
The Numerical Stability of Kernel Methods

Shawn Martin
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-0310

smartin@sandia.gov

November 3, 2005

Abstract

Kernel methods use kernel functions to provide nonlinear versions of
different methods in machine learning and data mining, such as Principal
Component Analysis and Support Vector Machines. These kernel functions
require the calculation of some or all of the entries of a matrix of the form
XT X. The formation of this type of matrix is known to result in potential
numerical instability in the case of least squares problems. How does the
computation of the kernel matrix impact the stability of kernel methods? We
investigate this question in detail in the case of kernel PCA and also provide
some analysis of kernel use in Support Vector Machines.

Keywords: Kernel Methods, Principal Component Analysis, Support Vector
Machines, Numerical Stability

1 Introduction

Kernel functions were originally used by James Mercer in 1909 in the context of
integral equations [17]. It wasn’t until 1964 that these kernels were interpreted as
inner products in feature spaces for use in machine learning [1]. Since the early
1990s, kernels have been applied to Support Vector Machines (SVMs) [3], Princi-
pal Component Analysis (PCA) [23], Fisher’s Linear Discriminant [18], and a host
of other algorithms.

Up to now the numerical stability of kernel-based algorithms has not been ad-
dressed. In this paper we show that one such algorithm, kernel PCA [23], is nu-
merically unstable in the case of small eigenvectors. We also provide an example

showing that SVMs can be unstable in the case of order of magnitude differences
in vector components.

This paper is organized as follows: in Section 2 we discuss the meaning of nu-
merical stability; in Section 3 we give some background on kernel PCA; in Section
4 we present a simple example which shows that kernel PCA is numerically un-
stable; in Section 5 we explain why kernel PCA is unstable in general; in Section
6 we discuss SVMs and provide an example showing how SVMs can be unstable;
and in Section 7 we offer our conclusions.

2 Numerical Stability

Numerical stability is the study of algorithm performance in terms of accuracy.
While a numerically unstable algorithm will produce incorrect results in certain
cases, a numerically stable algorithm will produce nearly correct results even in
the case of an ill-conditioned problem. We use the definition of numerical stability
as described in [27]. Specifically, if we use the notationg : X → Y to designate a
problem, and the notatioñg : X → Y to designate analgorithm, then a numerically
stable algorithm is an algorithm̃g such that givenx ∈ X there exists̃x ∈ X such
that

‖g̃(x)−g(x̃)‖
‖g(x)‖ = O(εmachine) and ‖x−x̃‖

‖x‖ = O(εmachine), (1)

whereO(εmachine) decreases in porportion toεmachine.
Many classical algorithms, such as Gaussian elimination and Gram-Schmidt

orthogonalization, are numerically unstable. Often these algorithms are avoided by
using numerically stable variants such as modified Gram-Schmidt, but just as often
the algorithms are used anyway (sometimes due to ignorance) and are unstable only
in certain cases. Gaussian elimination, for example, can give completely inaccurate
results for certain matrices, but gives accurate results in all known real applications
[27]. It is also interesting to note that stability analysis of algorithms can be very
difficult. To this day, the rarity of matrices for which Gaussian elimination fails is
not fully understood, despite study by such giants as von Neumann, Turing, and
Wilkinson [27].

3 Kernel PCA

Prinicpal Component Analysis, closely related to the Singular Value Decomposi-
tion (SVD), is a data analysis technique whereby the most variance is captured in
the least number of coordinates [12], [14], [27]. PCA was originally investigated

by Pearson in 1901 [20] and Hotelling in 1933 [10] and is now applied in almost
every area of scientific investigation.

The widespread use of PCA has spurred interest in the investigation of different
nonlinear variants and extensions of PCA, including Hebbian networks [19], multi-
layer perceptrons [16], Principal Curves [9] and kernel PCA [23]. In addition,
there are other methods in data analysis similar in spirit to PCA such as Projection
Pursuit [8], Independent Component Analysis [13], [11], Isomap [26], and Locally
Linear Embedding [21].

3.1 Kernels

Kernel PCA is based on the use of Mercer kernel functions. Kernel functionss are
functions of the formk : Rn × Rn −→ R such that there exists an accompanying
mapΦ : Rn −→ F with

k(x,y) = (Φ(x),Φ(y)), (2)

whereF is a separable Hilbert space with inner product(•, •). The mapΦ is
typically nonlinear and the relation (2) is used as a computational “trick” to avoid
explicit computation ofΦ(x). Some simple kernels are the linear kernelk(x,y) =
(x,y), the polynomial kernelk(x,y) = ((x,y) + c)d, d ∈ Z and the gaussian
radial basis function kernelk(x,y) = exp(−‖x− y‖2/2σ2), σ 6= 0.

