithm for
computing the least fixpoint for HPP is described in [23],
that extends Dowling-Gallier algorithm for computing the
satisfiability of a set of Horn formulae [6], which is the
ground base for developing the various auxiliary functions
in SMODELS (preliminary design of these algorithms has
been presented in [21]).

II. Hybrid Probabilistic Programs

In the following subsections, we present the syntax of
the proposed Hybrid Probabilistic Programs with non-
monotonic negation. We also review the basic syntax, as
presented in [5], [23], and the semantics, as described in
[23], of Hybrid Probabilistic Programs without negation.

A. Probabilistic Strategies

Let C[0, 1] denotes the set of all closed intervals in
[0,1]. In the context of HPP, probabilities are assigned to
primitive events (atoms) and compound events (conjunc-
tions or disjunctions of atoms) as intervals in C[0,1]. Let
[a1, b1], [a2, b2] ∈ C[0,1]. Then the truth order asserts that
[a1, b1]≤t [a2, b2] iff a1 ≤ a2 and b1 ≤ b2. The knowledge or-
der states that [a1, b1] ≤k [a2, b2] iff [a2, b2] ⊆ [a1, b1]. The
set C[0,1] and the relation ≤t form a complete lattice. In
particular, the join (⊕t) operation is defined as [a1, b1]⊕t

[a2, b2] = [max{a1, a2},max{b1, b2}] and the meet (⊗t) is
defined as [a1, b1] ⊗t [a2, b2] = [min{a1, a2}, min{b1, b2}]
w.r.t. ≤t. The type of dependency among the primitive
events within a compound event is described by probabilis-
tic strategies, which are explicitly selected by the user. We
call ρ, a pair of functions 〈c,md〉, a probabilistic strat-
egy (p-strategy), where c : C[0,1]×C[0,1]→ C[0,1], the
probabilistic composition function, which is commutative,
associative, monotonic w.r.t. ≤t, and meets the follow-
ing separation criteria: there are two functions c1, c2 such
that c([a1, b1], [a2, b2]) = [c1(a1, a2), c2(b1, b2)]. Whereas,
md : C[0, 1] → C[0, 1] is the maximal interval function.
The maximal interval function md of a certain p-strategy
returns an estimate of the probability range of a primi-
tive event, A, from the probability range of a compound
event that contains A. The composition function c re-
turns the probability range of a conjunction (disjunc-
tion) of two events given the ranges of its constituents.
For convenience, given a multiset of probability inter-
vals M = {{[a1, b1], . . . , [an, bn]}}, we use cM to denote
c([a1, b1], c([a2, b2], . . . , c([an−1, bn−1], [an, bn])) . . .). Accord-
ing to the type of combination among events, p-strategies
are classified into conjunctive p-strategies and disjunctive
p-strategies. Conjunctive (disjunctive) p-strategies are em-
ployed to compose events belonging to a conjunctive (dis-
junctive) formula (please see [5], [23] for the formal defini-
tions).

B. Language Syntax

In this subsection, we describe the syntax of Hybrid
Probabilistic Programs and define a syntax for Hybrid
Probabilistic Programs with non-monotonic negation. Let
L be an arbitrary first-order language with finitely many
predicate symbols, constants, and infinitely many vari-
ables. Function symbols are disallowed. In addition,
let S = Sconj∪Sdisj be an arbitrary set of p-strategies,
where Sconj (Sdisj) is the set of all conjunctive (disjunc-
tive) p-strategies in S. The Herbrand base of L is de-
noted by BL. An annotation denotes a probability in-
terval and it is represented by [α1, α2], where α1, α2 are
called annotation items. An annotation item is either a
constant in [0, 1], a variable (annotation variable) rang-
ing over [0, 1], or f(α1, . . . , αn) (called annotation func-
tion) where f is a representation of a computable total
function f : ([0,1])n→ [0,1] and α1, . . . ,αn are annotation
items. The building blocks of the language of HPP are hy-
brid basic formulae. Let us consider a collection of atoms
A1, . . . ,An, a conjunctive p-strategy ρ, and a disjunctive
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p-strategy ρ′. Then A1 ∧ρ . . .∧ρ An and A1 ∨ρ′ . . .∨ρ′ An

are called hybrid basic formulae, and bfS(BL) is the set
of all ground hybrid basic formulae formed using distinct
atoms from BL and p-strategies from S. An annotated hy-
brid basic formula is an expression of the form F : µ where
F is a hybrid basic formula and µ is an annotation. A
hybrid literal is an annotated hybrid basic formula F : µ
(positive annotated hybrid basic formula or positive hybrid
literal) or the negation of an annotated hybrid basic for-
mula not (F : µ) (negative annotated hybrid basic formula
or negative hybrid literal).