Kernels are useful in machine learning because they allow the application of
linear methods to nonlinear problems. In principle, an appropriate mapΦ can be
used to change a nonlinear problem inRn into a linear problem inF . Once the
problem has undergone this transformation, a linear method can be applied.

Kernels come into play because a given nonlinear mapΦ usually results in
a large and sometimes infinite increase in the dimension of the original problem.
Kernels are used to avoid this dimensional increase by replacing the inner products
in a linear method with kernels. This substitution yields a nonlinear method which
never explicity uses the mapΦ. By replacing inner products(xi,xj) with kernels
k(xi,xj) = (Φ(xi),Φ(xj)) we effectively remap our problem usingΦ before
applying an inner product in a higher dimensional space.

Additional information on kernels and their use in machine learning can be
found in [4] and [24].

3.2 PCA

Kernel PCA combines kernel functions with the so-called snapshot method [15],
[14] for computing principal components. To describe the snapshot method, sup-
pose we havem data points{x1, . . . ,xm} ⊂ Rn. If we write p = min{m,n}

and record our data points in anm × n matrix X = (x1, . . . ,xm) then PCA is
performed by computing the SVD1

X = UΣV T , (3)

whereU is anm×m orthogonal matrix,V is ann×n orthogonal matrix andΣ is
anm×n matrix with diagonal entriesσ1 ≥ ... ≥ σp ≥ 0. In this case the principal
components are usually considered to be the columns ofU and the singular values
σ1, . . . , σp give a measure of the variance captured by the corresponding principal
components. Typically the projectionsUT X = ΣV T are considered most infor-
mative.

The snapshot method, originally considered for image analysis [15], refers to
computing the SVD by performing an eigenvalue decomposition of

XT X = V Σ2V T = QΛQT , (4)

in which case the eigenvaluesλ1, . . . , λp correspond to the squaresσ2
1, . . . , σ

2
p of

the singular values and the eigenvectorsQ correspond to the right singular vectors
V . (If some of the singular values are equal this becomes a corresondence between
subspaces.)

3.3 Formulation of Kernel PCA

Kernel PCA is a kernel version of the snapshot method for computing principal
components. In other words the inner products in (4) are replaced by kernels to
yield a nonlinear version of PCA. To describe kernel PCA more fully, let us con-
sider a parallel development of the snapshot method in the Section 3.2. Suppose
we denote(Φ(x1), . . . ,Φ(xm)) by X̃. We want to decomposẽX using some type
of SVD

X̃ = Ũ Σ̃Ṽ T , (5)

whereŨ , Σ̃, and Ṽ have properties similar to the properties possessed byU,Σ,
andV in (3). UnfortunatelyΦ(X) ⊂ F , whereF is either a very high or infi-
nite dimensional vector space so that (5) is either very difficult or impossible to
compute.

We can, however, form the matrix̃XT X̃ by computing the kernel matrixK,
where the entriesKij of K are given byk(xi,xj). Then we can use the eigenvalue
decomposition ofK to get

X̃T X̃ = K = Ṽ Σ̃2Ṽ T = Q̃Λ̃Q̃T . (6)
1Technically PCA is performed by mean subtracting the dataX then diagnalizing the covariance

matrix 1
m

XXT . To provide a cleaner exposition, we assume without loss of generality that our data
is mean zero and unit covariance.

Thus (6) is the kernel version of the snapshot relation (4) in Section 3.2. The
eigenvalues̃λ1, . . . , λ̃p correspond to the squaresσ̃2

1, . . . , σ̃
2
p of the singular values

and the eigenvectors̃Q correspond to the right singular vectorsṼ . In particular we
can compute the principal component projectionsŨT X̃ = Σ̃Ṽ T of our remapped
data. (These statements will be made precise in Section 5.)

This is not how kernel PCA was presented in [23], but the relations in (5) and
(6) motivate the algorithm well: compute the eigenvalues and eigenvectors ofK.2

As an added benefit, the relations in (5) and (6) make clear why the algorithm is
numerically unstable.

4 Example of Kernel PCA Instability

One of the interesting things about kernel PCA is that it is a direct extension of
standard PCA. In other words, kernel PCA with a linear kernelk(x,y) = (x,y)
is standard PCA. Since standard PCA has been studied before, the easiest place to
consider the numerical stability of kernel PCA is in the linear case.

It is known that PCA, computed using the SVD, is numerically stable. It is also
known that computing PCA using an eigenvalue decomposition of the covariance
matrix, or ofXT X, is numerically unstable [27].

A good example for analyzing numerical stability can be found in [27] on page
65-66. In this example, a matrixX = UΣV T is considered, whereU andV are
random orthogonal square matrices of size 80, andΣ is a diagonal matrix with
entries2−1, 2−2, . . . , 2−80. We useX to show that computing the singular values
by diagonalizingXT X is unstable. As seen in Figure 1(a), computing singular
values by diagonalizingXT X is roughly half as accurate as computing singular
values using the SVD.

It might be conjectured that the computation of the right singular vectors by
diagonalizingXT X is stable despite the instability in the computation of the sin-
gular values. This is not the case. We see in Figure 1(b) that computation of the
right singular vectors breaks down at exactly the same point that the singular value
computation breaks down.

5 Explanation of Kernel PCA Instability

We can explain the instabiliity of kernel PCA in the linear case using arguments in
[27], and in the nonlinear case by extending those arguments.

2We have omitted the steps of kernel PCA involving mean subtraction and normalization.

0 10 20 30 40 50 60 70 80
−60

−50

−40

−30

−20

−10

0
Numerical Stability of Singular Value Comparison

Dimension

S
in

g
u
la

r
V

a
lu

e
s

Actual
SVD
Diagonal

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Numerical Stability of Right Singular Vector Comparison

A
b
so

lu
te

 V
a
lu

e
 S

in
g
u
la

r
V

e
ct

o
r

In
n
e
r

P
ro

d
u
ct

Dimension

Actual
SVD
Diagonal

Figure 1: Numerical Stability Comparisons. On the left (a) we compare the ability
of SVD versus diagonalization ofXT X for computing singular values. The dot-
ted line shows the actual singular values2−1, . . . , 2−80 versus dimension (1-80);
the dashed line shows the singular values computed using a numerically stable im-
plementation of the SVD; and the solid line shows the results when the singular
values are computed by diagonalizingXT X. On the right (b) we compare abilities
for computing right singular vectors. In (b) we display absolute values of inner
products (which correspond to angles) between computed and actual right singular
vectors. We use the same key for the dotted, dashed, and solid lines as in (a).

5.1 Linear Case

To explain why computing singular values by diagonalizingK = XT X is unstable
we adopt an argument from page 235 of [27]. This argument, presented in Section
5.1.2, uses a simplified version of the Bauer-Fike Theorem [2], which we state in
Section 5.1.1.

5.1.1 Bounds

Theorem 1 (Bauer-Fike)SupposeK is a real symmetric matrix withK = QΛQT

andδK is a perturbation ofK. If λ̄j is an eigenvalue ofK + δK then there exists
an eigenvalueλj of K such that

|λ̄j − λj | ≤ ‖δK‖2. (7)

Lemma 1 (Extension to Singular Values)By applying the Bauer-Fike theorem(1)
to the matrix (

0 XT

X 0

)
we get a similar bound on the singular values ofX. In particular, if σ̄j is a singular
value ofX + δX then there exists a singular valueσj of X with

|σ̄j − σj | ≤ ‖δX‖2. (8)

5.1.2 Singular Values versus Eigenvalues

We use the bounds in Section 5.1.1 to compare the results of a stable computation
of the singular values ofX with a computation of the singular values ofX via a
stable computation of the eigenvalues ofXT X.

Using definition (1), a stable algorithm for computing a singular valueσj of
X has the property that there is a perturbationδX of X and a singular valuēσj of
X + δX such that

|σj−σ̄j |
|σ̄j | = O(εmachine) and ‖δX‖

‖X‖ = O(εmachine), (9)

where|f | = O(εmachine) means thatf decreases in porportion toεmachine(see [27]
for details). Applying (8) to (9) we see that

|σj − σ̄j |
|σ̄j |

≤ ‖δX‖
|σ̄j |

= O(
εmachine‖X‖

|σ̄j |
),

which implies that
|σj − σ̄j | = O(εmachine‖X‖). (10)

In the case of computing an eigenvalueλj of K = XT X using a stable algo-
rithm we get a similar bound

|λj − λ̄j | = O(εmachine‖K‖). (11)