Definition 1 (Rules) A normal hybrid probabilistic rule
(nh-rule) is an expression of the form

A : µ← F1 : µ1, . . . ,Fn : µn,not (G1 : µn+1), . . . ,not (Gm : µn+m)

where A is an atom, F1, . . . ,Fn,G1, . . . ,Gm are hybrid basic
formulae, and µ,µi (1≤ i≤m +n) are annotations.

A hybrid probabilistic rule (h-rule) is a nh-rule where
m = 0—i.e., there are no negative hybrid literals.
The intuitive meaning of a nh-rule, in Definition 1, is that,
if for each Fi : µi, the probability interval of Fi is at least
µi and for each not (Gj : µj), it is not provable that the
probability interval of Gj is at least µj , then the probability
interval of A is µ.

Definition 2 (Programs) A normal hybrid probabilistic
program over S (nh-program) is a pair P = 〈R,τ〉, where
R is a finite set of nh-rules with p-strategies from S, and
τ is a mapping τ : BL → Sdisj . A hybrid probabilistic
program (h-program) is a nh-program where all the rules
are h-rules.
The mapping τ in the above definition associates to each
atomic hybrid basic formula A a disjunctive p-strategy that
will be employed to combine the probability intervals ob-
tained from different rules having A in their heads. A
nh-program is ground if no variables appear in any of its
rules. The following is a typical nh-program.

Example 1: Consider an insurance company which de-
termines the premium categories, by calculating the risk
factor according to a genetic test for cancer and the fam-
ily history for this disease. Assume that customers who
have a family history of the disease have a probability of
developing cancer with at least 92%. The insurance com-
pany will assign high premiums to the customers who have
family history of the disease and tested positive as long as
their risk conditions are unchanged. Risk conditions can
be changed by taking specific medications. This situation
can be represented by the following nh-rules:

risk(X) : [0.9,1]← (test(X)∧pc history(X)) : [0.60,0.75],
not changeRisk(X)[0.8,1]

risk(X) : [0,0.1]← (test(X)∧pc history(X)) : [0.60,0.75],
changeRisk(X) : [0.8,1]

changeRisk(X) : [0.9,1]←medicine(X,Med) : [0.65,1]
highPremium(X) : [1,1]← risk(X) : [0.9,1]
lowPremium(X) : [1,1]← risk(X) : [0,0.1]
test(sam) : [0.92,1]←
history(sam) : [0.95,1]←
medicine(sam,medication) : [0.98,1]←

and the mapping τ assigns ncd to risk(sam) and an

arbitrary disjunctive p-strategy [5], [23] to the other
hybrid basic formulae. The ncd denotes the disjunc-
tive negative correlation p-strategy, which is defined as:
cncd([a1, b1], [a2, b2]) = [min(1,a1 +a2),min(1, b1 +b2)]. The
first nh-rule asserts that the risk factor is at least 90%
whenever the cancer genetic test for a customer is pos-
itive and that customer has a family history of cancer
with probability between 60% and 75%, and it is not
provable that his risk conditions have changed with prob-
ability at least 80%. Observe that test and history
events are conjoined according to the positive correlation
p-strategy (denoted by ∧pc) where cpcc([a1, b1], [a2, b2]) =
[min(a1,a2),min(b1, b2)]. The second rule says that the risk
factor is at most 10% whenever the customer risk condi-
tions are changed, even though the person tested positive
and have a family history of the disease with probability
between 60% and 75%. The third nh-rule describes the
change of the risk conditions of a customer with probabil-
ity at least 90% if a medication for the disease becomes
available with probability at least 65%. The fourth and
fifth nh-rules assert that definite high premium and low
premium are considered whenever the probability of risk
factors are at least 90% and at most 10% respectively. The
last three nh-rules represent the facts available about a
specific customer named sam.

C. Satisfaction and Models

In this subsection, we review the declarative semantics
and the fixpoint semantics of h-programs [23] and we gen-
eralize the notions of interpretations, models, and satisfac-
tion to deal with nh-programs. The notion of a probabilis-
tic model (p-model) is based on hybrid formula functions.

Definition 3: A hybrid formula function is a mapping h :
bfS(BL)→ C[0,1] that satisfies the following conditions:
• Commutativity: h(G1 ∗ρ G2) = h(G2 ∗ρ G1), ∗ ∈ {∧,∨},
ρ ∈ S

• Composition: cρ(h(G1),h(G2))≤t h(G1 ∗ρ G2), ∗ ∈ {∧,∨},
ρ ∈ S

• Decomposition. For any hybrid basic formula F , ρ ∈
S, and G ∈ bfS(BL):
mdρ(h(F ∗ρ G))≤t h(F ).

The notion of truth order can be extended to hybrid for-
mula functions. Given hybrid formula functions h1 and
h2, we say (h1 ≤t h2)⇔ (∀F ∈ bfS(BL) : h1(F )≤t h2(F )).
The set of all hybrid formula functions, HFF , and the
truth order ≤t form a complete lattice. The meet ⊗t

and the join ⊕t operations are defined respectively as:
for all F ∈ bfS(BL), (h1 ⊗t h2)(F ) = h1(F )⊗t h2(F ) and
(h1⊕t h2)(F ) = h1(F )⊕t h2(F ).

Definition 4 (Probabilistic Interpretation) A total (par-
tial) probabilistic interpretation of a nh-program P is a
total (partial) hybrid formula function.
Before defining the notion of satisfaction for nh-programs,
we introduce the following notations. Let h be a proba-
bilistic interpretation, then dom(h)⊆ bfS(BL) denotes the
domain of h (dom(h) $ bfS(BL) if h is a partial prob-
abilistic interpretation). We use negdom(h) to denote
the set {F | F ∈ dom(h), h(F ) = [0, 0]}. We also define
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posdom(h) = dom(h)\negdom(h).
Definition 5 (Probabilistic Satisfaction) Let P = 〈R, τ〉

be a ground nh-program, h be a probabilistic interpreta-
tion, and
r ≡ A : µ← F1 : µ1, . . . ,Fn : µn,not (G1 : β1), . . . ,not (Gm :
βm) ∈R. Then
• h satisfies Fi : µi (denoted by h |= Fi : µi) iff Fi ∈
dom(h) and µi ≤t h(Fi).
• h satisfies not (Gj : βj) (denoted by h |= not (Gj :
βj)) iff Gj ∈ dom(h) and βj �t h(Gj).
• h satisfies Body ≡ F1 : µ1, . . . , Fn : µn, not (G1 :
β1), . . . , not (Gm : βm) (denoted by h |= Body) iff
∀(1 ≤ i ≤ n), h |= Fi : µi and ∀(1 ≤ j ≤ m), h |=
not (Gj : βj).
• h satisfies A : µ← Body iff h |= A : µ or h does not
satisfy Body.
• h satisfies P iff h satisfies every nh-rule in R and for
every atomic formula A ∈ dom(h), cτ(A){{µ|A : µ ←
Body ∈R and h |= Body}} ≤t h(A).

Definition 6 (Models) Let P be a nh-program. A total
probabilistic model of P (p-model) is a total probabilistic
interpretation of P that satisfies P . A partial probabilistic
model of P is a partial probabilistic interpretation of P
that can be extended to a total probabilistic model of P .

Proposition 1: Let P be an h-program. hP = ⊗t{h|h is
a p-model of P } is the least p-model of P .
Associated with each h-program P , is an operator, TP ,
called the fixpoint operator, which maps total probabilistic
interpretations to total probabilistic interpretations.

Definition 7: Let P = 〈R,τ〉 be a ground h-program and
h be a total probabilistic interpretation. The fixpoint oper-
ator TP is a mapping TP : HFF →HFF which is defined
as follows:

1. if A is an atom, TP (h)(A) = cτ(A) MA where MA =
{{µ|A : µ ← Body ∈ R such that h |= Body}} and
MA 6= ∅ . If MA = ∅, then TP (h)(A) = [0,0]

2. TP (h)(G1 ∧ρ G2) = cρ(TP (h)(G1), TP (h)(G2)) where
(G1 ∧ρ G2) ∈ bfS(BL)

3. TP (h)(G1∨ρ′ G2) = cρ′(TP (h)(G1),TP (h)(G2)) where
(G1 ∨ρ′ G2) ∈ bfS(BL).

Proposition 2: Let P be an h-program. Then, hP =
lfp(TP ).

III. Probabilistic Well-Founded Semantics

In this section we define the probabilistic well-founded
semantics for nh-programs. We start by defining the no-
tion of probabilistic unfounded set and the immediate con-
sequence operator of nh-programs with respect to a given
probabilistic interpretation. Then the probabilistic well-
founded semantics is defined inductively in terms of these
two operators, which are natural extensions of their clas-
sical counterparts used in the well-founded semantics for
normal logic programs [9].

Definition 8: Let P be a nh-program, HP be the set of
all partial probabilistic interpretations of P , and h1,h2 ∈
HP . We define the following partial order (≤w) on HP :
h1 ≤w h2 iff posdom(h1) ⊆ posdom(h2), negdom(h1) ⊆
negdom(h2), and ∀ F ∈ dom(h1),h1(F )≤t h2(F ).

Definition 9: Let h1 and h2 be two partial probabilistic
interpretations. The meet ⊗w and join ⊕w operation cor-
responding to the partial order ≤w are defined respectively
as:
• (h1⊗w h2)(F ) = h1(F )⊗t h2(F ) for all
F ∈ ((posdom(h1) ∩ posdom(h2)) ∪ (negdom(h1) ∩
negdom(h2))), otherwise, undefined.
• (h1⊕w h2)(F ) = h1(F )⊕t h2(F ) for all
F ∈ ((posdom(h1) ∩ posdom(h2)) ∪ (negdom(h1) ∩
negdom(h2))),
(h1⊕w h2)(F ) = h1(F ) for all
F ∈ ((posdom(h1) \ posdom(h2)) ∪ (negdom(h1) \
negdom(h2))), and
(h1⊕w h2)(F ) = h2(F ) for all
F ∈ ((posdom(h2) \ posdom(h1)) ∪ (negdom(h2) \
negdom(h1))), otherwise, undefined.