In order to compare the accuracy of computing singular values directly versus
as square roots of eigenvalues ofXT X we compare the bounds in (10) and (11).
From (11) we get

|λj − λ̄j | = |σ2
j − σ̄2

j | = |σj + σ̄j ||σj − σ̄j |,

which gives

|σj − σ̄j | = O(
εmachine‖K‖

σj
). (12)

Since‖K‖ = ‖XT X‖ = ‖X‖2 we see that (12) is less accurate than (10) by
the factor‖X‖

σj
= σ1

σj
. For singular values similar in magnitude toσ1 this is not a

problem but for small singular valuesσj this computation becomes unreliable.
In particular, it is interesting to revisit the example in Section 4 in the context of

our newly derived bounds. If we assume thatεmachine≈ 2−50 for double precision
then we see that our expected accuracy for computing singular values directly is
O(εmachine‖X‖) = O(εmachineσ1) = O(2−51). This agrees well with Figure 1(a).
Our expected accuracy for computing singular values by diagonalizingXT X, on

the other hand, isO(εmachine
σ2
1

σj
) = O(2j−52). Thus forσj = 2−26 we have an

expected accuracy ofO(2−26). We can’t do any better than this and in fact the
worst caseσj = 2−80 has an expected accuracy ofO(228)! From this perspective
our eigenvalue decomposition in Figure 1(a) does a remarkably good job.

5.1.3 Singular Vectors and Eigenvectors

In Figure 1(b) we saw that computing the right singular vectors by diagonalizing
XT X was unstable. This is true in general because the computation of eigenvectors
is ill-conditioned [7], [22]. In particular an eigenvector calculation is very sensitive
to the gaps between eigenvalues: a small gap yields inaccurate computations. In
our case this means that our eigenvector calculations will become inaccurate when
the eigenvalues reach maximum effective precision. Thus the instability in com-
puting the singular values by diagonalizingXT X carries over into the computation
of the right singular vectors.

5.2 Nonlinear Case

In this section we show that kernel PCA is unstable in the nonlinear case. We
accomplish this by straightforward direct extension of the results in Sections 3.2
and 5.1.

We first defineX̃ : Rm −→ F by X̃v = v1Φ(x1) + · · · + vmΦ(xm) and
X̃T : F −→ Rm by X̃Tu = ((Φ(x1),u), . . . , (Φ(xm,u). Both X̃ andX̃T are
linear and the adjoint̃X∗ of X̃ is X̃T .

Using these definitions and the standard induction proof (see e.g. [27]) we get
the kernel version of the SVD previously mentioned in Section 3.3 as Equation (5).

Theorem 2 (Kernel SVD) SupposeX̃ is defined as above andp is the dimension
of the range ofX̃. Then there exists a decomposition

X̃ = Ũ Σ̃Ṽ T (13)

such thatṼ is an orthogonalm×m matrix,Σ̃ is ap×m diagonal matrix with en-
triesσ1 ≥ · · · ≥ σp ≥ 0, andŨ : Rp −→ F is a unitary operator. Furthermore the
singular valuesσ1, . . . , σp are uniquely determined as are the subspaces associ-
ated with equal singular values. In particular a distinct singular value determines
(up to sign) the associated singular vectors.

The Bauer-Fike bound on singular values in (8) can also be extended. By
applying the standard Bauer-Fike theorem to the matrix(

0 X̃T Ũ

ŨT X̃ 0

)

we get a bound on the singular values ofX̃. In particular ifσ̄j is a singular value
of X̃ + δX̃ then there is a singular valueσj of X̃ with

|σ̄j − σj | ≤ ‖δX̃‖. (14)

Using kernel SVD (13) and the Bauer-Fike bound (8) the argument in Section
5.1.2 carries over directly to the nonlinear case.

6 Support Vector Machines

We have shown that kernel PCA is numerically unstable, and that the instability
arises from the computation of the singular values ofX̃ as the square roots of the
eigenvalues of the kernel matrixK = X̃T X̃. Unfortunately, the formation of the

kernel matrix is central to kernel PCA, and a stable alternative is not immediately
apparent. In fact, the formation of the kernel matrix is central to all kernel methods.
What does this imply about the stability of these kernel methods, including the
stability of SVMs? Although we do not answer this question in general, we present
here a simple example with which we investigate the stability of SVMs.

Support Vector Machines are classifiers (there are also SVMs which perform
regression [25]) which were originally developed in [28], [3], [5], among others.
SVMs are based on a maximal margin hyperplane, which was originally presented
in [28], and use nonlinear kernel functions, originally suggested in [3]. SVMs are
able to handle errors using the soft margin generalization, first proposed in [5].
Due to their use of nonlinear kernel functions, SVMs are very adaptable (able to
assume polynomial, radial basis function, and neural network forms) and have been
applied successfully to a wide variety of problems. For an introduction to SVMs
see [4], [6], [29].

In the case of a SVM, we have a dataset{x1, . . . ,xm} ⊂ Rn with class labels
{y1, . . . , ym} ⊂ {−1,+1}. If we assume that the two classes are linearly separa-
ble, then our SVM assumes the formf(x) = sign((w,x)− b), wherew andb are
computed by solving the quadratic programming problem

minα
1
2

∑m
i=1

∑m
j=1 yiyjαiαj(xi,xj)−

∑m
i=1 αi

s.t.
∑m

i=1 yiαi = 0
αi ≥ 0 for i = 1, . . . ,m.

(15)

If α∗
1, . . . , α

∗
m is the solution to (15) thenw =

∑m
i=1 yiα

∗
i xi andb = (w,xi)− yi,

independent ofi, assumingα∗
i > 0.

To illustrate the potential instability of the SVM calculation, we now consider
the dataset{x0 = 0,x1 = σ1e1, . . . ,xm = σmem} ⊂ Rm with class labels
{y0 = −1, y1 = · · · = ym = 1}, wheree1, . . . , em is the standard basis for
Rm, andσ1, . . . , σm are chosen to be positive. For this dataset, the SVM quadratic
program in (15) reduces to

minα
1
2

∑m
i=1 α2

i σ
2
i − 2

∑m
i=1 αi

s.t. αi ≥ 0 for i = 1, . . . ,m,
(16)

whereα0 =
∑m

i=1 αi. The reduced program in (16) has solution(α∗
0,

2
σ2
1
, . . . , 2

σ2
m

)

with w = (2
σ1

, . . . , 2
σm

) andb = 1.
Now letσi = 2−i for i = 1, . . . , 80. In this case, the solution to (15) is given by

α∗
0 = 2

∑80
i=1(2

i)2 andα∗
i = 2× (2i)2 for i = 1, . . . , 80 with w = 2(21, . . . , 280)

andb = 1. Because bothα0 andα1, . . . , α80 are included in the calculation of (15),
we observe that the constraintα0 =

∑80
i=1 αi implies a strict limit on the precision

of the results. In particular,α∗
0 = 2

∑80
i=1(2

i)2 implies that we are limited to
approximately half of the available machine precision, exactly analogous to our
example in Section 4, when we used diagonalization to compute the eigenvalues
of XT X. Furthermore, we emphasize that this observation holds regardless of the
particular algorithm used to solve (15).

7 Conclusions

In this paper we showed that kernel PCA is numerically unstable. This instability
arises from the computation of the singular values ofX̃ as the square roots of the
eigenvalues of the kernel matrixK = X̃T X̃. Unfortunately, the formation of the
kernel matrix is central to kernel PCA and a stable alternative is not immediately
apparent.

On the other hand, in most applications of kernel PCA we are only interested in
the top few statistically significant singular vectors. Thus the fact that it is difficult
to compute the smaller singular values is unimportant from a practical point of
view.

We also discussed how the formation of the kernel matrixK affects the com-
putation of a SVM. We provided an example where the formation ofK results in
numerical instability, in the case of linearly separable data.

Again, however, our example was artificial. In most real-world problems, it
would probably not occur that one measurement was several orders of magnitude
different than another. Further, if in fact there was such a difference between mea-
surements, the practitioner would benefit by scaling the measurements so that they
were of similar magnitudes. Finally, the practitioner would not use a separable
SVM, but would instead use the soft margin generalization, which incorporates a
regularization term. It may be that the soft margin generalization is stable.

Thus the practical implications of our analysis seem rather limited: it may be
unwise to trust kernel methods beyond eight digits of accuracy, and only for artifi-
cial examples. As discussed in Section 2, however, numerically unstable methods
can often be used successfully, and only occasionally propagate errors out of con-
trol, giving entirely incorrect solutions. To avoid this phenomenon, we need to
better understand the stability of kernel methods. We have shown here that certain
kernel methods can be unstable in certain cases. If kernel methods are unstable in
general, and if and when these instabilities occur in practice, are more important
but much more difficult questions.