Note that, the pair 〈HP ,≤w〉 does not form a lattice. In
fact, if h1, h2 ∈ HP are probabilistic interpretations and
h1 �w h2, then lub{h1,h2} may not exist. Consider BL =
{a,b,c,d}, h1(a) = h1(b) = [0,0],h1(c) = h1(d) = [1,1], and
h2(a) = [0,0],h2(b) = h2(c) = h2(d) = [1,1]. Then, accord-
ing to the definition of ≤w, lub{h1, h2} must assign [0,0]
to a,b and assign [1,1] to b, c and d which does not exist.
However, 〈HP ,≤w〉 is a complete partial order (cpo), i.e.,
a partial order in which the limit of each increasing chain
exists. This is sufficient to allow the inductive construction
of well-founded probabilistic models. The bottom element
in this partial order is the partial probabilistic interpreta-
tion Φ whose domain is the empty set, and its top element
is the total probabilistic interpretation which assigns [1,1]
to each element in bfS(BL). We say that a nh-program
globally satisfies F : ν (not (G : β)) if the nh-program as a
whole provides evidence for satisfying F : ν (not (G : β)).

Definition 10 (Global Satisfaction) Let P be a nh-
program and F : ν (not (G : β)) be a positive (negative)
hybrid literal. We say that F : ν (not (G : β)) is globally
satisfied by P if every minimal probabilistic interpretation
that satisfies P also satisfies F : ν (not (G : β)).

Definition 11 (Probabilistic Unfounded Sets) Let P =
〈R,τ〉 be a ground nh-program, h ∈HP , and U ⊆ bfS(BL)
such that for each non-atomic F = A1∨ρ′ . . .∨ρ′ An ∈ U , all
its constituent atoms belong to U and for each non-atomic
F = A1∧ρ . . .∧ρ An ∈ U at least one Ai ∈ U and the others
are defined in h. U is called a Probabilistic Unfounded Set
of P w.r.t. h if for each atomic A ∈ U we have that for
each nh-rule r in R whose head is A : µ, at least one of the
following conditions holds:
• there exist some positive hybrid literal F : ν in the
body of r such that F ∈ U ;
• h does not satisfy some hybrid literal F : ν or not (G :
β) in the body of r and P does not globally satisfy
F : ν.

We consider h, in the above definition, to be what we
already know about the intended probabilistic model of
P . The idea is that the probabilistic unfounded set corre-
sponds to the set of negative conclusions of the nh-program
P . Therefore, if a hybrid basic formula F is in a proba-
bilistic unfounded set of P , then F should be assigned the
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probability interval [0,0] (representing absolute falsity) by
the total or partial probabilistic model of P . The con-
dition “P does not globally satisfies F : ν” in the above
definition is not required in the case of negative hybrid lit-
erals (not (G : β)). The reason is that if not (G : β) is not
satisfied by h, then not (G : β) is not going to be satisfied
by any h≤w h′. Instead, for positive literals F : ν we need
to enforce the additional condition, used to guarantee that
even by accumulating more knowledge, the probability in-
terval assigned to F will not cover ν.

Definition 12 (Greatest Unfounded Set) Let P be a
ground nh-program and h be a partial probabilistic inter-
pretation. The greatest probabilistic unfounded set UP (h)
of P w.r.t. h is the union of all probabilistic unfounded
sets of P w.r.t. h.

Definition 13 (The Immediate Consequence Operator KP )
Let P = 〈R, τ〉 be a ground nh-program and h ∈ HP .
The immediate consequence operator KP is the mapping
KP : HP →HP defined as follows:

1. For each atom A we have that KP (h)(A) = cτ(A) MA,
where MA 6= ∅ contains the probability intervals µ ob-
tained from the nh-rules A : µ←Body ∈R, such that
h satisfies Body, and for each negative hybrid literal
not (Gj : βj) in Body we have that P globally satisfies
not (Gj : βj).

2. KP (h)(G1 ∧ρ G2) = cρ(KP (h)(G1), KP (h)(G2))
where (G1 ∧ρ G2) contains only atoms from
dom(KP (h))).

3. KP (h)(G1 ∨ρ′ G2) = cρ′(KP (h)(G1), KP (h)(G2))
where (G1 ∨ρ′ G2) contains atoms from
(dom(h) ∪ dom(KP (h))) and at least one atom
from dom(KP (h))).