8 Acknowledgements

This work was funded by the Office of Advanced Scientific Research Mathematics
Information and Computer Science Division, and by Sandia National Laboratories
Laboratory Directed Research and Development. Sandia is a multiprogram labora-
tory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

References

[1] M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of
the potential function method in pattern recognition learning.Automation
and Remote Control, 25:821–837, 1964.

[2] F. L. Bauer and C. T. Fike. Norms and exclusion theorems.Numerische
Mathematik, 2:137–141, 1960.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor,5th Annual ACM Workshop on
COLT, pages 144–152, Pittsburgh, PA, 1992. ACM Press.

[4] C. J. C. Burges. Geometry and invariance in kernel based methods. In
B. Scḧolkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in Ker-
nel Methods — Support Vector Learning, pages 89–116, Cambridge, MA,
1999. MIT Press.

[5] C. Cortes and V. Vapnik. Support vector networks.Machine Learning,
20:273 – 297, 1995.

[6] N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Ma-
chines (and other kernel-based learning methods). Cambridge University
Press, 2000.

[7] J. Demmel. A brief tour of eigenproblems (chapter 2). In Z. Bai, J. Demmel,
J. Dongarra, A. Ruhe, and H. van der Vorst, editors,Templates for the Solution
of Algebraic Eigenvalue Problems: A Practical Guide, Philadelphia, 2000.

[8] J. H. Friedman. Exploratory projection pursuit.Journal of the American
Statistical Association, 82:249–266, 1987.

[9] T. Hastie and W. Stuetzle. Principal curves.Journal of the American Statis-
tical Association, 84:502–516, 1989.

[10] H. Hotelling. Analysis of a complex of statistical variables into principal
components.Journal of Educational Psychology, 24:417–441 and 498–520,
1933.

[11] Aapo Hyv̈arinen. Survey on Independent Component Analysis.Neural Com-
puting Surveys, 2:94–128, 1999.

[12] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[13] C. Jutten and J. Herault. Blind separation of sources, part I: An adaptive
algorithm based on neuromimetic architecture, 1991.

[14] M. Kirby. Geometric Data Analysis. John Wiley & Sons, 2001.

[15] M. Kirby and L. Sirovich. Application of the Karhunen-Loéve procedure for
the characterization of human faces.IEEE Trans. PAMI, 12(1), January 1990.

[16] M. A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks.AIChE Journal, 37:233–243, 1991.

[17] J. Mercer. Functions of positive and negative type and their connection with
the theory of integral equations.Philos. Trans. Roy. Soc. London, A 209:415–
446, 1909.

[18] S. Mika, G. R̈atsch, J. Weston, B. Schölkopf, and K.-R. M̈uller. Fisher
discriminant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and
S. Douglas, editors,Neural Networks for Signal Processing IX, pages 41–48.
IEEE, 1999.

[19] E. Oja. A simplified neuron model as a principal component analyzer.Journal
of Mathematical Biology, 15(3):267–273, 1982.

[20] K. Pearson. On lines and planes of closest fit to systems of points in space.
Phil. Mag., 2:559–572, 1901.

[21] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding.Science, 290(5500):2323–2326, 22 Dec. 2000.

[22] Y. Saad.Numerical Methods for Large Eigenvalue Problems. Halstead Press,
1992. See Y. Saad’s homepage at the University of Minnesota, Department
of Computer Science and Engineering, http://www-users.cs.umn.edu/ saad.

[23] B. Scḧolkopf, A. Smola, and K.-R. M̈uller. Kernel principal component
analysis. In B. Scḧolkopf, C. J. C. Burges, and A. J. Smola, editors,Ad-
vances in Kernel Methods – Support Vector Learning, pages 327–352. MIT
Press, Cambridge, MA, 1999.

[24] B. Scḧolkopof and A. Smola.Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

[25] A. J. Smola and B. Scḧolkopf. A tutorial on support vector regression.Sta-
tistics and Computing, 14:199–222, 2004.

[26] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction.Science, 290(5500):2319–2323,
22 December 2000.

[27] L. Trefethen and D. Bau.Numerical Linear Algebra. SIAM, Philadelphia,
1997.

[28] V. Vapnik. Estimation of Dependences Based on Empirical Data [in
Russian]. Nauka, Moscow, 1979. (English translation: Springer Verlag, New
York, 1982).

[29] V. Vapnik. Statistical Learning Theory. Wiley Interscience, New York, 1998.