Intuitively, KP (h) corresponds to the set of positive con-
clusions of P with respect to the probabilistic interpreta-
tion h, where for each F defined in KP (h), KP (h)(F ) 6=
[0, 0]. The condition “P globally satisfies not (Gj : βj)”
in (1) is not restrictive in the case of positive hybrid lit-
erals Fi : µi. The reason is that if Fi : µi is satisfied by
h, then Fi : µi is going to be satisfied by any h ≤w h′.
However, this is not the case with the negative hybrid
literals not (Gj : βj). This is because if not (Gj : βj) in
the body of a nh-rule is satisfied by h, then it might be
not satisfied by some h ≤w h′. Therefore, to guarantee
that not (Gj : βj) is satisfied by h or by any h ≤w h′,
the condition in (1) is imposed. Since for any F de-
fined in KP (h), KP (h)(F ) 6= [0,0], thanks to the proper-
ties of the conjunctive and disjunctive p-strategies (see [5],
[23] for more details), the condition “(G1 ∧ρ G2) contains
only atoms from dom(KP (h))” in (2) and the condition
“(G1∨ρ′ G2) contains atoms from (dom(h)∪dom(KP (h)))
and at least one atom from dom(KP (h))” in (3) are im-
posed to determine KP (h)(G1 ∧ρ G2) and KP (h)(G1 ∨ρ′

G2) respectively. This is because, for any [a, b] 6=
[0, 0] and any conjunctive p-strategy ρ, cρ([a, b], [0, 0]) =
[0, 0]. Then it must be that KP (h)(G1) 6= [0, 0] and
KP (h)(G2) 6= [0,0] for KP (h)(G1 ∧ρ G2) 6= [0,0]. However,
for KP (h)(G1∨ρ′ G2) 6= [0,0], it suffices that KP (h)(G1) 6=
[0,0] or KP (h)(G2) 6= [0,0]. Let us proceed with the def-

inition of the probabilistic well-founded operator and the
construction of the well-founded probabilistic models.

Definition 14: Let P be a nh-program, h be a partial
probabilistic interpretation, KP (h) be the immediate con-
sequence operator, and UP (h) be the greatest probabilistic
unfounded set of P w.r.t. h. Then, WP is the mapping
WP : HP →HP such that
• WP (h)(F ) = KP (h)(F ) for all F ∈ dom(KP (h)), and
• WP (h)(F ) = [0,0] for all F ∈ UP (h).

Lemma 1: 1 The operators WP and KP are monotonic
w.r.t. ≤w, and UP is monotonic w.r.t. ⊆.

Definition 15: The partial probabilistic interpretations
hα and h∞ are defined recursively as follows:

1. h0 = Φ where Φ is a partial probabilistic interpre-
tation with an empty domain.

2. hα = WP (hα−1) where α is the successor ordinal of
α− 1.

3. hα =⊕w{hβ | β < α and α is a limit ordinal}.
4. h∞ =⊕w{hα | α is an ordinal}

Definition 16: Let P be a nh-program. h∞ = lfp(WP )
is the well-founded (partial or total) probabilistic model of
P .

Example 2: Let us consider the nh-program P = 〈R,τ〉
from Example 1. It can be easily seen that P has a total
well-founded probabilistic model h where

h(risk(sam)) = [0,0.1]
h(changeRisk(sam)) = [0.9,1]
h(highPremium(sam)) = [0,0]
h(lowPremium(sam)) = [1,1]
h(test(sam)) = [0.92,1]
h(history(sam)) = [0.95,1]
h(medicine(sam,medication)) = [0.98,1],
h(test(sam)∧pc history(sam)) = [0.92,1].

Example 3: Consider the following nh-program P =
〈R,τ〉 where R is

a : [0.89,0.91] ← not (b : [0.3,0.4])
b : [0.55,0.60] ← not (a : [0.7,0.75])
c : [0.2,0.3] ← d : [0.1,0.15]
d : [0.1,0.2] ← not (e : [0.1,0.3])

and τ(a) = τ(b) = τ(c) = τ(d) = π where π is any arbi-
trary disjunctive p-strategy. This nh-program has a well-
founded partial probabilistic model that assigns [0.2,0.3]
to c, [0.1, 0.2] to d, and [0, 0] to e. This is because
h1 = WP (Φ) assigns [0, 0] to e since KP (Φ) = Φ and
UP (Φ) = {e}. h2 = WP (h1) assigns [0.1,0.2] to d and [0,0]
to e since KP (h1) assigns [0.1,0.2] to d and UP (h1) = {e}.
h3 = WP (h2) assigns [0.1,0.2] to d, [0.2,0.3] to c, and [0,0]
to e since KP (h2) assigns [0.1,0.2] to d and [0.2,0.3] to c,
and UP (h2) = {e}. h3 = WP (h2) is the least fixpoint since
h3 = WP (h2) = h4 = WP (h3).

Example 4: Consider the following nh-program P =

1 All proofs can be found at
http://www.cs.nmsu.edu/TechReports/2005/006.pdf
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〈R,τ〉 where R is

a : [0.4,0.7] ← not (b : [0.5,0.75])
b : [0.5,0.9] ← not (a : [0.35,0.6])
r : [0.25,60] ← a : [0.4,0.65]
r : [0.3,0.65] ← b : [0.5,0.8]

and τ(a) = τ(b) = τ(r) = π. The well-founded p-model of
P is Φ. This is because WP (Φ) = Φ since KP (Φ) = Φ and
UP (Φ) = ∅.

Theorem 1: Every h-program P has a well-founded total
probabilistic model h iff h is the least p-model of P .

Let us show that the probabilistic well-founded seman-
tics generalizes the well-founded semantics of normal logic
programs. A normal logic program P can be represented
as a nh-program P ′ = 〈R,τ〉 where each normal rule

a← b1, . . . , bn, not c1, . . . , not cm ∈ P

can be encoded, in R, as a nh-rule of the form

a : [1, 1]← b1 : [1, 1], . . . , bn : [1, 1], not (c1 : [1, 1]), . . . , not (cm : [1, 1])

where a, b1, . . . , bn, c1, . . . , cm are atomic hybrid basic for-
mulae and [1,1] represents the truth value true. τ is any
arbitrary assignment of disjunctive p-strategies. We call
the class of nh-programs that consists only of nh-rules of
the above form as NHPP1.

Proposition 3: Let P be a normal logic program. Then,
I is a well-founded partial or total model for P iff h is
a well-founded partial or total probabilistic model for P ′

where h(a) = [1,1] iff a ∈ I and h(b) = [0,0] iff not b ∈ I.

IV. Stable Probabilistic Model Semantics

In this section we introduce the notion of stable prob-
abilistic models (sp-models), which extends the notion of
stable models for classical logic programming [7]. The se-
mantics is defined in two steps. First, we guess a p-model
h for a certain nh-program P , then we define the notion of
the probabilistic reduct of P with respect to h—which is
an h-program. Second, we determine whether h is a stable
p-model for P or not by employing the fixpoint operator
of the probabilistic reduct to verify whether h is its least
p-model. All probabilistic interpretations and models that
we consider in this section are total. It must be noted that
every h-program has a unique least (total) p-model [23].

Definition 17 (Probabilistic Reduct) Let P = 〈R,τ〉 be a
ground nh-program and h be a probabilistic interpretation.
The probabilistic reduct Ph of P w.r.t. h is Ph = 〈Rh, τ〉
where:

Rh =


A : µ← F1 : µ1, . . . ,Fn : µn |

A : µ← F1 : µ1, . . . ,Fn : µn,
not (G1 : β1), . . . ,not (Gm : βm) ∈R and

∀(1≤ j ≤m), βj �t h(Gj)


The probabilistic reduct Ph is an h-program. For any
not (Gj : βj) in the body of r ∈ R with βj �t h(Gj) is
simply satisfied by h, and not (Gj : βj) is removed from
the body of r. If βj ≤t h(Gj) then the body of r is not
satisfied and r is trivially ignored.

Definition 18 (Stable Probabilistic Model) A probabilis-
tic interpretation h is a stable p-model of a nh-program P
if h is the least p-model of Ph.

Example 5: It is easy to verify that the only stable p-
model of the program in Example 1 is given by:

h(risk(sam)) = [0,0.1]
h(changeRisk(sam)) = [0.9,1]
h(highPremium(sam)) = [0,0]
h(lowPremium(sam)) = [1,1]
h(test(sam)) = [0.92,1]
h(history(sam)) = [0.95,1]
h(medicine(sam,medication)) = [0.98,1]
h(test(sam)∧pc history(sam)) = [0.92,1]

Example 6: The nh-program in Example 3 has two sta-
ble p-models h1 and h2 where h1(a) = [0.89,0.91],h1(b) =
[0,0],h1(c) = [0.2,0.3],h1(d) = [0.1,0.2],h1(e) = [0,0] and
h2(a) = [0,0], h2(b) = [0.55,0.60], h2(c) = [0.2,0.3], h2(d) =
[0.1,0.2],h2(e) = [0,0]. Since, for example, h1 can be ver-
ified as a stable p-model because the probabilistic reduct
of P w.r.t. h1 contains the h-rules:

a : [0.89,0.91] ←
c : [0.2,0.3] ← d : [0.1,0.15]
d : [0.1,0.2] ←

and lfp(TP h1 ) = h1.
Example 7: The nh-program in Example 4 has two sta-

ble p-models h1 and h2 where h1(a) = [0.4, 0.7], h1(b) =
[0, 0], h1(r) = [0.25, 0.60] and h2(a) = [0, 0], h2(b) =
[0.5,0.9],
h2(r) = [0.3,0.65]. Since, for example, h2 can be verified
as a stable p-model because the probabilistic reduct of P
w.r.t. h2 contains the h-rules:

b : [0.5,0.9] ←
r : [0.25,0.60] ← a : [0.4,0.65]
r : [0.3,0.65] ← b : [0.5,0.8]

and lfp(TP h2 ) = h2.
Theorem 2: Every h-program P has a unique stable p-

model h iff h is the least p-model of P .
The following result shows that the stable p-model se-

mantics generalizes the stable model semantics for classical
logic programming [7].

Proposition 4: Let P be a normal logic program. Then
S′ is a stable model of P iff h is a stable p-model of P ′ ∈
NHPP1 that corresponds to P where h(a) = [1,1] iff a ∈ S′

and h(b) = [0,0] iff b ∈BL \S′.
In the rest of this section we define the immediate conse-

quence operator of nh-programs and study its relationship
to the stable p-model semantics.

Definition 19: Let P = 〈R,τ〉 be a ground nh-program
and h ∈HFF . The immediate consequence operator T ′P is
a mapping T ′P : HFF →HFF defined as follows:

1. T ′P (h)(A) = cτ(A) M ′
A where

M ′
A =


µ

A : µ← F1 : µ1, . . . ,Fn : µn,
not (G1 : β1), . . . ,not (Gm : βm) ∈R and
∀(1≤ i≤ n),µi ≤t h(Fi) and
∀(1≤ j ≤m),βj �t h(Gj)
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and M ′
A 6= ∅. T ′P (h)(A) = [0,0] if M ′

A = ∅.
2. T ′P (h)(G1 ∧ρ G2) = cρ(T ′P (h)(G1), T ′P (h)(G2)) where

(G1 ∧ρ G2) ∈ bfS(BL).
3. T ′P (h)(G1∨ρ′ G2) = cρ′(T ′P (h)(G1),T ′P (h)(G2)) where

(G1 ∨ρ′ G2) ∈ bfS(BL).
It is easy to see that T ′P extends TP to handle h-rules with
negative hybrid literals and, hence, T ′P = TP for any h-
program P . The operator T ′P is not monotonic w.r.t. ≤t.
This can be seen in the following example.

Example 8: Consider the nh-program: a : [0.2, 0.3] ←
not (b : [0.6,0.8]). Let h1 be a probabilistic interpretation
that assigns [0,0] to b and [0,0] to a. In addition, let h2

be a probabilistic interpretation that assigns [0.65,0.9] to b
and [0,0] to a. Hence, h1 ≤t h2. But T ′P (h1)(a) = [0.2,0.3]
and T ′P (h2)(a) = [0,0]. Thus, T ′P (h1) �t T ′P (h2)

Theorem 3: Let P be a nh-program and h be a stable
p-model of P . Then h is a minimal fixpoint of T ′P .
It is worth noting that not every minimal fixpoint of T ′P is
a stable p-model of P . Consider the following nh-program
P .

Example 9: Let P = 〈R,τ〉 where τ is arbitrary and R

a : [0.7,0.8] ← not (a : [0.1,0.17])
a : [0.1,0.33] ← b : [0.6,0.8]
b : [1,1] ← a : [0.1,0.24]

It is easy to verify that the probabilistic interpreta-
tion h(a) = [0.1, 0.33] and h(b) = [1, 1] is a minimal fix-
point of T ′P . However, Ph contains a : [0.1, 0.33] ← b :
[0.6,0.8] and b : [1,1]← a : [0.1,0.24] where lfp(TP h)(a) =
lfp(TP h)(b) = [0,0]. Hence, h is not a stable p-model for
P .

V. Stable P-model Semantics and Probabilistic
Well-Founded Semantics Relationships

There is a close relationship between the well-founded
probabilistic models and the stable probabilistic models.
In this section we study this relationship. For a given nh-
program P , the following results show that for every total
p-model h of P , h is a stable p-model of P if and only if
it is a fixpoint of the probabilistic well-founded operator
WP . However, well-founded total probabilistic models are
unique stable probabilistic models.

Theorem 4: Let P be a nh-program and h be a total
p-model of P . Then h is stable p-model of P iff h is a
fixpoint of WP .

Corollary 1: Let P be a nh-program and h be a well-
founded total p-model of P . Then h is the unique stable
p-model of P .
The following result shows that the well-founded proba-
bilistic model approximates the stable p-models of a nh-
program, since the well-founded partial p-model of a nh-
program P is contained (with respect to the partial order
≤w) in every stable p-model of P .

Corollary 2: Let P be a nh-program and h be a well-
founded partial p-model of P . Then for every stable p-
model g of P , h≤w g.

VI. Related Work

A stable model semantics extension to the probabilistic
logic programming in [18], [19] was presented in [20]. The
notion of non-monotonic negation presented in [20] is closer
to our definition of non-monotonic negation. The main
difference with respect to [20] is that we employ the truth
order instead of the knowledge order as well as our frame-
work allows reasoning with different modes of probabilistic
combinations. However, [20] is limited to a single mode of
probabilistic combination. Moreover, the stable model se-
mantics in [20] is computationally expensive, due to anno-
tated conjunctions or disjunctions are allowed as heads of
rules. On the other hand, we allow only annotated atoms
as heads of rules, rather than annotated conjunctions or
disjunctions as in [20], to avoid the high computational
complexity of the semantics [15]. Another important dif-
ference between our framework and [20] is that we do not
allow hybrid basic formulae with annotation [0,0] to appear
neither in the heads nor in the bodies of the rules (this is
an extension to our framework that we will consider in the
future according to the open world assumption), however,
[18], [19], [20], [5] does, although these semantics as well
as ours are based on the closed world assumption. The
reason is that having a hybrid basic formula, A, in a nh-
program with the annotation [0,0], i.e., A : [0,0], means
that A is absolutely false. This A : [0,0] corresponds to
classical negation ¬A, which in turn requires a different
treatment when defining the semantics of the programs.

A probabilistic semantics, based on the possible world
semantics, for disjunctive logic programs with non-
monotonic negation has been presented in [16]. The seman-
tics of [16] is based on multi-valued logic and a stable model
semantics has been described. In addition to programs
in [16] are disjunctive logic programs, probabilities are
treated as a lattice of truth values, where the probability
of the conjunction Prob(A∧B) = min(Prob(A),P rob(B))
and the probability of the disjunction Prob(A ∨ B) =
max(Prob(A),P rob(B)). This is considered a fixed mode
of combination. Whereas, in our framework conjunctions
and disjunctions are treated differently according to the
type of dependency between events. In [2], a new method-
ology to probabilistic reasoning was presented under the
possible world semantics by employing answer set program-
ming for classical logic programming. Answer set program-
ming in [2] is exploited to emulate the possible world se-
mantics. However, [2] assumes independence of probabili-
ties which is a fixed mode of probabilistic combination.

Our probabilistic well-founded semantics introduced in
this paper differs from the well-founded semantics pre-
sented in [13], [14] in various ways. The notion of non-
monotonic negation in [13], [14] is closer to the classical
negation. In addition, our probabilistic well-founded se-
mantics is based on the declarative well-founded semantics
for normal logic programs [9], however, the well-founded
semantics in [13], [14] is based on the alternating fixpoint
semantics [8]. A stable model semantics and well-founded
semantics (based on alternating fixpoint semantics) have
also been presented in [24]. However, the certainty values
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that are reasoned about are non-probabilistic values. In
addition, no annotated conjunctions or disjunctions are al-
lowed in the body of rules [24]. Furthermore, in [4], the
semantics of [24] has been extended to allow classical nega-
tion as well as non-monotonic negation by proposing alter-
nating fixpoint like semantics. A generalization of HPP of
[5] was proposed in [3] by providing a more general seman-
tical characterization in which HPP fits. However, [3] does
not allow non-monotonic negation in defining its seman-
tics. In addition, it relies on a complex translation process
which is exponential in the size of HPP.

VII. Conclusions and Future Work

We presented an extension of the language of hybrid
probabilistic programs framework [23], called normal hy-
brid probabilistic programs, to cope with non-monotonic
negation. The extension is a necessary requirement in
many real-world applications (e.g., planning with incom-
plete and uncertain knowledge). We developed a seman-
tical characterization of the extended framework, which
relies on a probabilistic generalization of the well-founded
semantics and stable model semantics, originally developed
for normal logic programs. We showed that the proba-
bilistic well-founded semantics and the stable probabilistic
model semantics naturally generalize the well-founded se-
mantics and the stable model semantics for classical logic
programming. Furthermore, we showed that they natu-
rally extend the semantics for HPP (without negation)
proposed in [23]. Moreover, we showed that the relation-
ship between the probabilistic well-founded semantics and
the stable probabilistic model semantics preserves the rela-
tionship between the well-founded semantics and the stable
model semantics for normal logic programs.

A topic of future research is to extend the language
of normal hybrid probabilistic programs to allow classical
negation and disjunctions of annotated atomic formulae
in the heads of nh-rules. We plan to develop an alter-
nating fixpoint semantics for the language of nh-programs
and analytically study its relationship to the probabilistic
well-founded semantics proposed in this paper. In addi-
tion, we intend to investigate the computational aspects
of the stable probabilistic model semantics and the proba-
bilistic well-founded semantics—by developing algorithms
and implementations for computing these semantics. The
algorithms and implementations we will develop will be
based on appropriate extensions of the existing techniques
for computing the stable model semantics and the well-
founded semantics for normal logic programs, e.g., SMOD-
ELS [17].
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